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Abstract

In the present paper we establish some theorems on the existence of common
approximate fixed points for a pair of generalized contractive type mappings
with the property that the diameter of the set of common ε−fixed points is
tending to zero as ε tends to zero.
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1 Introduction

The study of fixed point theory finds a great deal of importance due to its wide
applicability in non-linear analysis. The conditions imposed in fixed point theorems
are so strong that the existence of fixed point might not be guaranteed. So it is
natural to study on weakening the fixed point property by approximate fixed points
of mappings. A point x of a mapping f is an approximate fixed point of f , is to mean
‘f(x) is near to x’. The study of approximate fixed points for mappings has equally
importance to the study of fixed point of mapping. The idea of approximate fixed
point was first studied by Tijs et. al. in [8], following which M. Berinde [1] proved
some important approximate fixed point theorems over usual metric spaces. Later
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on many researchers have proved several approximate fixed point theorems using
various contractive type mappings over different metric type spaces (See [4], [6]).
In 2013, Dey and Saha [2] had proved some approximate fixed point theorems for
Reich operator generalizing the theorems due to Berinde [1]. In the same year, Dey
et. al. [3] proved some approximate coincidence point theorems for non-linear single
valued mappings, following the work of W. S. Du [5] on approximate coincidence
points of various multivalued mappings. The aim of this paper is to establish the
existence of common approximate fixed points for a pair of generalized contractive
mappings over a metric space without having completeness property.

2 Basic ideas and Preliminaries

In this section we recall the following basic preliminaries.

Definition 1 [1] Let f : X → X, ε > 0, x0 ∈ X. Then x0 is an ε-fixed point
(approximate fixed point) of f if d(fx0, x0) < ε.

Remark 1 [1] In this paper we will denote the set of all ε−fixed points of f , for a
given ε > 0, by Fε(f) = {x ∈ X : x is an ε−fixed point of f }.

Definition 2 [1] Let f : X → X. Then f has the approximate fixed point property
(a.f.p.p.) if for all ε > 0, Fε(f) 6= ∅.

Remark 2 [1] The following result gives conditions under which the existence of
fixed points for a given mapping is equivalent to that of approximate fixed points.

Proposition 1 [1] let A be a closed subset of a metric space (X, d) and f : A→ X
a compact map. Then f has a fixed point if and only if it has the approximate fixed
point property.

We also assume δ(A) as the diameter of a set A 6= ∅, i.e. δ(A) = sup{d(x, y) :
x, y ∈ A}.

Lemma 1 [1] Let (X, d) be a metric space, f : X → X such that f is asymptotically
regular, i.e., d(fnx, fn+1x)→ 0 as n→∞, for all x ∈ X. Then f has approximate
fixed point property.

Lemma 2 [1] Let (X, d) be a metric space, f : X → X an operator and ε > 0. We
assume that

(i) Fε(f) 6= ∅;
(ii) ∀η > 0, ∃ φ(η) > 0 such that d(x, y)− d(fx, fy) ≤ η implies d(x, y) ≤ φ(η),

for all x, y ∈ Fε(f). Then δ(Fε(f)) ≤ φ(2ε).
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3 Main Results

We first define the common approximate fixed point of a pair of mappings over a
metric space (X, d).

Definition 3 Let (X, d) be a metric space, ε > 0 and T, S : X → X be two map-
pings. Then a point x0 ∈ X is said to be a common approximate fixed point (common
ε−fixed point) of T and S if d(Tx0, x0) < ε and also d(Sx0, x0) < ε.

Throughout this paper we denote the set of all common approximate fixed points
(common ε−fixed points) of T and S by Fε(T, S). Clearly Fε(T, S) = Fε(T )∩Fε(S).

Definition 4 Two mappings T, S in a metric space (X, d) are said to have the
common approximate fixed point property (c.a.f.p.p.) if for any ε > 0, Fε(T, S) 6= ∅.

Lemma 3 Let (X, d) be a metric space and T, S : X → X be two mappings. Also
let d(xn, xn+1)→ 0 as n→∞, where {xn} is given by

(1) xn =

{
Txn−1, when n is odd

Sxn−1, when n is even

for some x0 ∈ X. Then for any ε > 0, Fε(T ) 6= ∅ and Fε(S) 6= ∅ implies that both T
and S have the approximate fixed point property.

Proof. Since d(xn, xn+1)→ 0 as n→∞ then for a given ε > 0 there exists N ∈ N
such that d(xn, xn+1) < ε whenever n ≥ N.
So there exists m1,m2 ∈ N such that d(x2m1 , x2m1+1) < ε and d(x2m2−1, x2m2) < ε,
implying that d(x2m1 , Tx2m1) < ε and d(x2m2−1, Sx2m2−1) < ε. Denoting x2m1 by
y and x2m2−1 by z we get, d(y, Ty) < ε and d(z, Sz) < ε. Thus y ∈ Fε(T ) and
z ∈ Fε(S). Hence Fε(T ) 6= ∅ and Fε(S) 6= ∅ i.e. both T, S have the a.f.p.p. .

Lemma 4 Let (X, d) be a metric space and T, S : X → X be two mappings on X.
Let us assume that the following conditions are satisfied.

(i) For any ε > 0, Fε(T ) 6= ∅ and Fε(S) 6= ∅ that is both T and S have the
approximate fixed point property;

(ii) For each ε > 0, there exists a mapping φε such that φε(η) > 0 for all η > 0
and d(x, y)− d(Tx, Sy) ≤ η ⇒ d(x, y) ≤ φε(η) for all x ∈ Fε(T ) and y ∈ Fε(S).
Then δ(Fε(T, S)) ≤ φε(2ε), if T and S have the c.a.f.p.p. .

Proof. Let ε > 0 be given. Let T and S have the c.a.f.p.p. . Then for any ε > 0,
Fε(T ) 6= ∅ and Fε(S) 6= ∅. Let us choose x, y ∈ Fε(T, S). Then x ∈ Fε(T ) and
y ∈ Fε(S), i.e. d(x, Tx) < ε and d(y, Sy) < ε.
Now, d(x, y) ≤ d(x, Tx) + d(Tx, Sy) + d(Sy, y) implies that d(x, y) − d(Tx, Sy) ≤
d(x, Tx) + d(y, Sy) < 2ε; and therefore by given condition (ii) we have d(x, y) ≤
φε(2ε). Since x, y ∈ Fε(T, S) is arbitrary it follows that δ(Fε(T, S)) ≤ φε(2ε).

Next we prove some theorems using different contractive conditions for pair of
mappings due to [7].
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Theorem 1 Let (X, d) be a metric space and T, S : X → X be two mappings such
that d(Tx, Sy) ≤ α[d(x, Tx) + d(y, Sy)] ∀x, y ∈ X, 0 < α < 1

2 . Then for any ε > 0,
Fε(T ) 6= ∅ and also Fε(S) 6= ∅; that is both T and S have the approximate fixed point
property.

Proof. Let x0 ∈ X. We construct the sequence {xn} on X by

xn =

{
Txn−1, when n is odd

Sxn−1, when n is even

Then,
d(x1, x2) = d(Tx0, Sx1) ≤ α[d(x0, Tx0) + d(x1, Sx1)]

= α(x0, x1) + d(x1, x2)]

Thus, d(x1, x2) ≤ α
1−αd(x0, x1). Also,

d(x2, x3) = d(Sx1, Tx2) ≤ α[d(x2, Tx2) + d(x1, Sx1)]
= α(x2, x3) + d(x1, x2)]

Therefore, d(x2, x3) ≤ α
1−αd(x1, x2) ≤ ( α

1−α)2d(x0, x1).
Proceeding similarly we get, d(xn, xn+1) ≤ ( α

1−α)nd(x0, x1) ∀n ∈ N. Then, d(xn, xn+1)
→ 0 as n→∞. Therefore by Lemma 3 we get both T and S have the approximate
fixed point property.

Theorem 2 Let (X, d) be a metric space and T, S : X → X be two self maps such
that d(Tx, Sy) ≤ α[d(x, Sy) + d(y, Tx)] ∀x, y ∈ X, 0 < α < 1

2 . Then for any ε > 0,
Fε(T ) 6= ∅ and Fε(S) 6= ∅ implying that both T and S have the approximate fixed
point property.

Proof. Let x0 ∈ X. We construct the sequence {xn} in X, defined by x2n = S2n−1

and x2n−1 = Tx2n−2 for all n ≥ 1. Then,

d(x1, x2) = d(Tx0, Sx1) ≤ α[d(x0, Sx1) + d(x1, Tx0)]
= α d(x0, x2)
≤ α[d(x0, x1) + d(x1, x2)]

Thus, d(x1, x2) ≤ α
1−αd(x0, x1). Also,

d(x2, x3) = d(Sx1, Tx2) ≤ α[d(x2, Sx1) + d(x1, Tx2)]
= α d(x1, x3)
≤ α[d(x1, x2) + d(x2, x3)]

Therefore, d(x2, x3) ≤ α
1−αd(x1, x2) ≤ ( α

1−α)2d(x0, x1).
Proceeding similarly we get, d(xn, xn+1) ≤ ( α

1−α)nd(x0, x1) ∀n ∈ N.Hence, d(xn, xn+1)
→ 0 as n → ∞. Hence by Lemma 3 we get both T and S have the approximate
fixed point property.
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Theorem 3 Let (X, d) be a metric space and T, S : X → X be two self maps
such that d(Tx, Sy) ≤ α1d(x, Tx)+α2d(y, Sy)+α3d(x, Sy)+α4d(y, Tx)+α5d(x, y)
∀x, y ∈ X, where αi ≥ 0 ∀i = 1(1)5 with α =

∑5
i=1 αi < 1. Then for any ε > 0,

Fε(T ) 6= ∅ and also Fε(S) 6= ∅; that is both T and S have the approximate fixed point
property.

Proof. Let x0 ∈ X. We construct the sequence {xn} on X by

xn =

{
Txn−1, when n is odd

Sxn−1, when n is even

Now,

d(x1, x2)

= d(Tx0, Sx1)

≤ α1d(x0, Tx0) + α2d(x1, Sx1) + α3d(x0, Sx1) + α4d(x1, Tx0) + α5d(x0, x1)

≤ α1d(x0, x1) + α2d(x1, x2) + α3d(x0, x2) + α5d(x0, x1)(2)

Now, d(x0, x2) ≤ d(x0, x1)+d(x1, x2) which implies d(x0, x2)−d(x0, x1) ≤ d(x1, x2).
Now from (2) we get,
d(x1, x2) ≤ α1+α5

1−α2
d(x0, x1)+

α3
1−α2

d(x0, x2). Thus we get d(x0, x2) ≤ 1+α1+α5−α2
1−α2−α3

d(x0, x1).
Hence,

d(x1, x2) ≤
α1 + α5

1− α2
d(x0, x1) +

α3

1− α2

1 + α1 + α5 − α2

1− α2 − α3
d(x0, x1)

=
1

1− α2
[α1 + α5 +

α3(1 + α1 + α5 − α2)

1− α2 − α3
]d(x0, x1)

=
α1 + α3 + α5

1− α2 − α3
d(x0, x1)(3)

Due to symmetry we can change, α1 with α2 and α3 with α4. So we get,

(4) d(x1, x2) ≤
α2 + α4 + α5

1− α1 − α4
d(x0, x1)

Let, β = min{α1+α3+α5
1−α2−α3

, α2+α4+α5
1−α1−α4

}. Then from (3) and (4) we get d(x1, x2) ≤
βd(x0, x1), 0 < β < 1. In a similar manner we get, d(x2, x3) ≤ βd(x1, x2) ≤
β2d(x0, x1). Proceeding in this way we have d(xn, xn+1) ≤ βnd(x0, x1) ∀n ∈ N.
Therefore, d(xn, xn+1)→ 0 as n→∞. Thus by Lemma 3 we see that both T and S
have the approximate fixed point property.

Theorem 4 Let (X, d) be a metric space and T, S : X → X be two self mappings.
Also let ∀x, y ∈ X atleast one of the following conditions hold

(i) d(Tx, Sy) ≤ k1[d(x, Tx) + d(y, Sy)];
(ii) d(Tx, Sy) ≤ k2[d(x, Sy) + d(y, Tx)], where k1, k2 ∈ (0, 12).

Then for any ε > 0, Fε(T ) 6= ∅ and Fε(S) 6= ∅; which ensures that both T and S
have the approximate fixed point property.
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Proof. Let x0 ∈ X. We construct the sequence {xn} on X by

xn =

{
Txn−1, when n is odd

Sxn−1, when n is even

Now for x0, x1 ∈ X, from (i) we get d(x1, x2) = d(Tx0, Sx1) ≤ k1[d(x0, Tx0) +
d(x1, Sx1)], which implies d(x1, x2) ≤ k1

1−k1d(x0, x1). Again by (ii) d(x1, x2) =

d(Tx0, Sx1) ≤ k2[d(x0, Sx1) + d(x1, Tx0)] implying that d(x1, x2) ≤ k2
1−k2d(x0, x1).

Let k = max{ k1
1−k1 ,

k2
1−k2 }. Then we have, d(x1, x2) ≤ kd(x0, x1), where 0 < k < 1.

In a similar manner for x1, x2 ∈ X we get, d(x2, x3) ≤ kd(x1, x2) ≤ k2d(x0, x1). Pro-
ceeding in this way we have d(xn, xn+1) ≤ knd(x0, x1) ∀n ∈ N. Therefore, d(xn, xn+1)
→ 0 as n→∞. Therefore by Lemma 3 we get both T and S have the approximate
fixed point property.

Theorem 5 Let (X, d) be a metric space and T, S : X → X be two mappings,
satisfying d(Tx, Sy) ≤ β max{d(x, y), d(x, Tx), d(y, Sy), 12(d(x, Sy) + d(y, Tx))} for
all x, y ∈ X, where 0 < β < 1. Then for any ε > 0, Fε(T ) 6= ∅ and also Fε(S) 6= ∅;
equivalently both T and S have the approximate fixed point property.

Proof. Let x0 ∈ X be fixed. Let us construct the sequence {xn} in X, defined by
x2n = S2n−1 and x2n−1 = Tx2n−2 for all n ≥ 1. If for some n ≥ 0 x2n = x2n+1, then
we have

d(x2n+1, x2n+2) = d(Tx2n, Sx2n+1)

≤ β max{d(x2n, x2n+1), d(x2n, Tx2n), d(x2n+1, Sx2n+1),

1

2
(d(x2n, Sx2n+1) + d(x2n+1), Tx2n)}

= β max{d(x2n+1, x2n+2),
1

2
d(x2n, x2n+2)}

= β d(x2n+1, x2n+2)

So d(x2n+1, x2n+2) = 0 implying that x2n+1 = x2n+2. Showing that both T and S
has a fixed point in X. Hence both T, S have the approximate fixed point prop-
erty. Again if for some n ∈ N, x2n−1 = x2n then we see that both T, S have the
approximate fixed point property. Thus without loss of generality, let us suppose
that xn 6= xn+1 for all n ≥ 0. Then for all n ≥ 1,

d(x2n−1, x2n)

= d(Tx2n−2, Sx2n−1)

≤ β max{d(x2n−2, x2n−1), d(x2n−2, Tx2n−2), d(x2n−1, Sx2n−1),

1

2
(d(x2n−2, Sx2n−1) + d(x2n−1, Tx2n−2))}

= β max{d(x2n−2, x2n−1), d(x2n−1, x2n),
1

2
d(x2n−2, x2n)}(5)
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First suppose that, max{d(x2n−2, x2n−1), d(x2n−1, x2n), 12d(x2n−2, x2n)} =
d(x2n−2, x2n−1), then from (5) we get d(x2n−1, x2n) ≤ β d(x2n−2, x2n−1). Again if,
max{d(x2n−2, x2n−1), d(x2n−1, x2n), 12d(x2n−2, x2n)} = 1

2d(x2n−2, x2n), then from (5)

we have, d(x2n−1, x2n) ≤ β
2−β d(x2n−2, x2n−1) < β d(x2n−2, x2n−1). So in any case

d(x2n−1, x2n) ≤ β d(x2n−2, x2n−1) ∀n ∈ N. Similarly for any n ≥ 1, d(x2n, x2n+1) ≤
β d(x2n−1, x2n). That is for any n ∈ N we have,

d(xn, xn+1) ≤ βd(xn−1, xn)

≤ β2d(xn−2, xn−1)

...

≤ βnd(x0, x1)

So d(xn, xn+1)→ 0 as n→∞. Thus by using Lemma 3 we get both T and S have
the approximate fixed point property.

Theorem 6 Let (X, d) be a metric space and T, S : X → X be two self mappings
satisfying d(Tx, Sy) ≤ α[d(x, Tx)+d(y, Sy)] ∀x, y ∈ X, 0 < α < 1

2 . If T and S have
the c.a.f.p.p. then for any ε > 0, δ(Fε(T, S)) ≤ 2ε(1 + α).

Proof. We know that for any ε > 0, Fε(T ) 6= ∅ and Fε(S) 6= ∅, which follows from
Theorem 1.
Now let ε > 0 be fixed. Also let, for some η > 0 we have d(x, y) − d(Tx, Sy) ≤ η,
for some x ∈ Fε(T ) and y ∈ Fε(S). Then

d(x, y) ≤ d(Tx, Sy) + η
≤ α[d(x, Tx) + d(y, Sy)]
< 2αε+ η

So for all η > 0, there exits a mapping φε(η) = 2αε + η > 0 such that, d(x, y) −
d(Tx, Sy) ≤ η ⇒ d(x, y) ≤ φε(η), for all x ∈ Fε(T ) and y ∈ Fε(S). Therefore by
Lemma 4 we get, δ(Fε(T, S)) ≤ φε(2ε) = 2ε(1 +α) for all ε > 0, if T and S have the
c.a.f.p.p. .

Theorem 7 Let (X, d) be a metric space and T, S : X → X be two self maps
satisfying d(Tx, Sy) ≤ α[d(x, Sy) + d(y, Tx)] ∀x ∈ X, 0 < α < 1

2 . If T and S have

the c.a.f.p.p. then for any ε > 0, δ(Fε(T, S)) ≤ 2ε(1+α)
1−2α .

Proof. It follows from Theorem 2 that both T and S have the approximate fixed
point property.
Let ε > 0 be given. Also let, η > 0 be arbitrary such that, d(x, y)− d(Tx, Sy) ≤ η,
for some x ∈ Fε(T ) and y ∈ Fε(S). Then,

d(x, y) ≤ d(Tx, Sy) + η
≤ α[d(x, Sy) + d(y, Tx)] + η
≤ α[d(x, y) + d(y, Sy) + d(y, x) + d(x, Tx)] + η
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which implies that (1−2α)d(x, y) ≤ α[d(x, Tx)+d(x, Sy)]+η. Since x ∈ Fε(T ) and
y ∈ Fε(S), we see that (1−2α)d(x, y) ≤ 2αε+η and therefore d(x, y) ≤ 2αε+η

1−2α . Hence

for all η > 0, ∃ φε(η) = 2αε+η
1−2α > 0 such that, d(x, y) − d(Tx, Sy) ≤ η ⇒ d(x, y) ≤

φε(η), for all x ∈ Fε(T ) and y ∈ Fε(S). Thus by Lemma 4 we get, δ(Fε(T, S)) ≤
φε(2ε) = 2ε(1+α)

1−2α for all ε > 0, provided T and S have the c.a.f.p.p. .

Theorem 8 Let (X, d) be a metric space and T, S : X → X be two self mappings
such that d(Tx, Sy) ≤ α1d(x, Tx)+α2d(y, Sy)+α3d(x, Sy)+α4d(y, Tx)+α5d(x, y)
∀x, y ∈ X, where αi ≥ 0 ∀i = 1(1)5 with α =

∑5
i=1 αi < 1. If T, S have the c.a.f.p.p.

then for any ε > 0, δ(Fε(T, S)) ≤ α1+α2+α3+α4+2
1−α3−α4−α5

ε.

Proof. we see from Theorem 3 that for any ε > 0, Fε(T ) 6= ∅ and Fε(S) 6= ∅.
Let ε > 0 be given. Also let for some η > 0, we have d(x, y) − d(Tx, Sy) ≤ η, for
some x ∈ Fε(T ) and y ∈ Fε(S). Now,

d(Tx, Sy)

≤ α1d(x, Tx) + α2d(y, Sy) + α3d(x, Sy) + α4d(y, Tx) + α5d(x, y)

≤ α1d(x, Tx) + α2d(y, Sy) + α3d(x, Tx) + α3d(Tx, Sy) + α4d(y, Sy) +

α4d(Sy, Tx) + α5d(x, y)

≤ α1 + α3

1− α3 − α4
d(x, Tx) +

α2 + α4

1− α3 − α4
d(y, Sy) +

α5

1− α3 − α4
d(x, y)(6)

Then using (6) we get, d(x, y) ≤ d(Tx, Sy)+η ≤ α1+α3
1−α3−α4

d(x, Tx)+ α2+α4
1−α3−α4

d(y, Sy)+
α5

1−α3−α4
d(x, y) + η, which implies that, d(x, y) ≤ α1+α2+α3+α4

1−α3−α4−α5
ε + 1

1−α3−α4−α5
η. So

for all η > 0 there exists φε(η) = α1+α2+α3+α4
1−α3−α4−α5

ε + 1
1−α3−α4−α5

η > 0 such that,
d(x, y) − d(Tx, Sy) ≤ η ⇒ d(x, y) ≤ φε(η), for all x ∈ Fε(T ) and y ∈ Fε(S). So by
using Lemma 4 we get, δ(Fε(T, S)) ≤ φε(2ε) = α1+α2+α3+α4+2

1−α3−α4−α5
ε for all ε > 0, if T

and S have the c.a.f.p.p. .

Theorem 9 Let (X, d) be a metric space and T, S : X → X be two self mappings.
Also let us assume that ∀x, y ∈ X atleast one of the following conditions hold:

(i) d(Tx, Sy) ≤ k1[d(x, Tx) + d(y, Sy)];
(ii) d(Tx, Sy) ≤ k2[d(x, Sy) + d(y, Tx)], where k1, k2 ∈ (0, 12).

Then for any ε > 0, δ(Fε(T, S)) ≤ 21+k
1−k ε, where k = max{ k1

1−k1 ,
k2

1−k2 }, if T and S
have the c.a.f.p.p. .

Proof. It follows from Theorem 4 that for any ε > 0, Fε(T ) 6= ∅ and Fε(S) 6= ∅.
Let, x, y ∈ X.
Case I. Let (i) holds then,

d(Tx, Sy) ≤ k1[d(x, Tx) + d(y, Sy)]

≤ k1d(x, Tx) + k1[d(y, x) + d(x, Tx) + d(Tx, Sy)]

≤ 2k1
1− k1

d(x, Tx) +
k1

1− k1
d(x, y)
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Also,

d(Tx, Sy) ≤ k1[d(x, Tx) + d(y, Sy)]

≤ k1[d(x, y) + d(y, Sy) + d(Tx, Sy)] + k1d(y, Sy)

≤ 2k1
1− k1

d(y, Sy) +
k1

1− k1
d(x, y)

Case II. Let (ii) holds then,

d(Tx, Sy) ≤ k2[d(x, Sy) + d(y, Tx)]

≤ k2[d(x, y) + d(y, Sy)] + k2[d(y, Sy) + d(Sy, Tx)]

≤ 2k2
1− k2

d(y, Sy) +
k2

1− k2
d(x, y)

and also,

d(Tx, Sy) ≤ k2[d(x, Sy) + d(y, Tx)]

≤ k2[d(x, Tx) + d(Tx, Sy)] + k2[d(y, x) + d(x, Tx)]

≤ 2k2
1− k2

d(x, Tx) +
k2

1− k2
d(x, y)

Let k = max{ k1
1−k1 ,

k2
1−k2 }. If either (i) or (ii) holds then ∀x, y ∈ X we get,

d(Tx, Sy) ≤ 2kd(x, Tx) + kd(x, y);

d(Tx, Sy) ≤ 2kd(y, Sy) + kd(x, y).(7)

Let ε > 0 be given. Also assume that for some η > 0, d(x, y) − d(Tx, Sy) ≤ η, for
some x ∈ Fε(T ) and y ∈ Fε(S). Then using (7) we get, d(x, y) ≤ 2kε+η

1−k . Now setting

φε(η) = 2kε+η
1−k for all η > 0, we see that d(x, y) − d(Tx, Sy) ≤ η ⇒ d(x, y) ≤ φε(η),

for all x ∈ Fε(T ) and y ∈ Fε(S). Therefore by Lemma 4 we get, δ(Fε(T, S)) ≤
φε(2ε) = 21+k

1−k ε, for all ε > 0, provided T and S have the c.a.f.p.p. .

Theorem 10 Let (X, d) be a metric space and T, S : X → X be two mappings
such that d(Tx, Sy) ≤ β max{d(x, y), d(x, Tx), d(y, Sy), 12(d(x, Sy) + d(y, Tx))} for
all x, y ∈ X, where 0 < β < 1. If T and S have the c.a.f.p.p. then for any ε > 0,
δ(Fε(T, S)) ≤ max{ 2ε

1−β , (2 + β)ε, 2−β1−β ε}.

Proof. Theorem 5 ensures that both T and S have the approximate fixed point
property. Let ε > 0 be fixed. Also assume that for some η > 0 and for x ∈ Fε(T ),
y ∈ Fε(S) T, S satisfy d(x, y)− d(Tx, Sy) ≤ η. Now,

d(Tx, Sy) ≤ β max{d(x, y), d(x, Tx), d(y, Sy),
1

2
(d(x, Sy) + d(y, Tx))}

< β max{d(x, y), ε, ε,
1

2
(2ε+ 2d(Tx, Sy))}

= β max{d(x, y), ε, ε+ d(Tx, Sy)}(8)
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If, max{d(x, y), ε, ε + d(Tx, Sy)} = d(x, y) then d(Tx, Sy) < βd(x, y), implying
that d(x, y) < η

1−β . For the next two respective cases we have d(x, y) < βε + η

and d(x, y) < β
1−β ε + η. Therefore d(x, y) ≤ φε(η), where φε(η) = max{ η

1−β , βε +

η, β
1−β ε+ η}. Then by Lemma 4 we get, if T and S have the c.a.f.p.p. then for any

ε > 0, δ(Fε(T, S)) ≤ φε(2ε) = max{ 2ε
1−β , (2 + β)ε, 2−β1−β ε}.

Remark 3 Actually Theorem 1 and Theorem 2 are special cases of Theorem 3.
Similarly Theorem 6 and Theorem 7 are special cases of Theorem 8. If we put
α3 = α4 = α5 = 0 in Theorem 3 and in Theorem 8 we get the corresponding results
of Theorem 1 and Theorem 6. In a similar manner if we put α1 = α2 = α5 = 0
in Theorem 3 and in Theorem 8 we get the results of Theorem 2 and Theorem 7
respectively.

Corollary 1 Suppose that in a metric space (X, d) two mappings T and S satisfy
the condition of Theorem 3 (or, Theorem 8) and posses a common fixed point x∗.
Then

(i) x∗ is the unique common fixed point of T and S.

(ii) for each sequence {xn} with the property that for each n ∈ N, the point xn
is a common 1

n−fixed point of T and S, we have limxn = x∗.

Proof. (i) follows trivially.
(ii) Since x∗ is a common fixed point of T and S then it is clear that for any ε > 0
x∗ is a common ε−fixed point. Therefore T and S have the c.a.f.p.p. and so for
all ε > 0, δ(Fε(T, S)) ≤ α1+α2+α3+α4+2

1−α3−α4−α5
ε, follows from Theorem 3 (or, Theorem 8).

Now it is given that the point xn is a common 1
n−fixed point for each n ∈ N, then

we see that, d(xn, x
∗) ≤ δ(Fε(T, S)) ≤ (α1+α2+α3+α4+2

1−α3−α4−α5
) 1
n . Hence limxn = x∗.

Remark 4 In a complete metric space if two mappings T and S satisfy any of the
contractive conditions given in Theorem 1, Theorem 2, Theorem 3 and Theorem
4, then they have a unique common fixed point in X. Therefore clearly they have
c.a.f.p.p. and thus Theorem 6 to Theorem 9 also hold good.

Example 1 Let X = (0,∞) be the metric space with usual metric. Let us take two
mappings T, S : X → X given by Tx = x

10 and Sx = x
20 for all x ∈ X. Then they

satisfies the condition of Theorem 1 for the constant α = 1
9 . For any ε > 0, we

get Fε(T ) = (0, 109 ε) and Fε(S) = (0, 2019ε). Also, Fε(T, S) = (0, 2019ε), therefore the
mappings have the c.a.f.p.p. . Note that they have no common fixed point in X.

Example 2 Let X = (0, 1] be the metric space equipped with usual metric of reals.
Let T, S : X → X be mappings defined by

(9) T (x) =

{
x
4 , x 6= 1
1
5 , x = 1

, S(x) =

{
x
5 , x 6= 1
1
4 , x = 1
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Then T and S satisfy the condition of Theorem 1 with the Lipschitz constant α = 1
3 .

For any 0 < ε ≤ 4
5 , Fε(T ) = (0, 43ε) ∩ (0, 1) and for any ε > 4

5 we have Fε(T ) =
[(0, 43ε) ∩ (0, 1)] ∪ {1}. Also if 0 < ε ≤ 3

4 then Fε(S) = (0, 54ε) and whenever ε > 3
4

then Fε(S) = [(0, 54ε) ∩ (0, 1)] ∪ {1}. So

(10) Fε(T, S) =


(0, 54ε), if 0 < ε ≤ 3

4

(0, 54ε) ∩ (0, 1), if 3
4 < ε ≤ 4

5

(0, 1], if ε > 4
5

Hence T and S have the c.a.f.p.p. but they have no common fixed point in X.

4 Conclusions

In this paper the existence of approximate fixed points for pair of self mappings
satisfying several contractive conditions over a metric space without being complete
has been examined. Also some results on common approximate fixed points for
different pair of mappings with contractivity conditions have been proved by showing
the existence of two nonempty sets consisting of approximate fixed points for such
pair of mappings. It is also worth mentioning that a common fixed point can be
obtained as limit of a particular sequence of common approximate fixed points of a
pair of mappings satisfying some contractive condition via the diminishing diameter
property of set of all common approximate fixed points.
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