\$ sciendo

Properties of the intermediate point from a mean value theorem of the integral calculus - II ${ }^{1}$

Emilia-Loredana Pop, Dorel Duca, Augusta Raţiu

Abstract

In this paper we consider two continuous functions $f, g:[a, b] \rightarrow \mathbb{R}$ and we study for these ones, under which circumstances the intermediate point function is four order differentiable at the point $x=a$ and we calculate its derivative.

2010 Mathematics Subject Classification: 26A24, 11H60.
Key words and phrases: intermediate point, mean-value theorem.

1 Introduction and Preliminaries

We start by considering the discussions related to the second mean value theorem of the integral calculus (or Bonnet theorem) and also, the idea from the paper [7] and some results from the paper [2].

Let us consider two continuous functions $f, g:[a, b] \rightarrow \mathbb{R}$ with the properties:
(a) the function f is decreasing on $[a, b]$,
(b) $f(x) \geq 0$, for all $x \in[a, b]$,
then, for each $x \in(a, b]$, there exists a point $c_{x} \in[a, x]$ such that

$$
\begin{equation*}
\int_{a}^{x} f(t) g(t) \mathrm{d} t=f(a) \int_{a}^{c_{x}} g(t) \mathrm{d} t . \tag{1}
\end{equation*}
$$

If for each $x \in(a, b]$ we choose one $c_{x} \in[a, x]$ such that (1) holds, we can define the function $c:(a, b] \rightarrow[a, b]$ by

$$
\begin{equation*}
c(x)=c_{x}, \text { for all } x \in(a, b], \tag{2}
\end{equation*}
$$

with the property

$$
\begin{equation*}
\int_{a}^{x} f(t) g(t) \mathrm{d} t=f(a) \int_{a}^{c(x)} g(t) \mathrm{d} t, \text { for all } x \in(a, b] . \tag{3}
\end{equation*}
$$

Moreover, from ([7]) we have that

[^0]Theorem 1 Let $a, b \in \mathbb{R}$ with $a<b$.If the continuous functions $f, g:[a, b] \rightarrow \mathbb{R}$ satisfies properties:
(a) the function f is decreasing on $[a, b]$,
(b) $f(x) \geq 0$, for all $x \in[a, b]$,
then there exists a function $c:(a, b] \rightarrow[a, b]$ such that (3) holds.
When $x \in(a, b]$ tends to a, because $|c(x)-a| \leq|x-a|$, we have

$$
\lim _{x \rightarrow a} c(x)=a
$$

Then the function $\bar{c}:[a, b] \rightarrow[a, b]$ defined by

$$
\bar{c}(x)= \begin{cases}c(x), & \text { if } x \in(a, b] \\ a, & \text { if } x=a .\end{cases}
$$

is continuous at $x=a$.
For $x \in(a, b]$, we have

$$
\frac{\bar{c}(x)-\bar{c}(a)}{x-a}=\frac{c(x)-a}{x-a} .
$$

If we denote by

$$
\theta(x)=\frac{c(x)-a}{x-a},
$$

then

$$
\theta(x) \in(0,1)
$$

and

$$
c(x)=a+(x-a) \theta(x)
$$

and hence

$$
\begin{equation*}
\int_{a}^{x} f(t) g(t) \mathrm{d} t=f(a) \int_{a}^{a+(x-a) \theta(x)} g(t) \mathrm{d} t, \text { for all } x \in(a, b] . \tag{4}
\end{equation*}
$$

Hence, the following result is true.
Theorem 2 (see [7]) Let $a, b \in \mathbb{R}$ with $a<b$.If the continuous functions f, g : $[a, b] \rightarrow \mathbb{R}$ satisfies properties:
(a) the function f is decreasing on $[a, b]$,
(b) $f(x) \geq 0$, for all $x \in[a, b]$,
then there exists a function $\theta:(a, b] \rightarrow[0,1]$ such that (4) holds.

If F be is a primitive of the function $f g$ and G is a primitive of the function g, then, from the Leibniz Newton Theorem, the equality (4) becomes

$$
\begin{equation*}
F(x)-F(a)=f(a)[G(a+(x-a) \theta(x))-G(a)], \text { for all } x \in(a, b] . \tag{5}
\end{equation*}
$$

In the paper [7], we had proved the following theorems.

Theorem 3 (see [7]) Let $a, b \in \mathbb{R}$ with $a<b$ and let f, g be two continuous functions on $[a, b]$. If
(a) the function f is decreasing on $[a, b]$,
(b) $f(x) \geq 0$, for all $x \in[a, b]$,
(c) $f(a) g(a) \neq 0$,
then
1° The function $\theta:(a, b] \rightarrow[0,1]$ has limit at the point $x=a$ and

$$
\lim _{x \rightarrow a} \theta(x)=1
$$

2° The function \bar{c} is derivable at a and

$$
\bar{c}^{\prime}(a)=1
$$

Let $\bar{\theta}:[a, b] \rightarrow[0,1]$ the function defined by

$$
\bar{\theta}(x)= \begin{cases}\theta(x), & \text { if } x \in(a, b] \\ 1, & \text { if } x=a\end{cases}
$$

Theorem 4 (see [7]) Let $a, b \in \mathbb{R}$ with $a<b$ and let f, g be two differentiable functions on $[a, b]$. If
(a) the function f is decreasing on $[a, b]$,
(b) $f(x) \geq 0$, for all $x \in[a, b]$,
(c) f^{\prime} and g^{\prime} are continuous at $x=a$,
(d) $f(a) g(a) \neq 0$,
then
1° The function $\bar{\theta}$ is differentiable at $x=a$ and

$$
\bar{\theta}^{\prime}(a)=\frac{f^{\prime}(a)}{2 f(a)}
$$

2° The function \bar{c} is twice differentiable at $x=a$ and

$$
\bar{c}^{\prime \prime}(a)=\frac{f^{\prime}(a)}{f(a)} .
$$

Theorem 5 (see [7]) Let $a, b \in \mathbb{R}$ with $a<b$ and let f, g be two twice differentiable functions on $[a, b]$. If
(a) the function f is decreasing on $[a, b]$,
(b) $f(x) \geq 0$, for all $x \in[a, b]$,
(c) $f^{\prime \prime}$ and $g^{\prime \prime}$ are continuous at $x=a$,
(d) $f(a) g(a) \neq 0$,
then
1° The function $\bar{\theta}$ is twice differentiable at $x=a$ and

$$
\bar{\theta}^{\prime \prime}(a)=\frac{f^{\prime \prime}(a) g(a)-f^{\prime}(a) g^{\prime}(a)}{3 f(a) g(a)}
$$

2° The function \bar{c} is third differentiable at $x=a$ and

$$
\bar{c}^{\prime \prime \prime}(a)=\frac{f^{\prime \prime}(a) g(a)-f^{\prime}(a) g^{\prime}(a)}{f(a) g(a)}
$$

The purpose of this paper is to establish under which circumstances the function \bar{c} is the four order differentiable at the point $x=a$ and to compute its derivative $\bar{c}^{(4)}(a)$. Do the derivative $\bar{c}^{(4)}(a)$ depend upon the functions f and g ? If there exist several functions \bar{c} which satisfy (3), do the derivative of the function \bar{c} at $x=a$ depend upon the function \bar{c} we choose?

These types of discussions, related to the differentiability of the functions and not only, to which the derivatives have been calculated, was also considered in papers like [1], [3], [4], [5], [6], [8].

2 Main results

Theorem 6 Let $a, b \in \mathbb{R}$ with $a<b$ and let f, g be two four times differentiable functions on $[a, b]$. If
(a) the function f is decreasing on $[a, b]$,
(b) $f(x) \geq 0$, for all $x \in[a, b]$,
(c) $f^{\prime \prime \prime}$ and $g^{\prime \prime \prime}$ are continuous at $x=a$,
(d) $f(a) g(a) \neq 0$,
then
1° The function $\bar{\theta}$ is three times differentiable at $x=a$ and

$$
\begin{gathered}
\bar{\theta}^{\prime \prime \prime}(a)= \\
=\frac{1}{(2 f(a) g(a))^{2}}\left[4 f(a) f^{\prime}(a)\left(g^{\prime}(a)\right)^{2}-3\left(f^{\prime}(a)\right)^{2} g(a) g^{\prime}(a)-\right. \\
\left.-f(a) f^{\prime \prime}(a) g(a) g^{\prime}(a)-3 f(a) f^{\prime}(a) g(a) g^{\prime \prime}(a)+f(a) f^{\prime \prime \prime}(a) g^{2}(a)\right]
\end{gathered}
$$

2° The function \bar{c} is four differentiable at $x=a$ and

$$
\begin{gathered}
\bar{c}^{i v}(a)= \\
=\frac{1}{(f(a) g(a))^{2}}\left[4 f(a) f^{\prime}(a)\left(g^{\prime}(a)\right)^{2}-3\left(f^{\prime}(a)\right)^{2} g(a) g^{\prime}(a)-\right. \\
\left.-f(a) f^{\prime \prime}(a) g(a) g^{\prime}(a)-3 f(a) f^{\prime}(a) g(a) g^{\prime \prime}(a)+f(a) f^{\prime \prime \prime}(a) g^{2}(a)\right]
\end{gathered}
$$

Proof. 1° By Taylor's theorem, for each $x \in(a, b]$, there are $\xi_{x}, \eta_{x} \in(a, x)$ such that

$$
\begin{aligned}
& F(x)=F(a)+\frac{F^{\prime}(a)}{1!}(x-a)+\frac{F^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{F^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\frac{F^{i v}\left(\xi_{x}\right)}{4!}(x-a)^{4} \\
& G(x)=G(a)+\frac{G^{\prime}(a)}{1!}(x-a)+\frac{G^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{G^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\frac{G^{i v}\left(\eta_{x}\right)}{4!}(x-a)^{4}
\end{aligned}
$$

We replace these formulas in (5) and divide by $(x-a)$ get

$$
\begin{aligned}
& \frac{F^{\prime}(a)}{1!}+\frac{F^{\prime \prime}(a)}{2!}(x-a)+\frac{F^{\prime \prime \prime}(a)}{3!}(x-a)^{2}+\frac{F^{i v}\left(\xi_{x}\right)}{4!}(x-a)^{3}= \\
& =f(a)\left[\frac{G^{\prime}(a)}{1!} \theta(x)+\frac{G^{\prime \prime}(a)}{2!}(x-a) \theta^{2}(x)+\frac{G^{\prime \prime \prime}(a)}{3!}(x-a)^{2} \theta^{3}(x)+\frac{G^{i v}\left(\eta_{x}\right)}{4!}(x-a)^{3} \theta^{4}(x)\right]
\end{aligned}
$$

For each $x \in[a, b]$, we have

$$
\begin{gathered}
F(x)=\int_{a}^{x} f(t) g(t) d t, F^{\prime}(x)=f(x) g(x) \\
F^{\prime \prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
F^{\prime \prime \prime}(x)=f^{\prime \prime}(x) g(x)+2 f^{\prime}(x) g^{\prime}(x)+f(x) g^{\prime \prime}(x), \\
F^{i v}(x)=f^{\prime \prime \prime}(x) g(x)+3 f^{\prime \prime}(x) g^{\prime}(x)+3 f^{\prime}(x) g^{\prime \prime}(x)+f(x) g^{\prime \prime \prime}(x), \\
G(x)=\int_{a}^{x} g(t) d t, \quad G^{\prime}(x)=g(x), \quad G^{\prime \prime}(x)=g^{\prime}(x) \\
G^{\prime \prime \prime}(x)=g^{\prime \prime}(x), \quad G^{i v}(x)=g^{\prime \prime \prime}(x)
\end{gathered}
$$

so the last equality becomes

$$
\begin{gather*}
f(a) g(a)[\theta(x)-1]= \tag{6}\\
=\frac{1}{2!}\left[f^{\prime}(a) g(a)+f(a) g^{\prime}(a)-f(a) g^{\prime}(a) \theta^{2}(x)\right](x-a)+ \\
+\frac{1}{3!}\left[f^{\prime \prime}(a) g(a)+2 f^{\prime}(a) g^{\prime}(a)+f(a) g^{\prime \prime}(a)-f(a) g^{\prime \prime}(a) \theta^{3}(x)\right](x-a)^{2}+ \\
+\frac{1}{4!}\left[f^{\prime \prime \prime}\left(\xi_{x}\right) g\left(\xi_{x}\right)+3 f^{\prime \prime}\left(\xi_{x}\right) g^{\prime}\left(\xi_{x}\right)+3 f^{\prime}\left(\xi_{x}\right) g^{\prime \prime}\left(\xi_{x}\right)+\right. \\
\left.+f\left(\xi_{x}\right) g^{\prime \prime \prime}\left(\xi_{x}\right)-f(a) g^{\prime \prime \prime}\left(\eta_{x}\right) \theta^{4}(x)\right](x-a)^{3}
\end{gather*}
$$

In relation (6) we let $x \rightarrow a$ and obtain

$$
\lim _{x \rightarrow a} \theta(x)=1
$$

When $x \in I \backslash\{a\}$, we divide relation (6) by $(x-a)$ and get

$$
\begin{gather*}
\frac{\theta(x)-1}{x-a}= \tag{7}\\
\frac{1}{2!f(a) g(a)}\left[f^{\prime}(a) g(a)+f(a) g^{\prime}(a)-f(a) g^{\prime}(a) \theta^{2}(x)\right]+
\end{gather*}
$$

$$
\begin{gathered}
+\frac{1}{3!f(a) g(a)}\left[f^{\prime \prime}(a) g(a)+2 f^{\prime}(a) g^{\prime}(a)+f(a) g^{\prime \prime}(a)-f(a) g^{\prime \prime}(a) \theta^{3}(x)\right](x-a)+ \\
+\frac{1}{4!f(a) g(a)}\left[f^{\prime \prime \prime}\left(\xi_{x}\right) g\left(\xi_{x}\right)+3 f^{\prime \prime}\left(\xi_{x}\right) g^{\prime}\left(\xi_{x}\right)+3 f^{\prime}\left(\xi_{x}\right) g^{\prime \prime}\left(\xi_{x}\right)+\right. \\
\left.\quad+f\left(\xi_{x}\right) g^{\prime \prime \prime}\left(\xi_{x}\right)-f(a) g^{\prime \prime \prime}\left(\eta_{x}\right) \theta^{4}(x)\right](x-a)^{2} .
\end{gathered}
$$

In relation (7) we let $x \rightarrow a$ and obtain

$$
\bar{\theta}^{\prime}(a)=\lim _{x \rightarrow a} \frac{\theta(x)-1}{x-a}=\frac{f^{\prime}(a)}{2 f(a)}
$$

Next, we rewrite relation (7) as,

$$
\begin{gathered}
\frac{\theta(x)-1}{x-a}-\bar{\theta}^{\prime}(a)= \\
=-\frac{f^{\prime}(a)}{2 f(a)}+\frac{1}{2!f(a) g(a)}\left[f^{\prime}(a) g(a)+f(a) g^{\prime}(a)-f(a) g^{\prime}(a) \theta^{2}(x)\right]+ \\
+\frac{1}{3!f(a) g(a)}\left[f^{\prime \prime}(a) g(a)+2 f^{\prime}(a) g^{\prime}(a)+f(a) g^{\prime \prime}(a)-f(a) g^{\prime \prime}(a) \theta^{3}(x)\right](x-a)+ \\
+\frac{1}{4!f(a) g(a)}\left[f^{\prime \prime \prime}\left(\xi_{x}\right) g\left(\xi_{x}\right)+3 f^{\prime \prime}\left(\xi_{x}\right) g^{\prime}\left(\xi_{x}\right)+3 f^{\prime}\left(\xi_{x}\right) g^{\prime \prime}\left(\xi_{x}\right)+\right. \\
\left.+f\left(\xi_{x}\right) g^{\prime \prime \prime}\left(\xi_{x}\right)-f(a) g^{\prime \prime \prime}\left(\eta_{x}\right) \theta^{4}(x)\right](x-a)^{2} .
\end{gathered}
$$

or, equivalently,

$$
\begin{gather*}
\frac{\frac{\theta(x)-1}{x-a}-\bar{\theta}^{\prime}(a)}{x-a}= \tag{8}\\
=\frac{1}{2!f(a) g(a)} \frac{f(a) g^{\prime}(a)-f(a) g^{\prime}(a) \theta^{2}(x)}{x-a}+ \\
+\frac{1}{3!f(a) g(a)}\left[f^{\prime \prime}(a) g(a)+2 f^{\prime}(a) g^{\prime}(a)+f(a) g^{\prime \prime}(a)-f(a) g^{\prime \prime}(a) \theta^{3}(x)\right]+ \\
+\frac{1}{4!f(a) g(a)}\left[f^{\prime \prime \prime}\left(\xi_{x}\right) g\left(\xi_{x}\right)+3 f^{\prime \prime}\left(\xi_{x}\right) g^{\prime}\left(\xi_{x}\right)+3 f^{\prime}\left(\xi_{x}\right) g^{\prime \prime}\left(\xi_{x}\right)+\right. \\
\left.+f\left(\xi_{x}\right) g^{\prime \prime \prime}\left(\xi_{x}\right)-f(a) g^{\prime \prime \prime}\left(\eta_{x}\right) \theta^{4}(x)\right](x-a)
\end{gather*}
$$

From here result that

$$
\bar{\theta}^{\prime \prime}(a)=\frac{f^{\prime \prime}(a) g(a)-f^{\prime}(a) g^{\prime}(a)}{3 f(a) g(a)} .
$$

From relation (8) we obtain

$$
\begin{gathered}
\frac{\frac{\theta(x)-1}{x-a}-\bar{\theta}^{\prime}(a)}{x-a}-\frac{\bar{\theta}^{\prime \prime}(a)}{2!}= \\
=-\frac{f(a) g^{\prime}(a)}{2!f(a) g(a)} \frac{\theta(x)-1}{x-a}[\theta(x)+1]-\frac{f^{\prime \prime}(a) g(a)-f^{\prime}(a) g^{\prime}(a)}{3!f(a) g(a)}+ \\
+\frac{1}{3!f(a) g(a)}\left[f^{\prime \prime}(a) g(a)+2 f^{\prime}(a) g^{\prime}(a)+f(a) g^{\prime \prime}(a)-f(a) g^{\prime \prime}(a) \theta^{3}(x)\right]+ \\
+\frac{1}{4!f(a) g(a)}\left[f^{\prime \prime \prime}\left(\xi_{x}\right) g\left(\xi_{x}\right)+3 f^{\prime \prime}\left(\xi_{x}\right) g^{\prime}\left(\xi_{x}\right)+3 f^{\prime}\left(\xi_{x}\right) g^{\prime \prime}\left(\xi_{x}\right)+\right. \\
\left.\quad+f\left(\xi_{x}\right) g^{\prime \prime \prime}\left(\xi_{x}\right)-f(a) g^{\prime \prime \prime}\left(\eta_{x}\right) \theta^{4}(x)\right](x-a) .
\end{gathered}
$$

Here we divide by $x-a$, where $x \neq a$, and we have

$$
\begin{aligned}
& \frac{\frac{\frac{\theta(x)-1}{x-a}-\bar{\theta}^{\prime}(a)}{x-a}-\frac{\bar{\theta}^{\prime \prime}(a)}{2!}}{x-a}= \\
& =\frac{1}{3!f(a) g(a)} \frac{3 f^{\prime}(a) g^{\prime}(a)-f(a) g^{\prime \prime}(a)\left[\theta^{3}(x)-1\right]-3 f(a) g^{\prime}(a) \frac{\theta^{2}(x)-1}{x-a}}{x-a}+ \\
& +\frac{1}{4!f(a) g(a)}\left[f^{\prime \prime \prime}\left(\xi_{x}\right) g\left(\xi_{x}\right)+3 f^{\prime \prime}\left(\xi_{x}\right) g^{\prime}\left(\xi_{x}\right)+3 f^{\prime}\left(\xi_{x}\right) g^{\prime \prime}\left(\xi_{x}\right)+\right. \\
& \left.+f\left(\xi_{x}\right) g^{\prime \prime \prime}\left(\xi_{x}\right)-f(a) g^{\prime \prime \prime}\left(\eta_{x}\right) \theta^{4}(x)\right] .
\end{aligned}
$$

Now, we let $x \rightarrow a$, and get

$$
\begin{gathered}
\bar{\theta}^{\prime \prime \prime}(a)= \\
=\frac{1}{(2 f(a) g(a))^{2}}\left[4 f(a) f^{\prime}(a)\left(g^{\prime}(a)\right)^{2}-3\left(f^{\prime}(a)\right)^{2} g(a) g^{\prime}(a)-\right. \\
\left.-f(a) f^{\prime \prime}(a) g(a) g^{\prime}(a)-3 f(a) f^{\prime}(a) g(a) g^{\prime \prime}(a)+f(a) f^{\prime \prime \prime}(a) g^{2}(a)\right] .
\end{gathered}
$$

2° Follows immediately from 1°.

3 Conclusions and further challenges

In this paper we introduced conditions for the functions f and g such that the intermediate point of functions \bar{c} and $\bar{\theta}$ to be derivable in the point a and we provided the derivative $\bar{\theta}^{\prime \prime \prime}(a)$ and $\bar{c}^{i v}(a)$.

In future we want to see in which conditions the functions \bar{c} and $\bar{\theta}$ are derivable of order n in the point a and to calculate the corresponding derivative.

References

[1] D. I. Duca, Analiză Matematică, Casa Cărţii de Ştiinţă, Cluj-Napoca, vol. 1, 2013.
[2] D. I. Duca, Analiză Matematică, vol. 2, to appear.
[3] D. I. Duca, A Note on the Mean Value Theorem, Didactica Matematica, vol. 19, 2003, 91-102.
[4] D. I. Duca, Properties of the intermediate point from the Taylor's theorem, Mathematical Inequalities and Applications, vol. 12, no. 4, 2009, 763-771.
[5] D. I. Duca, E. Duca, Exerciţii şi probleme de analiză matematică, Casa Cărţii de Ştiinţă, vol. 2, 2009.
[6] D. I. Duca, O. Pop, Concerning the Intermediate Point in the Mean-Value Theorem, Mathematical Inequalities \& Applications, vol. 12, no. 3, 2009, 499512.
[7] E.-L. Pop, D. I. Duca, A. Ratiu, Properties of the intermediate point from a mean value theorem of the integral calculus, General Mathematics, vol. 25, no. 1-2, 2017, 3-10.
[8] T. Trif, Asymptotic Behavior of Intermediate Points in certain Mean Value Theorems, Journal of Mathematical Inequalities, vol. 2, no. 2, 2008, 151-161.

Emilia-Loredana Pop

Babeş-Bolyai University
Faculty of Mathematics and Computer Science
Department of Mathematics
Street Mihail Kogǎlniceanu 1, 400084 Cluj-Napoca, România
e-mail: pop_emilia_loredana@yahoo.com

Dorel Duca

Babeş-Bolyai University
Faculty of Mathematics and Computer Science
Department of Mathematics
Street Mihail Kogǎlniceanu 1, 400084 Cluj-Napoca, România
e-mail: dorelduca@yahoo.com

Augusta Raţiu

Lucian Blaga University of Sibiu
Faculty of Science
Department of Mathematics and Computer Science
Street Dr. I. Raţiu 5-7, 550012 Sibiu, Romania
e-mail: augu2003@yahoo.com

[^0]: ${ }^{1}$ Received 27 March, 2019
 Accepted for publication (in revised form) 8 May, 2019

