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Abstract

The purpose of this article was to present the methodology which enables automatic map
labelling. This topic is particularly important in the context of the ongoing research into
the full automation of visualization process of spatial data stored in the currently used
topographic databases (e.g. OpenStreetMap, Vector Map Level 2, etc.). To carry out
this task, the artificial neural network (multilayer perceptron) was used. The Vector Map
Level 2 was used as a test database. The data for neural network learning (the reference
label localization) was obtained from the military topographic map at scale 1 : 50 000.
In the article, the method of applying artificial neural networks to the map labelling is pre-
sented. Detailed research was carried out on the basis of labels from the feature class
”built-up area”. The results of the analyses revealed that it is possible to use the artificial
intelligence computational methods to automate the process of placing labels on maps.
The results showed that 65% of the labels were put on the topographic map in the same
place as in the case of the labelling which was done manually by a cartographer. The ob-
tained results can contribute both to the enhancement of the quality of cartographic vi-
sualization (e.g. in geoportals) and the partial elimination of the human factor in this
process.

Highlights for public administration, management and planning:

• Map label placement is among key variables ensuring the usability of topographic
maps across disciplines.

• We present the neural network approach for automating the process of labelling
topographic maps with locality names.

• The presented case study applies to the military map in scale 1:50 000, but can
be applied on other maps and geoportals.
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1 Introduction

Labels are one of the most important elements of to-
pographic map content. Using them together with
map symbols distinguishes amap from spatial devel-
opments such as aerial photographs and orthopho-
tomaps. An important task of the contemporary car-
tography is ensuring that labelling of any map, in-
cluding a topographic map, is done properly and au-
tomatically to the greatest possible extent.
Research on automated label placement has been
conducted for many years. In the paper (Free-
man 2007), the author extensively presents prob-

lems and guides concerning automatic label place-
ment. The full methodology for describing the pro-
cess of labelling various objects on different maps
have been presented in many articles, e.g. in the
study (Reimer et al. 2015). It presents the method
of placing text for objects created by groups of el-
ements (e.g. archipelagos). The results were com-
pared with labels put manually by a cartographer.
(Wu et al. 2016) presents an algorithm which al-
lows for determining the position of labels using
the grid of squares superimposed on the map con-
tent. The presented methodology allows for la-
belling both line and area objects. In addition,
it takes into account the mutual position of the la-
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bels, preventing their overlap. This problem is also
included in the study (Kakoulis & Tollis 2006). Har-
rie et al. (2005) raises the problem of automatic la-
belling on maps used in geoportals. The methodol-
ogy presented by the authors allows to determine la-
bel placement in real time. A similar solution is pre-
sented in the paper (Been et al. 2006). A com-
prehensive approach to the discussed issues is pre-
sented in the article (Freeman 2005). This study
describes the IT system which has been developed
for 25 years and which performs automatic labelling
on maps of various types and of different scales.
Furthermore, (Rylov & Reimer 2015) undertook
to solve the problem of automatic label placement
on topographic maps.
The main purpose of this article is to present
the methodology for automating, to the highest pos-
sible extent, the process of labelling topographic
maps with locality names. The main assumption
was the fact that in most cases they are placed
manually, usually by an experienced cartographer.
The cartographer should take into account the rules
of placing labels which are described in the instruc-
tions. However, in the case of Polish topographic
maps, the instructions contain few guidelines which
are very general (’Military Map at scale 1 : 50
000 – development and preparation for publication
– instruction’ 2011). The assumed aim of the re-
search will be done by the artificial neural network,
to which the experience and knowledge of the car-
tographer will be inputted through learning.
The application of the artificial neural network
is justified by the fact that they are used for solving
problems related to a large number of input data
and in cases when an algorithm is unknown or diffi-
cult to implement (Suzuki 2013). The methodology
also took into account land cover elements which
are the content of the map.

2 Methods

2.1 Input data

The researches were carried out on the example
of the location of the town labels on the Military
Topographic Map at scale 1 : 50 000 (M755 se-
ries). These maps are developed using the topo-
graphic database, which in the case of military maps
is Vector Map Level 2 (VML2). Vector Map Level 2
(VML2) is a spatial database, standardized within
NATO, with a level of detail corresponding to a to-
pographicmap at scale 1:50 000 (‘Military specifica-
tion MIL-V-89032 Vector Smart Map (VMAP) Level
2’, 1993, p. 2). The method of data organiza-
tion in VML2 is very precisely described in the DI-
GEST standard (‘STANAG 7074, ed. 2: Digital Geo-
graphic Information Exchange Standard (DIGEST)’
1998). This development is a geographical database
where data are divided into thematic categories,
such as: boundaries, elevation, physiography, trans-
port, land use, hydrography, vegetation, aviation
content and industry. On the basis of VML2, the Mil-
itary Topographic Map at scale 1:50 000, M755 se-
ries, is prepared. Digital Cartographic Model (DCM
– the M755 series map) is thus created as a result
of the cartographic visualization of this database
(Fig. 1). In the cartographic production process,
the automatic symbolisation of objects from VML2
is followed by the cartographic editing, which is pre-
dominantly done manually by an experienced car-
tographer. This process also includes the place-
ment of the map labels. It should be emphasized
that the majority of map development technologies
(including topographic map development technolo-
gies) are based on similar assumptions,

Fig. 1 An example of the visualization of the VML2 section (left side) and a section of the M755 series map (right side)
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Fig. 2 An example of the centre of the rectangle.

which makes the presented methodology universal
for polygon features in this study.
In order to present the application of the method-
ology, the localisation of the town and coun-
tryside labels located on 8 sheets of the map
with map sheet identification numbers: N-34-121-
A,B, N-34-121-C,D, N-34-122-A,B and N-34-122-
C,D (sheets with 351 labels used for neural
network learning) and N-34-123-A,B, N-34-123-
C,D, N-34-124-A,B and N-34-124-C,D (sheets used
for the implementation of neural networks, 296 la-
bels) was used.

2.2 Construction of the data model

The presented methodology assumes that the place-
ment of labels will be considered for 9 locations,
which are determined by rectangles surrounding
the described object. , The class of ”built-up area”
objects, which is stored in the VMap Level 2 data
model as a polygon feature, was selected as an ex-
ample of the described methodology. The surround-
ing rectangles, for which the placement of labels
was considered, were generated for each ”built-

up area” object. All 9 rectangles have the same
shape and area. They were placed in a 3-by-3 grid,
and their location is determined by the position
of the central rectangle.
Tests were carried out for rectangles, during which
they were automatically determined in four ways
(Fig. 2):
1. The central rectangle is the MBR (Minimum
Bounding Rectangle) of the built-up area.
2. The central rectangle is the MBR (Minimum
Bounding Rectangle) of the built-up area whose cen-
ter point has been moved
to a point with coordinates calculated as a weighted
average according to the formula (1).

X =

∑n
i=1(Xi · Ai)∑n

i=1 Ai
;Y =

∑n
i=1(Yi · Ai)∑n

i=1 Ai
(1)

Where: X, Y – coordinates of the designated point,
n – number of objects included in a given built-up
area, XiYi – centroid coordinates of individual parts
of the built-up area, Ai – area of individual parts
of the built-up area
3. The central rectangle has the same area as the
total built-up area. It was assumed that it has
the same proportions as the MBR. Its center point
is calculated as the average position of each cen-
troid forming the built-up area.
4. The central rectangle has the same area as the
total area of the built-up area. It was assumed
that it has the same proportions as the MBR. Its
center point is calculated as a weighted average ac-
cording to the relation (1).
Due to the fact that the presented methodology
takes into account the elements of the map content,
for each rectangle in all variants, information about
elements of land cover (which are located in the
area of the surrounding rectangle) was obtained.
This data was acquired from VMap Level 2 (Fig. 4):

Fig. 3 An example of the determination of surrounding rectangles in four analysed variants.
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Fig. 4 An example of the visualization of data obtained
from VML 2.

• for area objects (e.g. forests, lakes, built-up
areas) – the surface of the area within a given
rectangle;

• for linear objects (e.g. rivers, roads, railways,
contour lines) – the length of a given linear ob-
ject located in a specific rectangle;

• for point objects (buildings, farms) – the num-
ber of objects located in a rectangle.

As a result of analyses, the information about
an area, length or quantity of 48 object classes
from VMap Level 2 was obtained for each rectan-
gle. In this way, the content of the vector database
has been converted into the form of numerical pa-
rameters. This is necessary to input this data into
the artificial neural network which can process sig-
nals only in the form of numerical values.
In addition to the data describing the terrain situa-
tion, it was necessary to collect data with the model
distribution of labels. These data are obligatory
for neural network learning. The data were ac-
quired from the Military Topographic Map, where
they were placed by a cartographer. In order to ob-
tain them, the border of the label range was se-
lected. Then, it was checked what area of this
border overlaps with the individual rectangles (of
the previously generated 9 rectangles grid, Fig. 5).

The final result of collecting input data for neural
network learning was data set (collected separately
for each of the generated surrounding rectangles)
consisting of:

• 48 parameters acquired from VMap Level 2,
representing elements of land cover (network
inputs);

• surface of the area occupied by the envelope
of the map label (network output) (Fig.5).

2.3 Learning of artificial neural networks

For the process of neural network learning, labels
located on 4 sheets of the M755 series topographic
map were used. 351 names of cities, towns and vil-
lages were located on the sheets (12 636 of sur-
rounding rectangles were generated for them in 4
variants). For each configuration of surrounding
rectangles, the above set of data has been inputted
into the artificial neural network separately Due
to the fact, that the values are collected in different
units and numerical ranges, before the start of their
processing by the artificial neural network, they
were normalized to the range from 0 to 1. The ob-
jects were normalized as described above Fig. 4.
In the researches, a feedforward neural network
(called perceptron) consisting of three layers was
tested. In the applied network, the supervised
learning method with a teacher was used to de-
termine the neuron weights in accordance with
the backpropagation error method.
The values of weight are modified on the basis of in-
put data (element of land cover) and the expected
output of the neural network (area of envelope ob-
tained from the map). In order to determine neu-
ron weights, a supervised learning method with
a teacher was used in accordance with the BFGS
method (Broyden-Fletcher-Goldfarb-Shanno) with
the SOS (Sum Of Squares) error function. The num-
ber of neurons in the hidden layers varies from 9

Fig. 5 A method of acquiring data for neural network learning
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Fig. 6 The method of determining the labels’ location

Fig. 7 The area used for network learning (on the left) and for implementing the neural network (right – red
rectangle). On the top, the surrounding squares with an area equal to the the built-up area, below those with
the area being MBR of the built-up area

to 89. The number of training iterations varies from
4 to 49.
Operations related to data processing in neural net-
works were carried out using the Statistica software
version 12.5 (‘STATISTICA Help | SANN Overviews
− Network Training’, n.d.). The proper functioning
of the neural network is influenced mainly by the se-
lection of its appropriate architecture (the activa-
tion functions used, the number of learning iter-
ations, etc.). In order to find the optimal net-
work architecture, a cross-validation was carried

out. The learning data set has been divided into
3 subgroups: learning sample (70% of samples)
for learning the network, test sample (15%), which
is responsible for controlling the learning process
and validation sample (15%) used for final verifica-
tion. The network ”quality” was designated as the
estimator determining the usefulness of the net-
work for the label placement. It is the correlation
coefficient between the output value and its pre-
diction made by the neural network. The process
of designation the optimal structure of neural net-
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work consists in generating a large number of neu-
ral networks (500 networks have been prepared
in the analysis). Of these, 5 networks have been
selected, for which the quality factor for the valida-
tion sample is the highest. To avoid the ”overfitting”
of neural network, the learning process was inter-
rupted each time when the validation sample error
increased. In the process of ”searching” for the opti-
mal neural network structure, the algorithm tested
different numbers of neurons in the hidden layer
and various activation functions (linear, logistic, hy-
perbolic tangent, exponential).
After completing the learning process of artifi-
cial neural networks, their operational use began.
This implementation of the neural network con-
sisted in entering the input data (terrain coverage
parameters) to the neural network for a given rect-
angle. The result returned by the network on a sin-
gle output neuron was a factor determining the suit-
ability of placing the label in the rectangle. These
coefficients were defined for all rectangles and the
”winning” rectangle (the one, in which the label
should be placed), was the rectangle with the high-
est coefficient (Fig. 6). The label was located as fol-
lows: the rectangle center was the label center.
The research on the implementation of neural net-
works has been carried out in the area of four neigh-
bouring (Fig. 7, right side) topographic map sheets.
The idea was to verify, how the neural network
works, when it is applied in areas (sheets of maps)
different than those on which it was learned. Impor-
tantly, the map sheets on which the neural network
was implemented, were developed by the same car-
tographer as the map sheets used for learning.
This fact allows to suppose that the labels on these
maps were placed using the same rules.
The final test was to compare the location of the la-
bels generated by the artificial neural network with
the real location of these labels on the map (i.e.
placed by a cartographer).

3 Results

As a result of the ”automatic network search” algo-
rithm of the Statistica 12.5 software, 5 best neural
networks (with the highest ”quality” of the valida-
tion sample) were obtained. These networks were
used to determine the location of labels for built-
up area in the test area. The results were com-
pared with the placement of labels on the map.
They showed that in the case of rectangles based
on the MBR of the built-up area (variants 1 and 2),
the proposed algorithm located the labels in a sim-
ilar way as a cartographer for 50% of the towns.

In 10% of cases, the labels were placed in a differ-
ent way, but in accordance with cartographic rules.
Better results were obtained for variants 3 and 4
because the neural network assigned 65% of the la-
bels in the same way as the cartographer did, plus
15%were assigned correctly (from the cartographic
point of view), but in different locations than it was
on the map.
Fig. 8 shows the section of the map, where the ac-
tual location of the labels is marked with a green
outline. The figure also shows the labels placed
by the artificial neural network.

Fig. 8 A section of the map with a comparison
of the labels placed by the neural network (names
of localities) with the labels placed on the map
by a cartographer (green border). The built-up areas
are marked in red

4 Discussion

The obtained neural networks differ significantly
in terms of architecture. It is noticeable that all
the ”best” networks obtained (those with the high-
est quality factor for the validation sample) have
a different structure. This applies to the number
of neurons in the hidden layer, the number of train-
ing iterations as well as the applied activation func-
tions. This allows to conclude that we are not able
to provide constant parameters of the neural net-
work, which will carry out the task of label place-
ment in the best way. Taking the above into ac-
count, the usage of the automatic neural network
search algorithm is definitely a reasonable solution.
Attention is drawn to the fact that the average qual-
ity of the validation sample for neural networks
prepared for rectangles is the highest for variants
based on the area of the built-up area (variant of sur-
rounding rectangles no. 3 and 4), which is approx.
0.6 .In the case of primary fields of MBR shape,
this coefficient is lower and amounts to about 0.5.
The implementation of the obtained neural net-
works which resulted directly in determining the lo-
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cation of labels for 4 neighboring topographi-
cal maps, and then comparing the obtained loca-
tions with the actual text placement on the topo-
graphic map, clearly shows that the results obtained
for rectangles generated on the basis of the sur-
face of built-up area are more appropriate for de-
termining the location of the map labels. For these
two configurations, about 65% of the labels were
placed automatically in the same way as in the case
when a cartographer did it manually. The rea-
son for worse results for MBR-based configura-
tions is the generation of very large rectangu-
lar envelopes because one locality (town) consists
of many separate polygons, scattered over a large
area (see Fig. 7, bottom right). It is also important
that the influence of the center location of the rect-
angle on the obtained results is small (whether its
center is determined as a weighted average or as an
arithmetic average).

5 Conclusions

The obtained results clearly show that it is pos-
sible to automate the process of locating labels
on the topographic map with the use of an artifi-
cial neural network. In the optimal configuration,
80% of the map labels have been placed correctly.
On the other hand, when looking at this result,
it should also be stated that every fifth label has
been placed incorrectly, which excludes the possibil-
ity of using the presented methodology for the auto-
matic placement labels on the map without any hu-
man participation. Taking this into account, the de-
velopedmethodology was practically tested in an in-
direct way. In the first step, the labels were placed
automatically by the neural network. Then, the car-
tographer reviewed them and made corrections.
This process, even though it was not fully automatic,
took about 50% less time than in the case of placing
the labels manually.
Finally, it can be assumed that the aim of the ar-
ticle has been achieved. The methodology de-
scribed in the article allowed the neural network
to gather the knowledge and experience of the car-
tographer who placed the labels on the map man-
ually. The neural network also took into account
the surroundings of the placed labels, e.g. elements
of topographic map content, collected in a topo-
graphic database.

Further research will be carried out towards in-
creasing the number of possible locations of the la-
bels. In its current form, the system considers
the placement of the label for 9 locations. An in-
crease in the number of surrounding rectangles will
be considered, which is related to the computa-
tional capacity of the computer. In addition, further
studies will be carried out to analyse the possibility
of placing labels for non-area objects.
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