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Abstract: Heavy snowfall and extreme snow depth cause serious losses of human life and property in 
the northern Tianshan Mountains almost every winter. Snow cover is an important indicator of cli-
mate change. In this study, we developed five tree-ring-width chronologies of Schrenk spruce (Picea 
schrenkiana Fisch. et Mey) from the northern Tianshan Mountains using standard dendrochronologi-
cal methods. Correlation analyses indicated that radial growth of trees in the northern Tianshan 
Mountains is positively affected by annual maximum snow depth. This relationship was validated and 
models of annual maximum snow depth back to the 18th century were developed. The reconstruction 
explains 48.3% of the variance in the instrumental temperature records during the 1958/59–2003/04 
calibration periods. It indicates that quasi-periodic changes exist on 2.0–4.0-yr, 5.3-yr, 14.0-yr, and 
36.0-yr scales. The reconstructed series shows that maximum snow depth exhibits obvious stages 
change, the periods characterized by lower maximum snow depth were 1809/10–1840/41, 1873/74–
1893/94, 1909/10–1929/30, 1964/65–1981/82, and the periods characterized by higher maximum 
snow depth were 1841/42–1872/73, 1894/95–1908/09, 1930/31–1963/64, and 1982/83–present. The 
lower period of annual maximum snow depth during the 1920s–1930s is consistent with the severe 
drought that occurred at this time in northern China. From the 1970s to the present, the maximum 
snow depth has increased clearly with the change to a warmer and wetter climate in Xinjiang. The re-
construction sheds new light on snow cover variability and change in a region where the climate his-
tory for the past several centuries is poorly understood. 
 
Keywords: Northern Tianshan Mountains, cliamte change, maximum snow depth reconstruction, 
tree-ring, Schrenk spruce (Picea schrenkiana Fisch. et Mey). 

 
 
 
1. INTRODUCTION 

Mountain snow cover is an important water source for 
arid areas. However, large amounts of snow can lead to 
destructive avalanches, floods, traffic interruptions, or 

even the collapse of buildings (Marty and Blanchet, 
2012). The Tianshan Mountains comprise the largest 
mountain range in arid Central Asia, which is called the 
“wet island” of Central Asia. The climate of the Tianshan 
Mountains is dominated by westerly winds and it plays 
an important role in global climate change research 
(Huang et al., 2013). It is vital to understand the past 
climatic changes in this area and to explore possible in-
fluence mechanisms regarding the sustainable use of the 
regional water resources. 
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The northern slopes of the Tianshan Mountains in 
Xinjiang represent a populated area that is undergoing 
rapid development of agricultural and economic. In 
northern Xinjiang, the winters are long and cold and 
>80% of the annual precipitation is delivered as snowfall 
(Li, 1991). Most of the Tianshan Mountains are covered 
with snow in winter, and the heavy snow, snowstorms, 
avalanches, and snowmelt floods in spring can bring great 
economic losses and even threaten human survival. As an 
indicator of climatic change, snow depth is an interesting 
variable because it is dependent not only on temperature 
but also on precipitation (Beniston, 1997). Studies on the 
long-term snow cover conditions are also justified by the 
impact that the snow cover has on local climate and hy-
drology (Falarz, 2004). Snow depth is arguably the most 
basic and fundamental descriptive feature of surface snow 
cover. It provides an intuitive measure of the magnitude 
of a solid-precipitation event and it has societal im-
portance as a water resource, especially under changing 
climatic conditions (Doesken and Judson, 1997). Under-
standing the long-term trends of snow depth in the north-
ern Tianshan Mountains is particularly important for the 
local government and people, because it can provide 
basic data for accurate resource assessments, estimates of 
future hydrometeorological disasters, and information for 
the Xinjiang government regarding disaster prevention. 
However, few studies have focused on the long-term 
changes of snow depth (Beniston, 1997; Leathers and 
Luff, 1997; Laternser and Schneebeli, 2003; Falarz, 2004; 
Marty and Blanchet, 2012). In most cases, snow records 
in China are only a few decades in length, which limit 
long-term climate change research, and therefore proxy 
data are required for the research of past climate change. 
Fortunately, there are a large number of Schrenk spruce 
(Picea schrenkiana Fisch. et Mey) forests at 1700–3200 
m in the Tianshan Mountains. Previous studies have 
shown that the tree-ring growth of the Schrenk spruce, 
grown in arid and semiarid mountainous environments, is 
sensitive to climate and thus is suitable for the reconstruc-
tion of past climate change (Li et al., 2006; Zhang et al., 
2009, 2013, 2015b, 2016; Chen et al., 2011).  

Dendroclimatology is an important method for exam-
ining pre-instrumental climatic variations. Because of the 
precise dating control, annual resolution, and comparabil-
ity with instrumental meteorological data, tree-ring data 
have become increasingly valuable in disclosing the long-
term dynamics of climate in different regions of the world 
(Briffa et al., 2001; Esper et al., 2002, 2007; Palmer et 
al., 2006; Liu et al., 2009; Cook et al., 2010; Shao et al., 
2010; Büntgen et al., 2011). However, few studies (e.g., 
Woodhouse, 2003; Timilsena and Piechota, 2008; Yadav 
and Bhutiyani, 2013) have reconstructed snow cover 
using tree-ring chronologies as predictors. In this study, 
we developed five tree-ring-width chronologies for the 
northern Tianshan Mountains, analyzed tree-ring re-
sponse to snow cover and its possible physiological sig-
nificance, and reconstructed the century annual maximum 

snow depth of the northern Tianshan Mountains. Finally, 
the characteristics of the change in annual maximum 
snow depth over the past hundred years are presented. 
The purpose of this study is to understand the past centu-
ry changes of snow cover in northern Tianshan Moun-
tains, it is help for prevent and reduce the meteorological 
disaster and early warning of natural disasters. 

2. MATERIALS AND METHODS 

Study area 
The study area is located in the southwestern part of 

the Junggar Basin, and on northern slope of the Tianshan 
Mountains in Xinjiang Uygur Autonomous Region, 
northwest of China. The north and west of study area is 
close the Republic of Kazakhstan. It is a mountainous 
region that occupies a V-shaped basin between the Dzun-
garian Alatau to the northwest and the Borohoro Moun-
tains to the southwest. It has a typical continental climate 
that is dominated by westerly winds. The area is rich in 
water resources with the Ebi and Sayram lakes, and the 
Bortala and Jing rivers located on the alluvial plain be-
tween the mountains. The water resources are derived 
from orographic rain and meltwater from the mountains. 
As part of the Central Asian climate zone, the ecological 
environment is fragile and it has special status in global 
climate change research. 

Development of tree-ring chronologies 
Trees were sampled according to the standards of the 

International Tree-Ring Data Bank. The five sites were 
located in the northern Tianshan Mountains (Fig. 1, Ta-
ble 1). Samples of Schrenk spruce (Picea schrenkiana 
Fisch. et Mey) were collected from virgin forests in areas 
with the harshest conditions. Large replications of sam-
ples from the respective sites were used in this study to 
develop independent site chronologies. In all, 287 tree 

 
Fig. 1. Locations of tree-ring sampling sites and meteorological station. 
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cores from 138 trees were collected from the five sites 
and used in preparation of the chronologies (Table 1). 

All samples (cores) were air-dried, fixed to slotted 
wooden bars, and then sanded with progressively finer 
sandpaper up to 600 grit (16 μm). Tree-ring widths were 
measured using a Velmex system (Velmex Inc., Bloom-
field, NY, USA), which has an accuracy of 0.001 mm. 
The tree-ring samples were cross-dated visually and the 
quality control of the match checked using COFECHA 
software (Holmes, 1983). Each individual ring-width 
measurement series was detrended and standardized to 
ring-width indices using the ARSTAN program (Cook, 
1985). Undesirable growth trends related to age and stand 
dynamics unrelated to climatic variations were removed 
from each series during the detrending process. We com-
pared three detrending techniques to determine the best 
method: smoothing spline (fixed 67% cutoff), regional 
curve (Cook and Kairiukstis, 1990; Briffa and Melvin, 

2011), and negative exponential curve fitting with and 
without application of an adaptive power transform 
(Cook and Petersk, 1997). Following these processes, we 
obtained three types of chronology: the standard chronol-
ogy, residual chronology, and ARSTAN chronology. We 
compared the mean sensitivity, standard deviation, sig-
nal-to-noise ratio, and expressed population signal of all 
the chronologies, combined with the tree-ring-width 
response to climate, and chose smoothing spline (fixed 
67% cutoff) as the most suitable detrending method. 
Finally, we obtained five standardized chronologies (Fig. 
2). Subsample signal strength was used to assess the 
adequacy of the replication in the early years of the chro-
nology, which can ensure the reliability of the recon-
structed climate (Wigley et al., 1984). To use the maxi-
mum length of tree-ring chronologies and to ensure the 
reliability of the reconstructions, we restricted our analy-
sis to the period with subsample signal strength of at least 
0.85 (Table 1).  

Table 1. Location information and basic chronology statisticsa. 

Sampling sites Site Location 
(°N, °E) 

Elevation 
(m asl) 

Trees/Cores 
/Available cores 

Chronology Interval 
SSS>0.85 MS SD AR1 

Bayinamen BYA 44°25′, 83°05′ 1898 30/60/58 1805–2010 0.306 0.335 0.401 
Mirqik Valley MEK 45°14′, 81°26′ 2424 26/52/52 1772–2010 0.105 0.147 0.571 

Tuerhong Valley TEG 44°46′, 81°00′ 2070 27/54/45 1657–2010 0.379 0.391 0.408 
Kekesay KKS 44°44′, 81°05′ 2389 27/52/49 1647–2010 0.151 0.246 0.740 
Jipuke JPK 44°06′, 82°55′ 2422 28/69/64 1492–2004 0.241 0.243 0.329 

 

aThe details of site locations are shown in Fig 1.  
MS — mean sensitivity; SD — standard deviation; AR1 — first-order autocorrelation. 
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Fig. 2. Tree-ring width chronologies and 
sample depth from five sample sites in 
northern Tianshan Mountains. 
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Meteorological data 
Meteorological data were obtained from the China 

Meteorological Data Sharing Service System 
(http://cdc.cma.gov.cn/). Considering its proximity to the 
sampling sites, higher elevation, and length of its climate 
records, we selected snow data from the Wenquan mete-
orological station (44°58′N, 91°01′E; elevation: 1354 m). 
The snow cover parameters included annual maximum 
snow depth, duration of snow cover ≥1 cm, and duration 
of snow cover ≥10 cm from 1958/1959–2009/10, and the 
maximum snow pressure from 1986/1987–2009/2010. 
The study area has typical semiarid temperate continental 
climate, characterized by arid weather, long durations of 
sunlight, and large diurnal temperature variations. The 
annual average temperature is around 3.7–7.4°C and the 
annual precipitation is 234 mm. The trends between max-
imum snow depth and maximum snow pressure are con-
sistent with the highest values in February (Fig. 3).  

Methods  
The relationship between the tree-ring chronologies 

and snow cover data was analyzed using DENDROCLIM 
2002 (Biondi and Waikul, 2004). All statistical proce-
dures were evaluated at p < 0.05 level of significance.  

Annual maximum snow depth modeling was conduct-
ed using the transfer function approach (Fritts, 1976; 
Cook and Kairiukstis, 1990). Multiple stepwise linear 
regression was used to develop a linear model to estimate 
the dependent maximum snow depth variable from a set 
of potential tree-ring predictors. 

The calibration model was evaluated based on the var-
iance in the instrumental record explained by the model 
(R2cal). As the data set from 1958/59–2003/04 was too 
short for meaningful division into two subsets for calibra-
tion and verification purposes (Fritts et al., 1990), the 
leave-one-out cross-validation method (Michaelsen, 
1987) was used to verify our reconstruction. This method 
calibrates a model based on an iterative process in which 
each of the predictor values is omitted from the calibra-

tion period in turn and then estimated. Verification tests 
included the reduction of error and sign test (Fritts, 1976). 

In a final step, if the developed model passed the veri-
fication tests of the previous step, it was applied to the 
pre-instrumental tree-ring index series to estimate the 
long-term record of maximum snow depth. 

3. RESULTS AND DISCUSSION 

Tree growth–snow cover relationship  
Table 1 shows the first-order autocorrelations of the 

five standardized chronologies are higher, and the highest 
is >0.7. It preliminarily indicates that in the northern 
Tianshan Mountains, radial growth of Schrenk spruce 
might reflect the effect of climatic factors prior to the 
growing season. Further analysis shows significant posi-
tive correlation between radial growth of Schrenk spruce 
and snow cover parameters; the best relationship is be-
tween maximum snow depth and tree-ring chronologies. 
The correlation coefficients between the BYA chronolo-
gy and precipitation in winter is 0.392 (p < 0.01, n = 52), 
between the MEK chronology and duration of snow cov-
er ≥10 cm is 0.433 (p < 0.01, n = 52), between the JPK 
chronology and duration of snow cover ≥1 cm is 0.349 (p 
< 0.05, n = 46), between the TEG chronology and annual 
maximum snow pressure is 0.602 (p < 0.01, n = 24), and 
between the MEK chronology and annual maximum 
snow depth is 0.404 (p < 0.01, n = 52). Three correlation 
coefficients of three chronologies (MEK, TEG, and JPK) 
with annual maximum snow depth are over the 99% 
confidence level test, and the highest single correlation is 
0.404 (Table 2). Thus, the maximum snow depth might 
be the principal limiting factor affecting the radial growth 
of Schrenk spruce trees within the study area.  

Fritts (1976) suggested that climatic conditions in au-
tumn, winter, and spring prior to the growing season 
might affect ring-width growth during the growing peri-
od. Snow plays an important role in a number of envi-
ronmental and socioeconomic systems in mountain re-
gions (Barry, 1992). Similarly, snow cover also has sig-
nificant impact on the growth of trees in the mountains. 
The physiological significance of tree-ring response to 
snow cover is manifested in three ways. First, thicker 
snow cover can delay spring snowmelt, storing additional 
water for earlywood growth, which leads to a wider ring. 
Second, thicker snow cover can increase soil moisture 
content, compensating water loss caused by drought in 
spring. Water deficit in the early stages of the growing 
season suppresses rapid expansion of tracheids and cell 
division in the cambium of trees (Fritts, 1976; Akkemik, 
2003). Many studies have shown that greater snowfall 
during the non-growth season means trees might absorb 
more moisture in the early part of the growing season 
(D’Arrigo and Jacoby, 1991; Diaz et al., 2002). Third, 
thicker snow cover plays an insulating role in keeping the 
temperature constant. A higher temperature might benefit 
the radial growth of spruce trees during the growing sea-
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Fig. 3. Monthly snow cover variability of Wenquan meteorological 
station. 
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son because the growing season is advanced and there 
may be less winter damage to the shallow roots of the 
spruce trees (Liang et al., 2006; Zhang et al., 2015a).  
A study by Vaganov et al. (1999) showed that winter 
precipitation (snow cover) has a clearly positive trend 
with radial growth. Because winter precipitation shifts the 
onset of cambial activity to later dates, this leads to later 
activation of tree growth. Furthermore, the greater the 
amount of winter precipitation is, the greater its influ-
ence. Snow cover is a uniquely sensitive climate variable, 
which depends on temperature and precipitation at a 
variety of temporal and spatial scales (Marty and Blanch-
et, 2012). Tree-ring response to snow cover might indi-
cate that comprehensive and complex signals of winter 
climate affect radial tree growth. Therefore, tree-rings can 
be considered as good indicators of snow cover variabil-
ity in the northern Tianshan Mountains, which have phys-
iological significance.  

Maximum snow depth reconstruction and validation 
The correlation and response analysis showed a high 

correlation coefficient between the five standardized tree-
ring chronologies and maximum snow depth at the Wen-
quan station. Based on the results, the maximum snow 
depth was reconstructed and a transfer function designed 
as follows: 

SDmax = 5.3 × TEG + 9.3 × JPK + 26.7 × MEK +  
 8.1 × BYA − 21.5 × KKS − 11.3 (3.1) 

where SDmax is the maximum snow depth and TEG, JPK, 
MEK, BYA, and KKS are the five standard chronologies 
in the northern Tianshan Mountains. During the calibra-
tion period (1959–2004), the reconstruction tracks the 
observations well, with the explained variance of 48.3% 
(41.8% after adjustment for loss of degrees of freedom) 
of the observed maximum snow depth data. In model 
(3.1), n = 46, r = 0.695, F5, 40 = 7.5 and p <0.0001. In this 
study, the Durbin–Watson value (Durbin and Watson, 
1951) was 2.394 for n = 46, which indicates no signifi-
cant first-order autocorrelation in model (3.1). During the 

calibrated period (1958/59–2003/04), the reconstructed 
maximum snow depth data tracks the observations very 
well (Fig. 4). Thus, the reconstruction might be able to 
reveal the maximum snow depth variability over the past 
194 years in the northern Tianshan Mountains. 

The model passed all the verification tests (Table 3). 
The cross-validation test yielded a positive reduction of 
error (0.316), thus indicating the predictive skill of the 
regression model. The statistically significant sign test 
(36+, 10−, p < 0.01) and correlation (r = 0.577, p < 0.01), 
and first difference sign test (31+, 14−, p < 0.05) and 
correlation (r = 0.408, p < 0.01), between the maximum 
snow depth data and the estimates derived from the leave-
one-out method, are also indications of the validity of the 
reconstruction. Therefore, this equation can reconstruct 
the annual maximum snow depth from 1810–2004 in the 
northern Tianshan Mountains (Fig. 4). Fig. 4 also shows 
the annual maximum snow depth during the calibrated 
period from 1959–2004. 

Characteristics of maximum snow depth over the past 
two centuries 

The high-frequency variability of the maximum snow 
depth series over the past 195 yr in the northern Tianshan 
Mountains is within the range of 0.9–27.9 cm; for which 
the mean square deviation is 0.384. We obtained the low-
frequency variability of the maximum snow depth series 
using the 20-yr low-pass filter method (Fig. 4). The low-
frequency change is within the range of 8.2–21.9 cm; for 
which the mean square deviation is 0.210. The recon-
structed series shows that maximum snow depth exhibits 

Table 3. Statistical crossing-test characters of the equations reconstructed. 

 r rd z zd t RE 
Maximum snow 

depth 0.577** 0.408** 10/46** 14/45* 7.559** 0.316 
 

** — indicate significance at the 99% level of confidence. 
* — indicate significance at the 95% level of confidence. 

Table 2. Pearson Correlation between tree-ring chronologies and snow cover parameters. 

 BYA MEK TEG KKS JPK 
Maximum snow depth 

(1958/59–2009/10) 0.339* 0.404** 0.387** 0.260 0.390** 
Maximum snow pressure 

(1986/87–2009/10) 0.298 0.443* 0.602** 0.298 0.242 
Duration of ≥1 cm depth 

(1958/59–2009/10) 0.205 0.246 0.293* 0.135 0.349* 

Duration of ≥10 cm depth 
(1958/59–2009/10) 0.295* 0.433** 0.308* 0.246 0.314* 

Precipitation in winter 
(1958/59–2009/10) 0.392** 0.345* 0.075 0.375* 0.276 

 

** — indicate significance at the 99% level of confidence. 
* — indicate significance at the 95% level of confidence. 
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obvious stages change, the periods characterized by lower 
maximum snow depth were 1809/10–1840/41, 1873/74–
1893/94, 1909/10–1929/30, 1964/65–1981/82, and the 
periods characterized by higher maximum snow depth 
were 1841/42–1872/73, 1894/95–1908/09, 1930/31–
1963/64, and 1982/83–present. Because of the lack of 
studies on snow cover variability over the past 200 yr in 
the Tianshan Mountains, we compared the changes of the 
maximum snow depth with historical periods of precipi-
tation and drought. A study by Zhang et al. (2015b) 
showed that the July–June precipitation of the western 
Tianshan Mountains in 1829–1842, 1881–1892, 1916–
1928, and 1935–1982 was relatively less. These drought 
periods are remarkably consistent with the periods of 
lower maximum snow depth in our results. In addition, 
the four lower periods are consistent with the drought 
variability at the Asian summer monsoon fringe, particu-
larly the two severe drought periods (Yang et al., 2014).  

With regard to decadal changes, the decade with the 
highest maximum snow depth is the 1860s with an aver-
age value of 21.5 cm (+32.7%). The decade with lowest 
maximum snow depth is the 1920s with an average value 
of 10.2 cm (+37.4%) (Fig. 5), and this decade is con-
sistent with the drought of the 1920s in northern China. 
The study by Liang et al. (2006) showed that a severe and 
sustained drought occurred in the 1920s and early 1930s, 
which was confirmed by tree rings and a variety of histor-
ical and instrumental records including hydrological, 
meteorological, and documentary evidence from the 
semiarid and arid areas of northern China. Fang et al. 
(2012) suggested the aridity that occurred in the 1920s–
1930s was most severe in northern China. Li et al. (2006) 
showed that the late 1920s was the epoch with the most 
severe drought in the reconstruction of northern central 

China. From the 1970s to the present, the maximum snow 
depth has clearly increased with the change to a warmer 
and wetter climate in Xinjiang.  

Strong interannual variability of the maximum snow 
depth was identified in the northern Tianshan Mountains 
by Thomson (1982) using the multi-taper method. There 
are significant changes of the annual maximum snow 
depth at 2.0-yr (99%), 2.2-yr (99%), 2.8-yr (95%), 3.5–
3.8-yr (99%), 5.3-yr (95%), 14.0-yr (95%), and 36.0-yr 
(95%) cycles (Fig. 6). Most of these interannual cycles 
(5.3, 3.5–3.8, 2.8, 2.2, and 2.0 yr) in our reconstruction 
fall within the range of the El Niño Southern Oscillation 
(Allan et al., 1996). In addition, the 2–3-yr cycle that can 
also be identified in arid Central Asia (Huang et al., 
2013), is linked to variations of the westerly circulation in 
the middle troposphere, which may indicate that our 
reconstructed maximum snow depth variability might 
have some teleconnections with oscillations of the land–
atmosphere–ocean circulation systems. Furthermore, 
these high-frequency cycles can often be found in den-
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Fig. 5. Decade change of maximum snow depth in northern Tianshan 
Mountains. 

 

 

 

 

 

 

 

Fig. 4. Reconstructed annual maximum snow 
depth in northern Tianshan Mountains (1809/10–
2003/04 is shown in black. The 20-year low-pass 
filter of reconstructed is shown in blue. Observed 
maximum snow depth is shown in red line and the 
long-term reconstructed mean is shown by the 
dashed line. 
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droclimatic studies of the Tianshan Mountains (e.g., Li et 
al., 2006; Zhang et al., 2009, 2013, 2015b, 2016) and 
other arid and semiarid sites in northwestern China 
(Liang et al., 2009; Chen et al., 2011; Liu et al., 2011). 
The decadal-scale cycles of 14.0 yr falls within the range 
of the Pacific Decadal Oscillation (Minobe, 1997; Man-
tua and Hare, 2002) and Atlantic Multidecadal Oscilla-
tion (Gray et al., 2004; Mann et al., 2009). The low-
frequency peak (36-yr) is obviously consistent with peri-
odic solar activity. In terms of climatic change, cycles 
with a length of 36 yr are not new. Brückner (1890) 
demonstrated that varied climatic phenomena in different 
regions of the world show phase synchronism with cycles 
of 33–37 yr and surmised connections with solar activity. 
This suggests that the maximum snow depth variability of 
the northern Tianshan Mountains might be related to 
large-scale oscillation of the climate system.  

4. CONCLUSIONS 

We developed five tree-ring chronologies from 268 
spruce trees sampled in the northern Tianshan Mountains. 
The tree growth–snow cover responses were analyzed in 
combination with snow cover data. It was found that 
maximum snow depth is the principal limiting factor that 
affects the radial growth of Schrenk spruce trees within 
the study area. Analysis showed that tree-ring response to 
snow has physiological significance. Hence, we recon-
structed the century annual maximum snow depth for the 
northern Tianshan Mountains. This indicated that quasi-
periodic changes exist on scales of 2.0–4.0, 5.3, 14.0, and 
36.0 yr. The lower period of annual maximum snow 
depth during the 1920s–1930s is consistent with the se-
vere drought that occurred in the 1920s and early 1930s 
in northern China. From the 1970s to the present, the 
maximum snow depth has clearly increased with the 
warmer and wetter climate in Xinjiang. We suggest future 
work could investigate links with the drought mecha-
nisms of northern China when considering mechanisms 
of snow variability. 
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