DOI:10.2478/gm-2019-0013

$\mathbb{I}_{\stackrel{*}{u}}$ open sets in generalized topological spaces ¹

Ritu Sen, Bishwambhar Roy

Abstract

In this paper we have introduced two new types of sets termed as \mathbb{I}_{μ}^* -open sets and strongly \mathbb{I}_{μ}^* -open sets and discussed some of its properties. The relation between similar types of sets, characterizations and some basic properties of such sets have been studied.

2010 Mathematics Subject Classification: 54C10, 54C08. Key words and phrases: μ -open set, ideal, \mathbb{I}_{μ} -open set, strongly \mathbb{I}_{μ} -open set

1 Introduction

The concept of ideals on topological spaces was studied by Kuratowski [18] and Vaidyanat-haswamy [23] which is one of the important area of research in the branch of mathematics. After then different mathematicians applied the concept of ideals in topological spaces (see [1, 13, 16, 17, 19, 23, 20]). In the past few years mathematicians turned their attention towards generalized open sets (see [2, 3, 6, 8, 9, 10, 11, 14, 15, 21] for details). Our aim in this paper is to use the concept of ideals in generalized topology introduced by A. Császár. We recall some notions defined in [3].

Let expX denotes the power set of a non-empty set X. A class $\mu \subseteq expX$ is called a generalized topology [3], (briefly, GT) if $\emptyset \in \mu$ and μ is closed under arbitrary union. The elements of μ are called μ -open sets and the complement of μ -open sets are known as μ -closed sets. A set X with a GT μ on it is known as a

¹Received 8 November, 2018 Accepted for publication (in revised form) 15 December, 2019

generalized topological space (briefly, GTS) and is denoted by (X, μ) . A GT μ is said to be a quasi topology (briefly QT) [5] if $M, M' \in \mu$ implies $M \cap M' \in \mu$. The pair (X, μ) is said to be a QTS if μ is a QT on X.

For any $A \subseteq X$, the generalized μ -closure of A is denoted by $c_{\mu}(A)$ and is defined by $c_{\mu}(A) = \bigcap \{F : F \text{ is } \mu\text{-closed and } A \subseteq F\}$, similarly $i_{\mu}(A) = \bigcup \{U : U \subseteq A \text{ and } U \in \mu\}$ (see [3, 6]). Throughout the paper μ , λ will always mean GT on the respective sets.

An ideal [18] \mathbb{I} on a generalized topological space (X,μ) is a non-empty collection of subsets of X with the following properties : (i) $A\subseteq B$ and $B\in \mathbb{I}\Rightarrow A\in \mathbb{I}$ (ii) $A\in \mathbb{I},\,B\in \mathbb{I}\Rightarrow A\cup B\in \mathbb{I}$.

2 \mathbb{I}_{u} -open sets

Definition 1 Let \mathbb{I} be an ideal on a GTS (X, μ) . A subset A of X is said to be an \mathbb{I}_{μ}^* -open set if A is \varnothing or there exists a non-empty μ -open G such that $G \setminus c_{\mu}(A) \in \mathbb{I}$.

The complement of an \mathbb{I}_{μ}^* -open set is known as an \mathbb{I}_{μ}^* -closed set.

Theorem 1 Let \mathbb{I} be an ideal on a GTS (X, μ) and $A \subseteq X$. Then A is an \mathbb{I}_{μ} -open set in X if and only if $A = \emptyset$ or there exists a set $I \in \mathbb{I}$ and a non-empty μ -open set G such that $G \setminus I \subseteq c_{\mu}(A)$.

Proof. Let A be an \mathbb{I}_{μ}^* -open set in X. If $A = \emptyset$ we have nothing to show. Suppose that $A \neq \emptyset$. Then there exists a non-empty μ -open set G such that $G \setminus c_{\mu}(A) \in \mathbb{I}$. Put $I = G \setminus c_{\mu}(A)$. Thus $I \in \mathbb{I}$ and $G \setminus I \subseteq c_{\mu}(A)$.

Conversely, suppose that $A = \emptyset$ or there exists a set $I \in \mathbb{I}$ and a non-empty μ -open set G such that $G \setminus I \subseteq c_{\mu}(A)$. Then $G \setminus c_{\mu}(A) \subseteq I$. Thus $G \setminus c_{\mu}(A) \in \mathbb{I}$ showing that A is an \mathbb{I}_{μ} -open set. If $A = \emptyset$ then we have nothing to show.

Theorem 2 Let \mathbb{I} be an ideal on a GTS (X, μ) and $A \subseteq X$. Then A is an \mathbb{I}_{μ}^* -open set in X if and only if either $A = \emptyset$ or there exists a non-empty μ -open G and $I \in \mathbb{I}$ such that $G \subseteq c_{\mu}(A) \cup I$.

Proof. Follows from Theorem 1.

Definition 2 [21] Let \mathbb{I} be an ideal on a GTS (X, μ) . A subset A of X is called weakly \mathbb{I}_{μ} -open if $A = \emptyset$ or if $A \neq \emptyset$, there exists a non-empty μ -open set U such that $U \setminus A \in \mathbb{I}$. The complement of a weakly \mathbb{I}_{μ} -open set is termed as a weakly \mathbb{I}_{μ} -closed set.

Remark 1 Every weakly \mathbb{I}_{μ} -open set in a GTS (X, μ) with an ideal \mathbb{I} is an \mathbb{I}_{μ}^* -open set but the converse is not true as shown in the next example. Also we note that every μ -open set is \mathbb{I}_{μ}^* -open. In fact, μ -open set \Rightarrow weakly \mathbb{I}_{μ} -open set \Rightarrow \mathbb{I}_{μ}^* -open set.

Example 1 Let $X = \{a, b, c\}$, $\mu = \{\varnothing, \{a\}, \{a, b\}, \{b, c\}, X\}$ and $\mathbb{I} = \{\varnothing, \{b\}\}$. Then \mathbb{I} is an ideal on the GTS (X, μ) . It is easy to check that $\{b\}$ is an \mathbb{I}_{μ}^* -open set but not a weakly \mathbb{I}_{μ} -open set (and hence not μ -open).

Observation 1 Let \mathbb{I} be an ideal on a GTS (X,μ) . Then every μ -closed, \mathbb{I}_{μ}^* -open subset is weakly \mathbb{I}_{μ}^* -open. If \mathbb{I} and \mathbb{J} be two ideals on a GTS (X,μ) with $\mathbb{I} \subseteq \mathbb{J}$, then every \mathbb{I}_{μ}^* -open set is \mathbb{J}_{μ}^* -open. If \mathbb{I} is an ideal and μ and λ be two GT's on X with $\mu \subseteq \lambda$, then every \mathbb{I}_{μ}^* -open set is \mathbb{I}_{χ}^* -open.

Example 2 (a) Let $X = \{a, b, c\}$, $\mu = \{\varnothing, \{a, b\}, \{b, c\}, X\}$ and $\mathbb{I} = \{\varnothing, \{a\}\}$. Then \mathbb{I} is an ideal on the GTS (X, μ) . It is easy to check that $\{a, c\}$ and $\{b, c\}$ are two \mathbb{I}_* -open sets but their intersection $\{c\}$ is not an \mathbb{I}_* -open set.

- (b) Let $X = \{a, b, c\}$, $\mu = \{\varnothing, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}$, $\lambda = \{\varnothing, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$ and $\mathbb{I} = \{\varnothing, \{b\}\}$. Then \mathbb{I} be an ideal on the GTS's (X, μ) and (X, λ) . It is easy to check that the collection of \mathbb{I}_* -open sets and \mathbb{I}_* -open sets are same though μ and λ are not comparable.
- (c) Let $X = \{a, b, c\}$, $\mu = \{\emptyset, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}$, $\mathbb{I} = \{\emptyset, \{b\}\}$ and $\mathbb{J} = \{\emptyset, \{c\}\}$. Then \mathbb{I} and \mathbb{J} are two ideals on the GTS (X, μ) . It is easy to check that the collection of $\mathbb{I}_{\frac{\pi}{\mu}}$ -open sets and $\mathbb{J}_{\frac{\pi}{\mu}}$ -open sets are same though \mathbb{I} and \mathbb{J} are not comparable.

Theorem 3 Let \mathbb{I} be an ideal on a GTS (X, μ) . Then the family of all \mathbb{I}_{μ}^* -open sets of (X, μ) is a GT on X.

Proof. Suppose that $\{A_{\alpha}: \alpha \in \Lambda\}$ be a family of \mathbb{I}_{μ}^* -open sets in (X,μ) . If $A_{\alpha} = \emptyset$ for all $\alpha \in \Lambda$, then we have nothing to show. Suppose that $A_{\alpha} \neq \emptyset$ for at least one $\alpha \in \Lambda$. Then there exists a non-empty μ -open set U such that $U \setminus c_{\mu}(A_{\alpha}) \in \mathbb{I}$. This implies that $U \setminus c_{\mu}(\cup \{A_{\alpha}: \alpha \in \Lambda\}) \subseteq U \setminus c_{\mu}(A_{\alpha}) \in \mathbb{I}$. Thus $U \setminus c_{\mu}(\cup \{A_{\alpha}: \alpha \in \Lambda\}) \in \mathbb{I}$. Hence $\cup \{A_{\alpha}: \alpha \in \Lambda\}$ is also \mathbb{I}_{μ}^* open. Also note that by definition \emptyset is an \mathbb{I}_{μ}^* open set.

Theorem 4 Let \mathbb{I} be an ideal on a topological space (X, τ) and $A \subseteq X$. Then the following are equivalent:

- (i) A is \mathbb{I}_* -closed in X,
- (ii) A = X or there exists an element $I \in \mathbb{I}$ and a μ -closed set $K \neq X$ such that $i_{\mu}(A) \setminus I \subseteq K$,
- (iii) A = X or there exists a μ -closed set $K \neq X$ such that $i_{\mu}(A) \setminus K \in \mathbb{I}$.

Proof. (i) \Rightarrow (ii) : Let A be an \mathbb{I}_* -closed set. Then either A=X or $A\neq X$. If $A\neq X$, then $X\setminus A\neq\varnothing$ and $X\setminus A$ is \mathbb{I}_{μ}^* -open. Then there exists a non-empty μ -open set G such that $G\setminus c_{\mu}(X\setminus A)\in\mathbb{I}$. Put $I=G\setminus c_{\mu}(X\setminus A)$. Then $I\in\mathbb{I}$ and $G\subseteq X\setminus i_{\mu}(A)\cup I$. This implies that intersection of $X\setminus X\setminus i_{\mu}(A)$ and $X\setminus I$ is contained in $X\setminus G$. Put $K=X\setminus G$. Then K is μ -closed and $K\neq X$. Hence $i_{\mu}(A)\cap (X\setminus I)$ is contained in K. Hence $i_{\mu}(A)\setminus I\subseteq K$.

- (ii) \Rightarrow (i) : Suppose that A=X or there exists an element $I\in\mathbb{I}$ and a μ -closed set $K\neq X$ such that $i_{\mu}(A)\backslash I\subseteq K$. If A=X, then A is \mathbb{I}_{μ}^* -closed. Assume that there exists an element $I\in\mathbb{I}$ and a μ -closed set $K\neq X$ such that $i_{\mu}(A)\setminus I\subseteq K$. Then $X\setminus K\subseteq (X\setminus i_{\mu}(A))\cup I$. Take $U=X\setminus K$. Then U is μ -open and $U\subseteq c_{\mu}(Y\setminus A)\cup I$. Thus by Theorem 2, $X\setminus A$ is \mathbb{I}_{μ}^* -open and hence A is \mathbb{I}_{μ}^* -closed.
- (ii) \Rightarrow (iii): Suppose that there exists an element $I \in \mathbb{I}$ and a μ -closed set $K \neq X$ such that $i_{\mu}(A) \setminus I \subseteq K$. Then $i_{\mu}(A) \setminus K \subseteq I$ and hence $i_{\mu}(A) \setminus K \in \mathbb{I}$.
- (iii) \Rightarrow (ii): Suppose that there exists a μ -closed set $K \neq X$ such that $i_{\mu}(A) \setminus K \in \mathbb{I}$. Let $I = i_{\mu}(A) \setminus K$. Then I is an element of \mathbb{I} and $i_{\mu}(A) \setminus I \subseteq K$.

Definition 3 Let (X, μ) be a GTS and $A \subseteq X$. Then A is called μ -dense [12, 7] if $c_{\mu}(A) = X$.

Theorem 5 Let \mathbb{I} be an ideal and $\mu(\neq \{\emptyset\})$ be a GT on X. If A is μ -dense, then A is $\mathbb{I}_{\underline{u}}^*$ -open.

Proof. Let A be a μ -dense subset of X. Since $\mu \neq \{\emptyset\}$, there exists a non-empty set μ -open subset U of X. Then $U \setminus c_{\mu}(A) = U \setminus X = \emptyset \in \mathbb{I}$. Thus A is \mathbb{I}_{μ}^* -open.

Theorem 6 Let \mathbb{I} be an ideal on a GTS (X, μ) . If $A \in \mathbb{I} \cap \mu \setminus \{\emptyset\}$, then every subset B of X is \mathbb{I}_{μ}^* -open.

Proof. Let B be any subset of X. Then $A \setminus c_{\mu}(B) \in \mathbb{I}$ (as $A \setminus c_{\mu}(B) \subseteq A$). Hence B is \mathbb{I}_{μ}^* -open.

Example 3 $X = \{a, b, c\}$, $\mu = \{\emptyset, \{a, b\}, \{a, c\}, X\}$ and $\mathbb{I} = \{\emptyset, \{a\}\}$. Then \mathbb{I} is an ideal on the GTS (X, μ) . It can be checked easily that there does not exist any A such that $A \in \mathbb{I} \cap \mu \setminus \{\emptyset\}$ but every subset of X is \mathbb{I}_* -open.

Definition 4 Let (X, μ) be a GTS and $A \subseteq X$. A is said to be μ -nowhere dense [12, 7] in (X, μ) if $i_{\mu}(c_{\mu}(A)) = \emptyset$.

Theorem 7 Let \mathbb{I} be an ideal on a GTS (X, μ) and $A(\neq \emptyset) \subseteq X$. If A is not a μ -nowhere dense set, then A is an $\mathbb{I}_{\underline{u}}$ -open set.

Proof. Let $A \neq \emptyset$ be not a μ -nowhere dense set. Then $i_{\mu}(c_{\mu}(A)) \neq \emptyset$. Also $i_{\mu}(c_{\mu}(A)) \subseteq c_{\mu}(A)$. Put $U = i_{\mu}(c_{\mu}(A))$. Then U is a non-empty μ -open set such that $U \setminus c_{\mu}(A) \in \mathbb{I}$. Thus A is an \mathbb{I}_{μ}^* -open set.

Theorem 8 Let \mathbb{I} be an ideal on a GTS (X, μ) . Let $A \neq \emptyset$ be an \mathbb{I}_{μ}^* -open set and $A \subseteq B$. Then B is an \mathbb{I}_{μ}^* -open set.

Proof. Let $A \neq \emptyset$ be an \mathbb{I}_{μ} -open set. Then there exists a non-empty μ -open set U such that $U \setminus c_{\mu}(A) \in \mathbb{I}$. Then $U \setminus c_{\mu}(B) \subseteq U \setminus c_{\mu}(A) \in \mathbb{I}$. Thus B is an \mathbb{I}_{μ} -open set. We recall that a subset A of a GTS (X, μ) is called μ -semiopen [4] if $A \subseteq i_{\mu}(c_{\mu}(A))$ and the complement of a μ -semiopen set is known as μ -semiclosed.

Theorem 9 Let \mathbb{I} be an ideal on a GTS (X, μ) . Then $\{x\}$ is either μ -semiclosed or an $\mathbb{I}_{\frac{\pi}{\mu}}$ -open set.

Proof. If $\{x\}$ is μ -semiclosed, then we have nothing to show. If $\{x\}$ is not μ -semiclosed, then $i_{\mu}(c_{\mu}(\{x\})) \nsubseteq \{x\}$. Then $i_{\mu}(c_{\mu}(\{x\})) \setminus c_{\mu}(\{x\}) \in \mathbb{I}$.

Definition 5 A GTS (X, μ) is said to be μ -locally indiscrete if every μ -open set is μ -closed.

Theorem 10 Let \mathbb{I} be an ideal on a GTS (X, μ) . If (X, μ) is μ -locally indiscrete, then every subset of X is $\mathbb{I}_{\underline{\imath}}$ -open.

Proof. Suppose $A \subseteq X$. Then if $A = \emptyset$ we have nothing to show. Thus without loss of generality we may assume that $A \neq \emptyset$. Since X is μ -locally indiscrete, $c_{\mu}(A)$ is μ -open. Also $c_{\mu}(A) \neq \emptyset$. Let $U = c_{\mu}(A)$. Then $U \setminus c_{\mu}(A) \in \mathbb{I}$. Thus A is an $\mathbb{I}_{\underline{u}}$ -open set.

3 Strongly \mathbb{I}_{u}^{*} -open sets

Definition 6 Let \mathbb{I} be an ideal in a GTS (X, μ) . A subset A of X is said to be a strongly \mathbb{I}_{μ} -open set if A is \varnothing or there exists a non-empty μ -open G such that $G \setminus A \in \mathbb{I}$ and $A \setminus c_{\mu}(G) \in \mathbb{I}$.

We note from Definitions 1 and 6 that every μ -open set is a strongly \mathbb{I}_{μ}^* -open set but the converse is not true. Also, every strongly \mathbb{I}_{μ}^* -open set is an \mathbb{I}_{μ}^* -open set.

Example 4 Let $X = \{a,b,c\}$, $\mu = \{\varnothing,\{a,b\},\{a,c\},X\}$ and $\mathbb{I} = \{\{\varnothing\},\{a\}\}$. It is easy to observe that $\{b\}$ is a strongly \mathbb{I}_{μ}^* -open set which is not μ -open. $\{a\}$ is an \mathbb{I}_{μ}^* -open set but not a strongly \mathbb{I}_{μ}^* -open set. Also note that $\{a,b\}$ and $\{a,c\}$ are two strongly \mathbb{I}_{μ}^* -open sets but their intersection is not so.

Theorem 11 Let \mathbb{I} be an ideal in a GTS (X, μ) and suppose that there exists a μ -open μ -dense set $A \in \mathbb{I}$. Then every subset B of X is strongly \mathbb{I}_{μ}^* -open.

Proof. Let B be any subset of X. Note that $A \setminus B \in \mathbb{I}$ (as $A \setminus B \subseteq A \in \mathbb{I}$). Furthermore, $B \setminus c_{\mu}(A) = B \setminus X = \emptyset \in \mathbb{I}$.

Proposition 1 Let \mathbb{I} be an ideal in a GTS (X, μ) and suppose that $A \subseteq B \subseteq c_{\mu}(A)$ for some μ -open subset A of X. Then B is a strongly \mathbb{I}_{μ} -open set.

Proof. Obvious.

Definition 7 A GTS (X, μ) is said to be μ -irreducible [22] if for any two non-empty μ -open sets U and V of X, $U \cap V \neq \emptyset$.

Definition 8 A GTS (X, μ) is called hyperconnected [12] if every non-empty μ -open subset of X is μ -dense.

Remark 2 A GTS (X, μ) is hyperconnected [12] if and only if (X, μ) is μ -irreducible.

Proposition 2 Let \mathbb{I} be an ideal in a GTS (X, μ) and suppose that every non-empty μ -open subset of X is μ -dense and let A be a strongly \mathbb{I}_* -open set.

- (i) If $A \subseteq B$, then B is a strongly \mathbb{I}_{μ}^* -open set.
- (ii) For any subset B of X, $A \cup B$ is a strongly \mathbb{I}_{u}^{*} -open set.
- (iii) Moreover if μ is closed under finite intersection and (X, μ) is hyperconnected, then intersection of two strongly $\mathbb{I}_{\underline{u}}$ -open sets is strongly $\mathbb{I}_{\underline{u}}$ -open.
- **Proof.** (i) Suppose that A is a strongly \mathbb{I}_{μ}^* -open set and $A \subseteq B$. Then there exists a non-empty μ -open set G such that $G \setminus A \in \mathbb{I}$ and $A \setminus c_{\mu}(G) \in \mathbb{I}$. Since $A \subseteq B$, $G \setminus B \subseteq G \setminus A \in \mathbb{I}$ and $B \setminus c_{\mu}(G) = B \setminus X = \emptyset \in \mathbb{I}$.
 - (ii) Follows from (i) as $A \subseteq A \cup B$.
- (iii) Let A and B be two strongly \mathbb{I}_{μ}^* -open sets. If $A \cap B = \emptyset$, then there is nothing to show. Suppose that $A \cap B \neq \emptyset$. Then there exist non-empty μ -open sets G and H such that $G \setminus A \in \mathbb{I}$, $A \setminus c_{\mu}(G) \in \mathbb{I}$, $H \setminus B \in \mathbb{I}$ and $B \setminus c_{\mu}(H) \in \mathbb{I}$. Consider the μ -open set $G \cap H$ which is non-empty (as (X, μ) is hyperconnected). Since $G \cap H \setminus (A \cap B) = [(G \setminus A) \cap H] \cup [(H \setminus B) \cap G] \in \mathbb{I}$, $A \cap B \setminus c_{\mu}(G \cap H) = (A \cap B) \setminus X = \emptyset \in \mathbb{I}$. Thus $A \cap B$ is strongly \mathbb{I}_{μ}^* -open.

Proposition 3 Let \mathbb{I} be an ideal in a QTS (X, μ) and suppose that every non-empty μ -open set is μ -dense. Then a non μ -dense subset A is strongly \mathbb{I}_{μ}^* -open if and only if $c_{\mu}(A)$ is strongly \mathbb{I}_{μ}^* -open.

Proof. Let A be a strongly \mathbb{I}_{μ} -open set. Then as $A \subseteq c_{\mu}(A)$, by Proposition 2(i), $c_{\mu}(A)$ is also strongly \mathbb{I}_{μ} -open. Conversely, suppose that $c_{\mu}(A)$ is strongly \mathbb{I}_{μ} -open which is not μ -dense. Then there exists a non-empty μ -open set G such that $G \setminus c_{\mu}(A)$ and $c_{\mu}(A) \setminus c_{\mu}(G)$ are both members of \mathbb{I} . Consider the μ -open set $H = G \setminus c_{\mu}(A) = G \cap (X \setminus c_{\mu}(A)) \in \mathbb{I}$. We observe that $H \neq \emptyset$. For otherwise, $G \subseteq c_{\mu}(A) \Rightarrow c_{\mu}(A) = X$. Again $H \setminus A = [G \cap (X \setminus c_{\mu}(A))] \cap (X \setminus A) \subseteq G \cap (X \setminus c_{\mu}(A)) \in \mathbb{I}$. Thus $H \setminus A \in \mathbb{I}$. Again $A \setminus c_{\mu}(H) = A \setminus c_{\mu}(G \cap (X \setminus c_{\mu}(A))) = A \setminus X = \emptyset \in \mathbb{I}$.

Theorem 12 Let \mathbb{I} be an ideal in a GTS (X, μ) . Then $X \setminus A$ is strongly \mathbb{I}_{μ}^* -open if and only if there exists a μ -closed set F such that $i_{\mu}(F) \setminus A \in \mathbb{I}$ and $A \setminus F \in \mathbb{I}$.

Proof. Suppose that $X \setminus A$ is strongly \mathbb{I}_{μ} -open. Then there exists a μ -open set G such that $(G \setminus (X \setminus A)) = A \setminus (X \setminus G) \in \mathbb{I}$ and $(X \setminus A) \setminus c_{\mu}(G) = i_{\mu}(X \setminus G) \setminus A \in \mathbb{I}$. Let $F = X \setminus G$. Then F is μ -closed and the rest follows. The converse part can be done in a similar manner.

Acknowledgement: The authors are thankful to the referees for some comments for the improvement of the paper.

References

- [1] F. G. Arenas, J. Dontchev, M. L. Puertas, *Idealization of some weak separation axioms*, Acta Math. Hungar., vol. 89, 2000, 47-53.
- [2] Á. Császár, Generalized open sets, Acta Math. Hungar., vol. 75, 1997, 65-87.
- [3] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., vol. 96, 2002, 351-357.
- [4] Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., vol. 106, 2005, 53-66.
- [5] Á. Császár, Remarks on quasi topologies, Acta Math. Hungar., vol. 119, 2008, 197-200.
- [6] Á. Császár, δ and θ -modifications of generalized topologies, Acta Math. Hungar., vol. 120, 2008, 275-279.
- [7] E. Ekici, Generalized submaximal spaces, Acta Mathematica Hungarica, vol. 134, no. 1-2, 2012, 132-138.
- [8] E. Ekici, Further new generalized topologies via mixed constructions due to Császár, Mathematica Bohemica, vol. 140, no. 1, 2015, 1-9.
- [9] E. Ekici, On weak structures due to Császár, Acta Mathematica Hungarica, vol. 134, no. 4, 2012, 565-570.
- [10] E. Ekici, p_I^* -open sets in ideal spaces, Tibilisi Mathematical Journal, vol. 10, no. 2, 2017, 83-89.
- [11] E. Ekici, On A_↑*-sets C_↓-sets, C_↑*-sets and decompositions of continuity in ideal topological spaces, Analele Stiintifice Ale Universitatii Al. I. Cuza Din Iasi (S. N.) Matematica, Tomul LIX, f. 1, 2013, 173-184.
- [12] E. Ekici, Generalized hyperconnectedness, Acta Math. Hungar., vol. 133, no. 1-2, 2011, 140-147.
- [13] E. Ekici, T. Noiri, *-extremally disconnected ideal topological spaces, Acta Math. Hungar., vol. 122, 2009, 81-90.
- [14] E. Ekici, T. Noiri, *-hyperconnected ideal topological spaces, Analele Stiintifice Ale Universitatii Al. I. Cuza Din Iasi (S. N.) Matematica, Tomul LVIII, f.1, 2012, 121-129.
- [15] E. Ekici, T. Noiri, Properties of I-submaximal ideal topological spaces, Filomat, vol.24, no.4, 2010, 87-94.
- [16] E. Hatir, T. Noiri, On Semi-I-open set and semi-I-continuous functions, Acta Math. Hungar., vol. 107, 2005, 345-353.

- [17] D. Jankovic, T. R. Hamlett, New topologies from old via Ideals, Amer. Math. Monthly, vol. 97, 1990, 295-310.
- [18] K. Kuratowski, Topology, New York, Academic Press, vol. 1, 1966.
- [19] M. N. Mukherjee, B. Roy, R. Sen, On extension of topological spaces in terms of ideals, Topology and its Applications, vol. 154, 2007, 3167-3172.
- [20] A. Nasef, R. Mareay, F. Michael, *Idealization of some topological concepts*, Eur. Jour. Pure Appl. Math., vol. 8, 2015, 389-394.
- [21] B. Roy, R. Sen, Generalized semi-open and pre-semiopen sets via ideals, Transactions of A. Razmadze Mathematical Institute, vol. 172, no. 1, 2018, 95-100.
- [22] R. X. Shen, A note on generalized connectedness, Acta Math. Hungar., vol. 122, 2009, 231-235.
- [23] R. Vaidyanathaswamy, *The localization theory in set-topology*, Proceedings of the Indian Acad. Sci., vol. 20, 1945, 15-51.
- [24] R. A. DeVore, G. G. Lorentz, *Constructive Approximation*, Springer Verlag, Berlin Heildelberg New York, 1993.
- [25] S. Ishikawa, Fixed point and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc., vol. 73, no. 2, 1976, 65-71.

Ritu Sen

Presidency University
Department of Mathematics
86/1 College Street
Kolkata 700073, India
e-mail: ritu_sen29@yahoo.co.in

Bishwambhar Roy

Women's Christian College Department of Mathematics 6, Greek Church Row Kolkata 700026, India

e-mail: bishwambhar_roy@yahoo.co.in