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Abstract

In the present investigation, by making use of strong differential

subordinations and superordinations, we introduce and study two new

classes of holomorphic functions containing generalized differential oper-

ator. Also we determine important properties for functions belongs to

these classes.
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1 Introduction

Indicate by H
(
U× U

)
the class of holomorphic functions in U × U, where

U the open unit disk of the complex plane U = {z ∈ C : |z| < 1}, U =

{z ∈ C : |z| ≤ 1} the closed unit disk of the complex plane.

For n ∈ N = {1, 2, · · · } and a ∈ C, let H [a, n, ς] = {f ∈ H
(
U× U

)
:

f (z, ς) = a + an (ς) zn + an+1 (ς) zn+1 + ..., z ∈ U, ς ∈ U}, where aj (ς) are

holomorphic functions in U for j ≥ n.

Let Aς stands for the class of functions of the form:

(1) f (z, ς) = z +

∞∑
k=2

ak (ς) zk, (z ∈ U, ς ∈ U),

which are holomorphic in U×U and ak (ς) are holomorphic functions in U for

k ≥ 2.

Definition 1 [9]. Let Qς be the family of all functions that are holomorphic

and injective on U× U\E (f, ς), where

E (f, ς) =
{
r ∈ ∂U : lim

z→r
f (z, ς) =∞

}
,

and f ′z (r, ς) 6= 0 for r ∈ ∂U×U\E (f, ς). The subfamily of Qz with f (0, ς) = a

is denoted by Qς (a).

Definition 2 [9]. Let f (z, ς), F (z, ς) be holomorphic in U×U. The function

f (z, ς) is said to be strongly subordinate to F (z, ς) if there exists a function w

holomorphic in U with w (0) = 0 and |w (z)| < 1 (z ∈ U) such that f (z, ς) =

F (w (z) , ς) for all ς ∈ U. In such a case we write f (z, ς) ≺≺ F (z, ς), z ∈ U,

ς ∈ U.

Remark 1 [9].

(i) Since f (z, ς) is holomorphic in U×U, for all ς ∈ U and schlicht in U,

for all ς ∈ U, Definition (2) is equivalent to f (0, ς) = F (0, ς) for all ς ∈ U
and f

(
U× U

)
⊂ F

(
U× U

)
.

(ii) If f (z, ς) = f (z) and F (z, ς) = F (z), the strong subordination be-

comes the usual notion of subordination.
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If f (z, ς) is strongly subordinate to F (z, ς), then F (z, ς) is strongly su-

perordinate to f (z, ς) .

As a dual notion of strong differential subordination, Oros [9] has intro-

duced and developed the notion of strong differential superordinations.

Lemma 1 [8]. Suppose that h (z, ς) be a schlicht function with h (0, ς) = a

for all ς ∈ U and γ ∈ C\{0} with Re (γ) ≥ 0. If p ∈ H [a, 1, ς] and

(2) p (z, ς) +
1

γ
zp′z (z, ς) ≺≺ h (z, ς) , (z ∈ U, ς ∈ U),

then

p (z, ς) ≺≺ q (z, ς) ≺≺ h (z, ς) , (z ∈ U, ς ∈ U),

where q (z, ς) = γz−γ
∫ z
0 h (t, ς) tγ−1dt is convex and it is the best dominant of

(2).

Lemma 2 [9]. Suppose that h (z, ς) be a convex function with h (0, ς) = a for

all ς ∈ U and γ ∈ C\{0} with Re (γ) ≥ 0. If p ∈ H [a, 1, ς] ∩ Qς , p (z, ς) +
1
γ zp

′
z (z, ς) is schlicht in U× U and

(3) h (z, ς) ≺≺ p (z, ς) +
1

γ
zp′z (z, ς) , (z ∈ U, ς ∈ U),

then

q (z, ς) ≺≺ p (z, ς) , (z ∈ U, ς ∈ U),

where q (z, ς) = γz−γ
∫ z
0 h (t, ς) tγ−1dt is convex and it is the best subordinant

of (3).

Definition 3 [3]. For f ∈ Aς , m ∈ N0 = N ∪ {0}, α, δ ≥ 0, µ, λ, β > 0 and

α 6= λ, the generalized differential operator Amµ,λ,δ(α, β) : Aς → Aς is defined

by

(4) Amµ,λ,δ(α, β)f (z, ς) = z +
∞∑
k=2

[
1 +

(k − 1) [(λ− α)β + kδ]

µ+ λ

]m
ak (ς) zk,

Here, we would point out some of the special cases of the operator defined

by (4) can be found in [1, 2, 4, 6, 10, 11].

In recent years, many authors obtained various interesting results associ-

ated with strong differential subordination and superordination for example

(see [5, 7, 12]).
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2 Key Lemma and Main Results

Before stating and proving our main results, we first establish the following

identities involving the operator defined by (4):

Lemma 3 If f ∈ Aς , m ∈ N0 = N ∪ {0}, α, δ ≥ 0, µ, λ, β > 0, α 6= λ and

the operator Amµ,λ,δ(α, β) be defined by (4), then

z
(
Amµ,λ,δ(α, β)f (z, ς)

)′
z

=
µ+ λ

(λ− α)β + kδ
Am+1
µ,λ,δ(α, β)f (z, ς)(5)

+

(
1− µ+ λ

(λ− α)β + kδ

)
Amµ,λ,δ(α, β)f (z, ς) .

Proof. In the light of (4), we find that

µ+ λ

(λ− α)β + kδ
Am+1
µ,λ,δ(α, β)f (z, ς)

+

(
1− µ+ λ

(λ− α)β + kδ

)
Amµ,λ,δ(α, β)f (z, ς)

= z +
∞∑
k=2

µ+ λ

(λ− α)β + kδ

[
1 +

(k − 1) [(λ− α)β + kδ]

µ+ λ

]m+1

ak (ς) zk

+
∞∑
k=2

(
1− µ+ λ

(λ− α)β + kδ

)[
1 +

(k − 1) [(λ− α)β + kδ]

µ+ λ

]m
ak (ς) zk

= z +
∞∑
k=2

(
µ+ λ

(λ− α)β + kδ

µ+ λ+ (k − 1) [(λ− α)β + kδ]

µ+ λ

+
(λ− α)β + kδ − µ− λ

(λ− α)β + kδ

)[
1 +

(k − 1) [(λ− α)β + kδ]

µ+ λ

]m
ak (ς) zk

= z +
∞∑
k=2

k

[
1 +

(k − 1) [(λ− α)β + kδ]

µ+ λ

]m
ak (ς) zk,

which establishes the identity (5).

Definition 4 Assume that ψ (z, ς) be an holomorphic function in U×U with

ψ (0, ς) = 1 for all ς ∈ U and η, µ, λ, β > 0, α, δ ≥ 0, α 6= λ, m ∈ N0. A

function f ∈ Aς is called in the class V (η, µ, λ, δ, α, β,m;ψ) if the following
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strong differential subordination is satisfied:

1

z

[(
1− η (µ+ λ)

(λ− α)β + kδ

)
Amµ,λ,δ(α, β)f (z, ς)

+
η (µ+ λ)

(λ− α)β + kδ
Am+1
µ,λ,δ(α, β)f (z, ς)

]
≺≺ ψ (z, ς) .

A function f ∈ Aς is called in the class W (η, µ, λ, δ, α, β,m;ψ) if the

following strong differential superordination is satisfied:

ψ (z, ς) ≺ ≺ 1

z

[(
1− η (µ+ λ)

(λ− α)β + kδ

)
Amµ,λ,δ(α, β)f (z, ς)

+
η (µ+ λ)

(λ− α)β + kδ
Am+1
µ,λ,δ(α, β)f (z, ς)

]
.

Theorem 1 Suppose that ψ (z, ς) be a convex function in U×U with ψ (0, ς) =

1 for all ς ∈ U and η > 0. If f ∈ V (η, µ, λ, δ, α, β,m;ψ), then there exists a

convex function q (z, ς) such that q (z, ς) ≺≺ ψ (z, ς) and f ∈ V (0, µ, λ, δ, α, β,m; q).

Proof. Assume that

p (z, ς) =
Amµ,λ,δ(α, β)f (z, ς)

z
(6)

= 1 +
∞∑
k=2

[
1 +

(k − 1) [(λ− α)β + kδ]

µ+ λ

]m
ak (ς) zk−1.

It is obvious that p ∈ H [1, 1, ς].

Since f ∈ V (η, µ, λ, δ, α, β,m;ψ), then we find that

1

z

[(
1− η (µ+ λ)

(λ− α)β + kδ

)
Amµ,λ,δ(α, β)f (z, ς)(7)

+
η (µ+ λ)

(λ− α)β + kδ
Am+1
µ,λ,δ(α, β)f (z, ς)

]
≺≺ ψ (z, ς) .

Now from (5), (6) and (7), it is evident that

1

z

[(
1− η (µ+ λ)

(λ− α)β + kδ

)
Amµ,λ,δ(α, β)f (z, ς)

+
η (µ+ λ)

(λ− α)β + kδ
Am+1
µ,λ,δ(α, β)f (z, ς)

]
= p (z, ς) + ηzp′z (z, ς) ≺≺ ψ (z, ς) .
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By making use of Lemma 1 with γ = 1
η , we deduce that

p (z, ς) ≺≺ q (z, ς) ≺≺ ψ (z, ς) .

It follows from (6) that

Amµ,λ,δ(α, β)f (z, ς)

z
≺≺ q (z, ς) ≺≺ ψ (z, ς) ,

where

q (z, ς) =
1

η
z
− 1
η

∫ z

0
ψ (t, ς) t

1
η
−1
dt

is convex and it is the best dominant.

This shows that f ∈ V (0, µ, λ, δ, α, β,m; q) and the proof is completed.

Theorem 2 Suppose that ψ (z, ς) be a convex function in U×U with ψ (0, ς) =

1 for all ς ∈ U and η > 0. If f ∈ W (η, µ, λ, δ, α, β,m;ψ),
Amµ,λ,δ(α,β)f(z,ς)

z ∈
H [1, 1, ς] ∩Qς and

1

z

[(
1− η (µ+ λ)

(λ− α)β + kδ

)
Amµ,λ,δ(α, β)f (z, ς)

+
η (µ+ λ)

(λ− α)β + kδ
Am+1
µ,λ,δ(α, β)f (z, ς)

]
is schlicht in U × U, then there exists a convex function q (z, ς) such that

f ∈W (0, µ, λ, δ, α, β,m; q).

Proof. Suppose that the function p (z, ς) be defined by (6). It is evident that

p ∈ H [1, 1, ς] ∩Qς .
After a short calculation and considering f ∈W (η, µ, λ, δ, α, β,m;ψ), we can

conclude that

ψ (z, ς) ≺≺ p (z, ς) + ηzp′z (z, ς) .

By making use of Lemma 2 with γ = 1
η , we obtain

q (z, ς) ≺≺ p (z, ς) .

In view of (6), yields

q (z, ς) ≺≺
Amµ,λ,δ(α, β)f (z, ς)

z
,
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where

q (z, ς) =
1

η
z
− 1
η

∫ z

0
ψ (t, ς) t

1
η
−1
dt

is convex and it is the best subordinant and the theorem is proved.

If we combine the results of Theorem 1 and Theorem 2, we obtain the

following ”strong sandwich theorem”.

Theorem 3 Let ψ1 (z, ς) and ψ2 (z, ς) be convex functions in U × U with

ψ1 (0, ς) = ψ2 (0, ς) = 1 for all ς ∈ U and η > 0. If

f ∈ V (η, µ, λ, δ, α, β,m;ψ1) ∩W (η, µ, λ, δ, α, β,m;ψ2) ,

Amµ,λ,δ(α, β)f (z, ς)

z
∈ H [1, 1, ς] ∩Qς

and

1

z

[(
1− η (µ+ λ)

(λ− α)β + kδ

)
Amµ,λ,δ(α, β)f (z, ς)

+
η (µ+ λ)

(λ− α)β + kδ
Am+1
µ,λ,δ(α, β)f (z, ς)

]
is schlicht in U× U, then

f ∈ V (0, µ, λ, δ, α, β,m; q1) ∩W (0, µ, λ, δ, α, β,m; q2) ,

where

q1 (z, ς) =
1

η
z
− 1
η

∫ z

0
ψ1 (t, ς) t

1
η
−1
dt

and

q2 (z, ς) =
1

η
z
− 1
η

∫ z

0
ψ2 (t, ς) t

1
η
−1
dt.

The functions q1 and q2 are convex.
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