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Abstract: In this study, a total of 176 tree cores from Schrenk spruce (Picea schrenkiana) were used 
to establish a tree-ring chronology and a 167-year July–October normalized differential vegetation in-
dex (NDVI) for the Alatau Mountains in Central Asia was reconstructed using this newly developed 
chronology. The tree-ring based NDVI reconstruction tracks the observed data well (r=0.577, p<0.01, 
n=25) and precisely captures the drought events recorded in historical documents that occurred over a 
large area in 1917 and 1938. After applying a 21-year moving average, three dense (1860–1870, 
1891–1907, and 1950–1974) and three sparse (1871–1890, 1908–1949, and 1975–2006) vegetation 
coverage periods were found in this reconstruction. Spatial correlation proves that the reconstructed 
NDVI series contains climatic signals representative for a large area including southern Kazakhstan. 
Although a comparison between this reconstruction and four climatic reconstructions for southeastern 
Kazakhstan, Nilka (in the Ili region), the Issyk Lake, and the Aksu region reveals similar variations, 
the coherence between these reconstructions become weak with the increase in spatial distance from 
north to south. In addition to the local representation, it was also demonstrated that the newly devel-
oped NDVI index can indicate the large-scale circulations over Eurasia, with the higher NDVI associ-
ated with stronger westerly winds from the Atlantic to the Alatau Mountains, and the lower NDVI as-
sociated with the weaker winds. 
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1. INTRODUCTION 

Terrestrial vegetation is regarded as a sensitive indica-
tor of climate change (Pauli et al., 2002; Nagy, 2006; 

Jiapaer et al., 2015). The insights from vegetation phe-
nology may help to increase the understanding of the 
interaction between climate and vegetation and the ex-
changes of energy and matter in a given area (Hmimina et 
al., 2013). The normalized difference vegetation index 
(NDVI) was developed as a measure of vegetation green-
ness and is typically used to reflect ecological environ-
ment changes and evaluate land surface phenology at 
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local, regional, and global scales (Gamon et al., 2015). 
The near-infrared and red-light reflectance ratio is based 
on satellite sensor data reflected by the vegetation status. 
In this ratio, NDVI=(NIR–RED)/(NIR+RED), where 
RED represents the amount of red light, and NIR repre-
sents the amounts of near-infrared light (Pettorelli et al., 
2005). However, these data, provided since the 1980s, do 
not adequately describe the dynamic variations of vegeta-
tion coverage over a long time scale. To address this 
information gap, proxy data, such as tree rings, are fre-
quently selected. These data can be used to evaluate the 
relationship between the radial growth of coniferous 
species and vegetation coverage and reflect the seasonal 
variability of vegetation coverage for hundreds of years 
(Malmström et al., 1997; D’Arrigo et al., 2000; Leavitt et 
al., 2008). The above studies mostly focused on high-
latitude (Kaufmann et al., 2004; Lopatin et al., 2006; 
Beck et al., 2013), high-altitude (He and Shao, 2006; 
Shang et al., 2016), and arid areas (Liang et al., 2009; 
Wang et al., 2014), and relied on samples of tree rings 
from coniferous species. 

The widespread coniferous forests in Central Asia, 
comprising mostly local tree species (Juniperus turke-
stanica Kom., Larix sibirica Ledeb., Pinus wallichiana 
and Picea schrenkiana) provide a good opportunity for 
dendrochronological studies (Esper, 2000; Chen et al., 
2012; Zhang et al., 2014; Seim et al., 2016; Opała et al., 
2017). Wooden cores derived from Central Asia have 
been systematically collected since the 1990s (Bräuning, 
1994; Esper et al., 2007). Many dendrochronological 
studies related to ring-width variations (Esper, 2000), tree 
growth climate response (Esper et al., 2003; Winter et al., 
2009) and hydro-climate reconstruction (Zhang et al., 
2015; Chen et al., 2017a) have been carried out. Howev-
er, when compared with the previous dendrochronologi-
cal studies addressing hydro-climatological reconstruc-
tions, studies of tree-ring based vegetation coverage vari-
ations for Central Asia are relatively rare. In addition, the 
knowledge of the corresponding relationships between 
the radial growth of conifers and the vegetation coverage 
in Central Asia is still limited. 

Therefore, the aims of this study are to: (1) develop a 
tree-ring width-based regional chronology for the Alatau 
Mountains; (2) reconstruct historical NDVI series for the 
study area and explore its variations, and (3) assess cli-
matic signals inhering in the newly developed NDVI 
reconstruction. 

2. MATERIALS AND METHODS 

Sample collection 
The Alatau Mountains form a boundary between Chi-

na and Kazakhstan and are part of the Tian Shan Moun-
tains of Central Asia. The Alatau Mountains extend more 
than 450 km from east to west, and the maximum eleva-
tion is approximately 4464 m a.s.l. The Alatau Moun-

tains experience a temperate continental climate. The 
northern slopes of the Alatau Mountains have more annu-
al precipitation (900–1000 mm) than the southern slopes 
and a lower snowline (3600 m a.s.l.). Approximately two-
thirds of the mountains’ glaciers are distributed in the 
northern areas (He et al., 2014). The widespread, long-
living, coniferous forest growing on the Alatau Moun-
tains provides a good opportunity for carrying out den-
drochronological studies to evaluate vegetation character-
istics over a long-term period. 

A long-lived Schrenk spruce (Picea schrenkiana) was 
selected as our study target. These spruces often grow up 
to 40 m in height and frequently live more than 200 years. 
More than 90% of the forest from 1200 to 2600 m a.s.l. in 
the Tien Shan Mountains contains Schrenk spruce, and it 
is the dominant tree species in the forests of the mountain 
zone. Tree-ring cores from three sites were sampled in 
July 2016. The study area and location of the sampling 
sites are shown in Fig. 1. Forest stands are moderately 
open and canopy densities are low. We selected healthy 
spruces with little evidence of damage by bushfire, land-
slides, earthquakes, human destruction, or animal inva-
sion to avoid sampling non-climatic effects on radial 
growth. For most sampled trees, we parallelly extracted 
two cores from one tree at chest height. The two cores 
were collected from different directions at two flanks of a 
given tree. To collect tree cores that contained consistent 
climate signals, the altitude difference between the high-
est and lowest locations of one sampling site was less 
than 100 m. In total, we obtained 182 cores from 96 trees 
using increment borers at sites Amanboktek (code: AMA; 
location: 45.26°N–80.08°E; elevation: ~2050 m a.s.l.), 
Kikbay (KBZ; 45.21°N–79.97°E; ~1750 m a.s.l.), and 
Basika (BSK; 45.25°N–80.15°E; ~1450 m a.s.l.). 

 
Fig. 1. (a) Location of the study area; (b) map of the study area; and 
(c) sampling sites: Amanboktek (AMA), Kikbay (KBZ), and Basika 
(BSK). The selected NDVI grid (44.932°–46.023°N, 78.986°–
80.950°E) is represented by the dash-block diagram. 
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Ring-width measurements and chronology development 
Following normal dendrochronological techniques 

(Speer, 2010), the sampled tree-ring cores were dried 
naturally and mounted on a wooden plank with grooves. 
Then, each core was sanded with abrasive paper and 
marked with needles under a microscope. Every ring on 
the sanded cores was measured under a binocular micro-
scope using a Velmex Measuring System at a resolution 
0.001 mm. This measuring system, the standard of North 
America’s Dendrological Research Community, is specif-
ically designed for the researcher to perform non-contact 
measurement analysis. The system is composed of the 
following three main components: a UniSlide® dovetail 
rapid advance screw motion assembly, a linear encoder 
with one micron (0.001 mm) resolution, and a Velmex 
VRO™ Encoder Readout. Two programs, COFECHA 
(Grissino-Mayer, 2001) and ARSTAN (Cook and Krusic, 
2005), were utilized for cross-dating quality control and 
to develop chronologies. To eliminate age trends that 
were affected by factors other than climate, the tree-ring 
width series were detrended using a negative exponential 
method, i.e. a conservative function. We used an ex-
pressed population signal (EPS) to evaluate the reliability 
of the chronology of the tree rings. The statistical anal-
yses were done at 20-year intervals with an overlap of  
10 years across the chronology. An EPS of ≥ 0.85 was 
used to ensure a reliable chronology length (Wigley et al., 
1984). 

Climatic data and vegetation index 
For further analyses, we selected the precipitation, 

mean temperature, mean maximum temperature and 
mean minimum temperature per month of the Climatic 
Research Unit Time-Series (CRU TS 4.00; New et al., 
2000), and the Palmer Drought Severity Index per month 
(scPDSI, CRU TS 3.25; Schrier et al., 2013) of the grid-
ded 0.5° × 0.5° dataset (45°–46°N, 79°–81°E), available 
from 1901 to 2015, to describe the climatic conditions in 
the study area. Monthly normalized differential vegeta-
tion index (NDVI) data (44.932°–46.023°N, 78.986°–
80.950°E) available from 1982 to 2006 were used to 
describe the vegetation conditions. The above climatic 
data and vegetation index were acquired from the Royal 
Netherlands Meteorological Institute (KNMI) Climate 
Explorer (http://climexp.knmi.nl). 

Statistical analysis 
We used 13-year reciprocal filters to decompose the 

developed chronologies of the tree rings into high- and 
low-pass components to evaluate the patterns of variation 
in various frequency ranges (Yuan et al., 2013). Variation 
patterns in these original and decomposed chronologies 
were assessed using Pearson correlations in the original, 
high-frequency, and low-frequency domains. Correlation 
analyses were also used to quantify the strengths of cli-
matic signals and the vegetation conditions inherent in 

chronologies from spruces at the study site. We identified 
the strongest seasonal relationship between tree-ring 
width and vegetation data, and then a linear regression 
model was employed for reconstruction. We used Boot-
strap (Young, 1994), Leave-one-out cross-validation 
(Michaelsen, 1987), and split-sample calibration-
verification test (Meko and Graybill, 1995) methods to 
evaluate the statistical reliability of the reconstruction 
model. During the split-sample calibration-verification 
tests, the period of climatic data was split into two parts 
for calibration and verification. Several statistical pa-
rameters, including a reduction in error, coefficient of 
efficiency, and product mean test were calculated to eval-
uate the observed and estimated data (Cook et al., 1999). 
Spatial correlation was used to identify coherence be-
tween our reconstruction and the gridded 0.5° × 0.5° 
CRU self-calibrating PDSI 3.21 dataset (Wells et al., 
2004) over a large region. In addition, statistical data 
from the Royal Netherlands Meteorological Institute 
(KNMI) were also used. Some tree-ring based climatic 
reconstructions and the newly developed vegetation cov-
erage series were standardized using zero-mean normali-
zation and decomposed using 13-year reciprocal filters to 
assess their coherence in a larger spatial context. Reanal-
ysis 1 from the National Centers for Environmental Pre-
diction/Department of Energy (NCEP/DOE) (Kalnay et 
al., 1996) was utilized to derive the large-scale circula-
tion associated with the variation in the NDVI index. The 
Reanalysis is a meteorological data product that aims to 
represent the historical state of the atmosphere. Reanaly-
sis 1 from the NCEP/DOE is one example of these Rea-
nalysis data, and has a horizontal resolution of 2.5° × 
2.5°. The climatology data from 1951 to 2000 has been 
removed to obtain the anomalies. 

3. RESULTS 

Meteorological data and NDVI analysis 
Fig. 2a shows that the highest temperature periods in 

the study area were in summertime (from June to Au-
gust), with peaks in July. Most of the annual precipitation 
fell in May, June, and July (120.1 mm). The two peak 
values of precipitation in May (42.2 mm) and November 
(30.1 mm), which account for 12.6% and 8.9%, respec-
tively, of the total annual precipitation. Wintertime has 
less precipitation than summer. August is typically the 
wettest month of the year (PDSI=–0.46) for the study 
area (Fig. 2b). The climate data for 1901–present reveal 
remarkable rising tendencies in the study area for the 
following: annual total precipitation (Y=0.5466X–734.15, 
R2=0.066, p<0.01) (Fig. 2d), annual mean temperature 
(Y=0.0168X–29.944, R2=0.357, p<0.001) (Fig. 2e), annu-
al mean minimum temperature (Y=0.0222X–47.377, 
R2=0.500, p<0.001) (Fig. 2f), annual mean maximum 
temperature (Y=0.0113X–12.533, R2=0.163, p<0.001) 
(Fig. 2g), and annual mean PDSI (Y=0.0136X–27.148, 
R2=0.069, p<0.01) (Fig. 2h). 
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Fig. 2c indicates that the monthly NDVI values from 
January to March are relatively low (not exceeding 0.140) 
and without obvious fluctuations, but have an evident 
increase starting at April (0.248), and peaking in July 
(0.536), when the study area reaches the heathiest vegeta-
tion period of the year. Thereafter, the monthly NDVI 
values maintain a long-term decrease until December. An 
increasing trend of annual mean NDVI since 1982 is less 
significant (Y=0.0002X–0.0673, R2=0.013, p<0.05) (Fig. 
2i). The variations in NDVI in the study area are in ac-
cordance with findings for Central Asia reported by Yin 
et al. (2017). The correlation coefficients between NDVI 
and annual precipitation and annual mean PDSI are 0.352 
(p<0.1, n=25) and 0.440 (p<0.05, n=25) respectively, 
while the correlation coefficients between NDVI and 
annual mean temperature, annual mean minimum tem-
perature and annual mean maximum temperature are not 
significant. 

Statistical characteristics of chronologies and devel-
opment of a regional chronology 

After cross-dating quality control, two cores from the 
AMA site and four cores from the KBZ site were rejected 
because of the low correlations between the subseries and 
the master series. Ultimately, 50 cores from 28 spruces at 
the AMA site, 81 cores from 42 spruces at the KBZ site, 
and 45 cores from 23 spruces at the BSK site were used 
to develop ring-width chronologies. The oldest tree at the 
KBZ site was nearly 195 years old. In order to carry out a 
further analysis, we utilized the standard (STD) chronol-
ogies that contained the common variations of respective 
series of tree samples and retained a low- through high-
frequency common variance. This variance is hypothe-
sized as being dependent on climate (Cook, 1985). Three 
chronologies, the depths of their samples, EPS, and Rbar 
are demonstrated in Fig. 3. General statistics of these 
chronologies for a common period of analysis (from 1900 

 
Fig. 2. Gridded climatic and NDVI data for the Alatau Mountain: (a) Precipitation, mean temperature, mean maximum temperature and mean mini-
mum temperature per month. Bars indicate precipitation (in mm), and curves with different colors represent mean temperature, mean minimum 
temperature and mean maximum temperature (in °C); (b) Monthly PDSI; (c) Monthly NDVI; (d) Annual precipitation during 1901–2015; (e–g) Annual 
mean temperature, annual mean minimum temperature and annual mean maximum temperature during 1901–2015; (h) Annual mean PDSI during 
1901–2015; and (i) Annual mean NDVI during 1982–2006. Dashed lines represent trends in climate and NDVI data. 
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to 2010) are listed in Table 1. The reliable lengths of 
AMA, KBZ, and BSK chronologies were 107 (1910–
2016), 167 (1850–2016), and 137 (1880–2016) years, 
respectively. 

In addition to the reciprocal filters, we also used Pear-
son correlation coefficients to analyze the three sets of 
data, which included original unfiltered data, high-pass 

filtered data, and low-pass filtered data. As shown in 
Table 2, the correlations for the three chronologies em-
ploying the low-pass filter are relatively low, but the 
confidence levels for the correlation coefficients were all 
over 99.9% in the case of the original, high-frequency, 
and low-frequency domains over the common period of 
1910–2016. In the common period, the years of 1924 
(value: 1.452), 1970 (1.421), 1993 (1.319), 1973 (1.307), 
1994 (1.292), 1950 (1.282), 1951 (1.275), 1923 (1.27), 
1948 (1.264), and 1990 (1.257) are regarded as 10 high-
est-value years of AMA chronology, and the 10 lowest-
value years appear in 2008 (0.511), 1945 (0.607), 1913 
(0.614), 1917 (0.625), 1914 (0.632), 1911 (0.645), 2000 
(0.675), 1927 (0.694), 1995 (0.705), and 2014 (0.708). 
The 10 highest-value years of KBZ chronology are 1993 
(1.499), 1994 (1.448), 1968 (1.419), 1962 (1.395), 1973 
(1.392), 1969 (1.369), 1924 (1.349), 2005 (1.341), 1989 
(1.336), and 1970 (1.304), and the 10 lowest-value years 
appear in 1945 (0.457), 1927 (0.496), 1917 (0.509), 1944 
(0.554), 1943 (0.596), 2000 (0.602), 1928 (0.626), 1938 
(0.648), 1946 (0.66), and 2015 (0.686). The 10 highest-
value years of BSK chronology are 1929 (1.678), 1935 

Table 1. Statistical characteristics of chronologies over the common 
period of 1900–2010. 

Statistic AMA KBZ BSK ARC 
Standard deviation (SD) 0.198 0.224 0.414 0.208 
Mean sensitivity (MS) 0.180 0.186 0.379 0.180 
First-order autocorrelation (AC1) 0.396 0.496 0.577 0.458 
Interseries correlation (trees) 0.417 0.484 0.738 0.418 
Interseries correlation (all series) 0.431 0.488 0.753 0.422 
Mean within-tree correlation 0.786 0.805 0.961 0.808 
Signal-to-noise ratio (SNR) 9.858 62.012 18.293 62.025 
Expressed population signal (EPS) 0.908 0.984 0.948 0.984 
The first principal component (PC#1) 0.492 0.518 0.799 0.461 
First year EPS >0.85 1910 1850 1880 1850 

 

 

 
Fig. 3. Chronologies (thin lines) with their sample depth (dashed lines). Red and blue lines represent EPS and Rbar data: (a) AMA; (b) KBZ; (c) BSK; 
and (d) ARC. 
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(1.573), 1970 (1.556), 1952 (1.517), 1964 (1.502), 1960 
(1.473), 1962 (1.473), 1993 (1.467), 2010 (1.456), and 
1954 (1.44), and the 10 lowest-value years appear in 2008 
(0.001), 1985 (0.137), 2000 (0.211), 1997 (0.226), 1927 
(0.249), 1991 (0.249), 1917 (0.286), 1977 (0.304), 1974 
(0.322), and 2014 (0.334). After comparing these ex-
treme-value years, two highest-value years (1970 and 
1993) and three lowest-value years (1917, 1927 and 
2000) were observed in the three chronologies. The re-
sults indicated a good coherence of extreme-values 
among these chronologies. As a result, we combined all 
the ring-width data from the AMA, KBZ, and BSK sites 
in order to establish a regional chronology (ARC) that 
was longer and more replicated.  

The ARC chronology and the depths of the samples 
are shown in Fig. 3d, and the general descriptive statistics 
are listed in Table 1. Values of standard deviation (SD) 
and mean sensitivity (MS) for the chronologies obtained 
using the ARC chronology are slightly lower than those 
of the chronologies for single sampling sites because of 
the combination of samples. The first-order autocorrela-
tion (AC1) assesses relationships between tree growth in 
a current year and previous growth. These values ranged 
from 0.396 to 0.577, and revealed that chronologies pos-
sessed low-frequency variance, which was affected by the 
lag effects of climate and tree physiology. The interseries 
correlations of the three chronologies obtained from sites 
of single sampling and the regional chronology all exceed 
0.4. These values indicated a good coherence in the tree-
growth. The ARC chronology with higher signal-to-noise 
ratios (SNR) and EPS demonstrated more climatic signals 
in the regional chronology. The reliable length of the 
ARC chronology was 167 (1850–2016) years based on 
the initial year of EPS>0.85. 

Correlation analysis and physiological mechanisms 
A strong biological lag effect was indicated by the 

high values of AC1 from 0.396 to 0.577 for the chronolo-
gies from single and composite sites (Table 1). There-
fore, the climatic data per month (1901–2015) from July 
in the previous year to October in the current year were 
applied to assess the influence of climatic factors on 
radial growth of spruces in our study area. The results of 
the correlation analysis revealed that the relationship 
between the radial growth of spruces and precipitation 
was positive in general, and that significant correlations 
appeared in July of the previous year and from March to 

July of the current year (Fig. 4). There was a negative 
correlation between the tree-ring width of spruces and the 
temperature. Generally, these chronologies had very neg-
ative correlations with the temperature at the end of the 
growing season of the previous year and in the middle of 
the growing season of the current year. Furthermore, 
almost all of monthly the positive monthly correlation 
coefficients between chronologies and PDSI from July of 
the previous year to October of the current exceeded the 
0.05 significance level. The above results demonstrated 
that moisture was the main climatic limitation on devel-
opment of spruces` tree rings in the study area. More 
precipitation at the end of the growing season of the pre-
vious year and the fast growing season of the current year 
may enhance the potential for accumulating water re-
serves in the soil, thus resulting in larger leaves (Liu et 
al., 2011), larger roots (Lebourgeois et al., 2004), and 
more nutrient in buds (Barbaroux et al., 2003). Wider tree 
rings may form in the current year if the above assump-
tions are correct. However, higher temperatures in these 
periods may increase evapotranspiration rates and en-
hance moisture stress leading to narrow rings. The tree 
growth-climate relationship of spruce trees established in 
this research is similar to that obtained in previous re-
search in Central Asia (Zhang et al., 2015; Chen et al., 
2017a). It is noteworthy that, in general, the influence of 
precipitation decreases with increased elevation, while 
the influence of temperature increases. 

The optimal temperature for evergreen conifers to 
conduct photosynthesis ranges from 10°C to 25°C. If the 
temperature falls below −3°C to −5°C or raises above 
35°C to 42°C, photosynthesis by conifers may cease 
(Wang, 2000). Fig. 2a reveals that the mean temperature 
ranged from 4.3°C to 18.3°C in April to October, and 
from −5.4°C to −4.5°C in March to November, respec-
tively. Therefore, April–October was taken as the grow-
ing season for spruces in our study area. The monthly 
NDVI data (1982–2006) from April to October were 
utilized to assess the connection between vegetation cov-
erage and tree growth (Fig. 5). Significant correlations 
were found from July to October based on a 0.05 signifi-
cance level and peaked in September. By testing various 
combinations of months, we found that the maximal 
correlation coefficient was between the ARC chronology 
and the July–October NDVI (r=0.577, p<0.01, n=25). 
The relationship between ring width and vegetation cov-
erage in the growing season for our study is similar to 

Table 2. Correlation coefficients for three chronologies over the common period of 1910–2016. 

 Original (n=107) High-frequency (n=95) Low-frequency (n=95) 
 AMA KBZ BSK AMA KBZ BSK AMA KBZ BSK 

AMA 1 0.783* 0.660* 1 0.842* 0.682* 1 0.641* 0.683* 
KBZ / 1 0.624* / 1 0.759* / 1 0.388* 
BSK / / 1 / / 1 / / 1 

 

Note: The table shows correlation coefficients. Results for the original, high-, and low-pass filtered chronologies are shown.*Significant at p<0.001. 
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that found for other species in previous studies in north-
ern China: the species include Sabina przewalskii Kom. 
and Sabina tibetica Kom. in the Tibetan Plateau (He and 
Shao, 2006; Shang et al., 2016), Pinus tabulaeformis 
Carr. in the Ortindag Sand Land (Liang et al., 2009), and 
Pinus sylvestris var. mongolica in the Greater Higgnan 
Mountains (He et al., 2005a). 

NDVI reconstruction and stability tests 
We computed the correlation coefficients between 

spruces’ growth in a radial pattern within our study area 

and various assemblages of months for the NDVI for the 
period 1982–2006, so that the most suitable season for 
reconstruction could be selected. To do this, we recon-
structed the NDVI from July to October by using of the 
regional chronology. We also used a linear regression 
model to portray the relationship between the ARC chro-
nology and the NDVI. The model is as follows:  

NJuly.–Oct.=0.359+0.061×ARC, (3.1) 

(n=25, r=0.577, R2=33.3%, R2
adj=30.4%, SE=0.017, 

F=11.489, and Durbin-Watson=1.818) 
where NJuly.–Oct. is the July–October NDVI for the 

study area and ARC refers to the regional chronology. 
The model accounts for 33.3% of the NDVI variance 
during the calibration period 1982–2006 for the ARC 
chronology. Fig. 6a shows that the reconstructed NDVI 
tracks the observations well. The results of the Leave-
one-out and Bootstrap tests (100 iterations in the recom-
putation process) revealed that values of r, R2, R2

adj, 
standard error (SE), F-value (F), and Durbin-Watson 
(D/W) are nearly equal to those of the original regression 
model (1) (Table 3). Table 4 shows statistics from the 
split-sample calibration-verification tests for the recon-
structed NDVI series. The values for reduction in error 
(RE) and coefficient of efficiency (CE) exceed or equal 0. 
Values of the product mean test (t) are positive, which 
indicating significant accuracy in the tree-ring estimates. 

 
Fig. 4. Pearson correlations between tree-ring chronologies and climatic data (precipitation, mean temperature, mean minimum temperature, mean 
maximum temperature, and PDSI). Lowercase and capitals represent months of the previous and current years, respectively. 

 

 
Fig. 5. Pearson correlation coefficients for the ARC chronology and 
monthly NDVI from April to October. J–O specifies the period from July 
to October. 
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The above results, which indicates significant skill in the 
tree-ring estimates, all demonstrate that the model (1) is 
stable and reliable. Therefore, we used model 1 to recon-
struct the NDVI around the Alatau Mountains for July to 
October during the period of 1850–2016; an average 
value of 0.418 and a standard deviation of σ=0.012 (Fig. 
6b) were obtained. 

Characteristics of the reconstruction 
The values for extreme years of the NDVI reconstruc-

tion are now listed. The 10 highest value years were 1897 

(value: 0.447), 1993 (0.442), 1924 (0.441), 1970 (0.440), 
1962 (0.440), 1994 (0.440), 1973 (0.438), 1952 (0.437), 
1852 (0.437), and 1922 (0.435), and the 10 lowest-value 
years were 1945 (0.389), 1927 (0.389), 1917 (0.390), 
1879 (0.390), 1866 (0.391), 2008 (0.393), 1944 (0.396), 
2000 (0.396), 1938 (0.398), and 1867 (0.399). It can be 
seen that the difference between the highest-value (1897) 
and lowest-value (1945) years is 0.058.  

The interdecadal variability was conspicuous. When a 
21-year moving average was applied to the reconstruction 
(Fig. 6b), three periods of dense and sparse vegetation 
coverage could be differentiated. The periods of dense 

Table 3. Verification results from the Leave-one-out and Bootstrap tests for the NDVI reconstruction. 

Statistic Calibration Leave-one-out 
Mean (Range) 

Bootstrap (100 Iterations) 
Mean (Range) 

r 0.58 0.58 (0.52–0.63) 0.57 (0.34–0.77) 
Squared multiple correlation (R2) 0.33 0.33 (0.27–0.40) 0.34 (0.12–0.60) 
Adjusted squared multiple correlation (R2adj) 0.30 0.30 (0.24–0.37) 0.31 (0.08–0.58) 
Standard error (SE) 0.017 0.017 (0.015–0.018) 0.16 (0.11–0.19) 
F-value (F) 11.45 11.06 (8.10–14.56) 13.21 (3.17–32.39) 
Durbin-Watson (D/W)  1.82 1.84 (1.60–2.05) 1.22 (0.49–1.95) 
 

 

Table 4. Statistics of split-sample calibration-verification tests for the NDVI reconstruction. 

Statistic Calibration  
(1982–1994) 

Verification  
(1995–2006) 

Calibration  
(1994–2006) 

Verification  
(1982–1993) 

Full calibration  
(1982–2006) 

r 0.67 0.41 0.44 0.68 0.58 
R2 0.43 0.17 0.19 0.46 0.33 
R2adj 0.38 / 0.12 / 0.30 
RE / 0.10 / 0.35 / 
CE / 0.09 / 0.34 / 
t / 3.01 / 3.49 / 
 

 

 
Fig. 6. (a) Comparison between the reconstructed (red line) and observed (blue line) July–October NDVI. (b) July–October NDVI reconstruction for 
the Alatau Mountains since 1850 (solid line). The thick line represents the 21-year moving average. Ten red and ten blue dots represent the lowest 
and highest value years, respectively. 
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vegetation coverage (above the mean value of the recon-
struction) were 1860–1870 (average value: 0.419), 1891–
1907 (0.421), and 1950–1974 (0.423). The sparse vegeta-
tion coverage periods (below the mean) were 1871–1890 
(0.417), 1908–1949 (0.416), and 1975–2006 (0.416). 

4. DISCUSSION 

The lowest-value years of 1917 and 1938 in the newly 
reconstructed NDVI series coincide with the historical 
documents that record a lack of rainfall in summer and 
autumn leading to a great drought occurring in the Ili 
region (Wen et al., 2006), a region near the present study 
area. In particular, a period of extreme drought occurred 
during the 1920s in a wide area of northern China, which 
is mentioned in historical records (Shi et al., 1991). Hy-
dro-climatic reconstructions based on tree rings (Liang et 
al., 2006; Gou et al., 2007) are also corroborated by the 
third lowest-value year (1917) in the NDVI reconstruc-
tion. This shows that our reconstructed NDVI series can 
capture the signals of drought disasters for the Alatau 
Mountains. 

Spatial correlation was carried out to evaluate the re-
gional significance of the ring-width based NDVI recon-
struction. The NDVI series has a correlations (>0.3) with 
the gridded PDSI data for July–October for 1901–2015 in 
a large area between approximately 40°–48°N and 68°–
82°E. The highest correlations (>0.4) appear in southern 
Kazakhstan (Fig. 7). The newly reconstructed NDVI 
series for the Alatau Mountains (NAM) were compared 
with four climatic reconstructions based on tree-ring data: 
(1) August–January standardized precipitation evapotran-
spiration index for the southeastern Kazakhstan (SKZ, 
1785–2014; Chen et al., 2017b); (2)  July–August precip-
itation for Nilka in the Ili region (PNL, 1671–2006; 
Zhang et al., 2010); (3) July–June precipitation for the 
Issyk Lake (PIL, 1756–2012; Zhang et al., 2015); and (4) 
August–April precipitation for the Aksu region (PAK, 
1396–2005; Zhang et al., 2009). The locations of these 
reconstructions are indicated in Fig. 7. There is a good 
coherence between the standardized NDVI reconstruction 
and the climatic reconstructions in the original, high-
frequency, and low-frequency domains (Fig. 8). Table 5 
shows that, although the coherence between the NAM 
and the PAK reconstructions are relatively weak, all of 
the correlation coefficients between the RIL and the other 
climatic reconstructions in the original, high-frequency 
and low-frequency domains exceed the 0.05 significance 
level in the common period of 1850–2005. The correla-

tions between the NAM and the other climatic recon-
structions weakened with the increasing north to south 
spatial distance. The best correlation relationship is be-
tween the NAM and the SKZ reconstructions and is a 
result of their proximity. The weakest correlation is be-
tween the NAM and the PAK reconstructions, because 
these areas are the furthest apart. Fig. 8a shows that the 
NDVI reconstruction and the climatic reconstructions 
from previous studies corresponded well in the common 
period. Furthermore, most of the high and low values in 
these reconstructions appeared in similar years in the 
high-frequency domain (Fig. 8b). In addition, the varia-
tion modes and long-term trends of these reconstructions 
were roughly synchronous in the low-frequency domain 
(Fig. 8c).  

To further analyze the large-scale climate anomalies 
associated with the newly developed NDVI series, two 
typical years (1993 and 2008) were investigated. As 
shown in Fig. 9a, above normal rainfall was evident 
around the Alatau Mountains, which accounts for the 
highest NDVI in 1993. An anomalous westerly wind was 
pronounced over Eurasia between 40°–60°N, which 
brought air rich in water vapor from the Atlantic Ocean, 
and the Mediterranean and Caspian Seas. As a result, a 
rainy belt was observed from Western Europe to the 
Alatau Mountains. In contrast, below normal rainfall was 

 
Fig. 7. Spatial correlation between the reconstructed NDVI series and 
gridded July–October PDSI dataset. The solid circle represents the 
July–October NDVI reconstruction, and the dashed circles represent 
the four climatic reconstructions (SKZ, PNL, PIL, and PAK) used in the 
comparison analyses. 

 

Table 5. Correlation coefficients between the NDVI and climatic reconstructions over the common period of 1850–2005. 

 Original (n = 156) High-frequency (n = 144) Low-frequency (n = 144) 
 SKZ PNL PIL PAK SKZ PNL PIL PAK SKZ PNL PIL PAK 

NAM 0.507** 0.460** 0.371** 0.197* 0.580** 0.508** 0.332** 0.189* 0.498** 0.326** 0.452** 0.190* 
 

** Significant at p < 0.01; * Significant at p < 0.05. 
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evident around the Alatau Mountains in 2008 (Fig. 9b), 
which is well represented by the associated lowest NDVI 
since the 1950s. Unlike the effects of the remarkable 
zonal water vapor transport in 1993, precipitation in the 
Alatau Mountains is normally controlled by dry air from 
high latitudes (He et al., 2005b). 

5. CONCLUSIONS 

A 167-year, regional, ring-width chronology was de-
veloped from 93 living and healthy spruces on the north-
ern slopes of the Alatau Mountains. The results of corre-
lation analyses revealed that more precipitation and lower 
temperatures in the growth season of the previous and 
current years might help to form a wider tree ring in the 
target coniferous species. Because of the coherence be-
tween ring width and vegetation coverage under the same 
water limitations, a July–October NDVI reconstruction 
for the Alatau Mountains was developed using the re-
gional chronology. The reconstruction matched the ob-
served data well, and its lowest-value years precisely 
captured drought events mentioned in historical docu-
ments. A spatial analysis and correlations with other tree-
ring based climatic reconstructions indicated that the 
newly reconstructed NDVI series was affected by large-
scale climatic oscillations. 

The preliminary study in this paper provides new 
knowledge about the variations in vegetation coverage for 
the Alatau Mountains and will be helpful in improving 
the tree-ring dataset for Central Asia. However, this study 
is limited because it is local research based on only three 
sampling areas. Thus, further studies should be carried 
out at a larger spatial scale to verify the results presented 
in this paper. 

 

Fig. 8. Graphical comparison of the 
NDVI reconstruction for the Alatau 
Mountains (black line) and four 
climatic reconstructions for Central 
Asia (SKZ: red line; PNL: blue line; 
PIL: gray line; PAK: green line). 

 

 
Fig. 9. Patterns of precipitation anomalies (shading; mm/month) and 
horizontal wind anomalies at 850hPa (vector; m/s) in (a) the high NDVI 
year of 1993, and (b) the low NDVI year of 2008. The red block indi-
cates the location of the present study. 
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