
ISSN 1897-1695 (online), 1733-8387 (print)  
© 2013 Silesian University of Technology, Gliwice, Poland.  
All rights reserved. 

  

 

GEOCHRONOMETRIA 41(4) 2014: 334–341 
DOI 10.2478/s13386-013-0166-x 

 
Available online at 

www.springerlink.com 
 

ESTIMATING THE NUMBER OF COMPONENTS IN AN OSL DECAY 
CURVE USING THE BAYESIAN INFORMATION CRITERION 

JUN PENG1, ZHIBAO DONG1, FENGQING HAN2, YUANHONG HAN3 and XUELING DAI1 
1Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China 

2Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China 
3Lanzhou Center for Oil and Gas Resources, Institute of Geology and Geophysics, CAS, Lanzhou 730000, China 

 

Received 4 November 2013  Accepted 24 April 2014 

Abstract: The optically stimulated luminescence (OSL) decay curve is assumed to consist of a num-
ber of first-order exponential components. Improper estimation of the number of components leads to 
under- or over-fitting of the curve under consideration. Hence, correct estimation of the number of 
components is important to accurately analyze an OSL decay curve. In this study, we investigated the 
possibility of using the Bayesian Information Criterion to estimate the optimal number of components 
in an OSL decay curve. We tested the reliability of this method using several hundred measured de-
cay curves and three simulation scenarios. Our results demonstrate that the quality of the identifica-
tion can be influenced by several factors: the measurement time and the number of channels; the vari-
ability of the decay constants; and the signal-to-noise ratios of a decaying component. The results also 
suggest that the Bayesian Information Criterion has great potential to estimate the number of compo-
nents in an OSL decay curve with a moderate to high signal-to-noise ratio. 
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1. INTRODUCTION  

Optically stimulated luminescence (OSL) decay 
curves are fitted as the sum of a number of first-order 
exponential decaying components (Adamiec, 2005; 
Bluszcz and Adamiec, 2006; Li and Li, 2006a, 2006b). 
Many researchers have estimated the number of compo-
nents in an OSL decay curve empirically (Li and Li, 
2006b; Peng and Han, 2013). However, the number of 
components varies significantly for natural sediments 
(Jain et al., 2003; Singarayer and Bailey, 2003; Tokuyasu 
et al., 2010). Fitting a decay curve with more components 
would improve the quality of the fit, but may give rise to 
the problem of over-fitting. In contrast, under-fitting may 

occur if the curve is fitted with fewer components than is 
really needed. Because of the importance of these curves 
for determining the luminescence properties of sediment 
deposits, it is important to determine whether an objective 
method can be used to estimate the required number of 
components. This is particularly significant for fast-
component OSL dating. Checking the uncertainties of the 
fitted parameters is a simple and direct method for diag-
nosing over-fitting. A Hessian matrix with a very large 
condition number means that the model is ill-conditioned 
and that this would lead to high uncertainty of the esti-
mate. However, this simple method does not detect un-
der-fitting. Adamiec (2005) identified the number of 
decaying components using the F-statistic. Based on this 
approach, Bluszcz and Adamiec (2006) proposed a meth-
od that employs a similar but more general protocol and 
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that aims to find a global minimum for the problem under 
consideration.  

From a statistical perspective, estimating the optimal 
number of components is a model selections problem 
(Sivia, 1996). The Bayesian Information Criterion is a 
powerful tool that can be used to tackle such a problem 
(Schwarz, 1978), since it correlates the likelihood func-
tion for a model with the relevant number of parameters. 
The Bayesian Information Criterion has been applied to 
choose a reasonable number of parameters in the analysis 
of statistical age models (Galbraith, 1988; Galbraith et 
al., 1999; Galbraith and Roberts, 2012). However, when 
it comes to analysis of an OSL decay curve, it may be 
difficult to apply this approach due to at least three prob-
lems: (1) fitting an OSL decay curve with a number of 
first-order exponential components is a notoriously ill-
conditioned problem; (2) the luminescence properties 
(e.g., variations in OSL intensity and decay constants) of 
a decay curve of natural sediments behave differently 
from place to place, which further complicates the prob-
lem; and (3) the uncertainty that results from counting 
statistics would unavoidably degrade the quality of the 
data and decrease the accuracy of the estimate. In the 
present study, we investigated the feasibility of estimat-
ing the number of components in an OSL decay curve 
based on the Bayesian Information Criterion. We tested 
the applicability of this method using 624 measured de-
cay curves with variable OSL intensities. We also simu-
lated several simple scenarios to explore the influences of 
the data resolution, the OSL intensities, and decay rates 
on identifying the optimal number of components.  

2. METHODS 

For simplicity, we consider only the continuous wave 
(CW) type of OSL decay curve, although the same meth-
odology would apply to the linear modulation (LM) type 
of OSL decay curve. If we assume that the ideal OSL 
signals can be expressed as: 
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where xi represents the i-th time value (i = 1 to n), and 
[Aj] and [Bj] denote the number of trapped electrons and 
the decay constant, respectively, for each of the j = 1 to k 
components. If we further assume that photon counts 
follow a Poisson distribution: 

)(~ ii yy π  (2.2) 

where yi is the i-th observed number of counts and the 
real value of yi is denoted by iy . The likelihood function 
for the relevant parameters would then be: 
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where / means “given” (i.e., a conditional probability), 
and p{X} means “the probability of X”. If we further 
suppose that each yi is independent of the others, then the 
joint-likelihood function can be described as: 
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Combining Eq. 2.4 with Eq. 2.1, we can rewrite Eq. 
2.4 as follows: 
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If k is known in Eq. 2.5, then the optimal estimate can 
be obtained through a maximum-likelihood estimation 
method. The number of components (k) can therefore be 
estimated using the Bayesian Information Criterion. 
Schwarz (1978) defines the Bayesian Information Crite-
rion (BIC) as: 

)log(2 max nNLBIC p+−=  (2.6) 

where Lmax denotes the maximized log-likelihood func-
tion value, Np is the number of parameters, and n is the 
number of observations. Combining Eq. 2.5 and 2.6 leads 
to: 
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where ),...,2,1(, kjBA jj =  are parameters that maximize 
the value of Eq. 2.5 for a given k. Note that the coeffi-
cient of the second term on the right side of Eq. 2.7 needs 
to be modified to 2k + 1 if a constant component is added 
to account for background subtraction. The maximum-
likelihood estimation of Eq. 2.5 can be approximated 
using a weighted nonlinear least-squares method if we 
assume that the number of photons follows a normal 
distribution with a mean equal to the number of counts 
and a standard deviation equal to the square root of the 
number of counts (Bluszcz and Adamiec, 2006). In all of 
the analyses presented in this study, we performed 
weighted nonlinear least-squares fitting using a modified 
version of the decompc() function, which allows a con-
stant component to be subtracted, in the numOSL (version 
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1.1) package (Peng et al., 2013) for the R statistical soft-
ware, and the optimal number of components can be 
estimated using the BIC from integers in the interval [1, 
5]. We automatically initialized the parameters using a 
differential evolution method (Storn and Price, 1997), as 
suggested by Bluszcz and Adamiec (2006). Bearing in 
mind the possibility of bad performance of the considered 
model, application of the BIC was not direct (i.e., the 
condition of the model was also considered as a test of 
the quality of the fit). This was done based on the fact 
that the BIC does not consider the property of the model 
under consideration while fitting the OSL decay curve as 
an “ill-posed” problem. The general procedure can be 
described as finding the k value that gives the minimum 
BIC value from among the numbers of components that 
remain the model non-singular. The approach consists of 
the following steps: 
1) Set the number of components to k = 1 and fit the 

decay curve with the weighted nonlinear least-
squares method, then calculate BIC(k). 

2) Fit the decay curve with k + 1 components and test 
whether the model is nearly singular. If it is non-
singular, continue with step 3; if it is singular, con-
tinue with step 4. 

3) Calculate BIC(k + 1). If BIC(k + 1) < BIC(k), repeat 
step 2; if not, continue with step 4. 

4) Output the estimated number of components (k) and 
associated parameters and end the analysis. 

3. ESTIMATING THE NUMBER OF COMPO-
NENTS USING MEASURED OSL CURVES 

We assessed the estimates produced by the BIC 
method using measured OSL curves for two sand sam-
ples, GL1-1 and GL1-2 (Peng and Han, 2013), that were 
obtained from the southern edge of the Tengger Desert in 
northern China. The CW-OSL measurements were con-
ducted using an automated Risø TL/OSL-20 reader. De-
cay curves were obtained by stimulating a multiple-grain 
aliquot under a blue LED (λ = 470 ± 20 nm) source at 
130°C for 40 s using 250 equal-width channels. Decay 
curves that corresponded to 0 regenerative doses were 
excluded from the analysis because of their low signal-to-
noise ratio. We obtained 624 decay curves from 48 ali-
quots. Fig. 1 shows the distributions of the estimated 
decay rates (B) and constant (C) for values of k ranging 
from 1 to 4. 

Table 1 shows that the decay curve with the highest 
OSL intensity required the most components to optimize 
the fitting. This is because a dim decay curve has a low 
signal-to-noise ratio, and hence cannot be fitted with 
many components, whereas a bright decay curve contains 
more information and thus needs more components to 
improve the quality of the fitting (Adamiec, 2005). Be-
cause the estimated constants in Fig. 1 are comparable to 
the background intensities listed in Table 1 (after ac-
counting for their standard deviations), the results are 

reliable. However, the estimated constants in Fig. 1 were 
significantly larger than the expected background from a 
reader. This suggests that the estimated constant should 
be regarded as the sum of the slower components and the 
background rather than solely as the background. It also 
suggests that the measured curves contained one or more 
slower components and that a stimulation time of 40 s 
was not enough to completely eliminate these compo-
nents (see Section 4 for details).  

4. SIMULATED SCENARIOS 

The potential to identify the optimal number of com-
ponents can be affected by several factors (Bluszcz and 
Adamiec, 2006). These factors can be categorized as 
follows:  
1) Controllable factors: These are factors that the re-

searcher can control, and include the stimulation time 
and the number of channels used in the measure-
ment. The relationship of the decay constants to the 
total measurement time (Bluszcz and Adamiec, 
2006) can strongly affects the correctness of the es-
timate, as we showed in Section 3. If the mean life of 
a decaying component is shorter than the measure-
ment time (i.e., its intensity decreases to a negligible 
level at the end of the stimulation), then it may be 
isolated correctively from the measured curve. Using 
a large number of channels improves the quality of 
the fitting (Steffen et al., 2009) and should also in-
crease the reliability of the identified number of 
components.  

2) Sample-dependent factors: These factors relate to the 
inherent properties of the sample material, and in-
clude the OSL intensities of the decaying compo-
nents and the difference between decay constants. 
The quality of the estimate would be decreased for a 
dim sample that has a low signal-to-noise ratio. Sin-
gle grains of quartz from natural samples vary signif-
icantly in their OSL intensity and sensitivity (Duller 
et al., 2000; Rhodes, 2007; Duller, 2008; Fitzsim-

Table 1. A summary of the average OSL intensities and the average 
background intensities for decay curves with k values ranging from 1 to 
4 and a sample size of N. The OSL intensity was calculated using the 
sum of the counts from the first two channels and the background 
intensity was calculated using the average counts from the last 20 
channels. Note that the calculation of the background intensity differs 
from that in the Analyst software (Duller, 2007). In order to allow a 
direct comparison with the estimated constant, the background intensi-
ty was not multiplied by the number of integration channels used to 
calculate the net OSL signal. Values are mean ± SDmean. 

k N OSL intensity 
(counts/0.16 s) 

Background intensity 
(counts/0.16 s) 

1 22 775.50  ±  82.31 111.80  ±  4.17 
2 232 1701.28  ±  87.47 128.57  ±  1.43 
3 345 4598.00  ±  141.64 187.12  ±  3.64 
4 25 9497.20  ±  1338.98 243.82  ±  14.00 
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mons, 2011). Variations also exist in OSL intensities 
between decaying components within a decay curve 
(Adamiec, 2000). The variation in intensity of a mul-
tiple-grain aliquot that consists of a number of quartz 
grains is more complicated, as it depends on the 
number of grains and the homogeneity of intensities 
of the grains (Adamiec, 2005; Rhodes, 2007). Only 
one component can be isolated when two decay con-
stants are indistinguishable from each other. Fortu-
nately, the decay constants of measured curves from 
natural samples are usually well distinguished from 
each other (Jain et al., 2003; Singarayer and Bailey, 
2003; Tokuyasu et al., 2010; the present study). 

3) The uncertainty that arises from counting statistics. 
The variance for photon counts is over-dispersed (Li, 
2007) to different degrees compared with the as-
sumed Poisson variance, depending on the reader 
system employed for the measurement (Adamiec et 
al., 2012). A counting system with a larger degree of 

over-dispersion (i.e., a big correction factor) would 
produce noisier data, and the influence of that noise 
would be especially significant for dim samples.  

The cumulative effect of the above mentioned factors 
on the quality of the estimate can be complicated. For 
example, Bluszcz and Adamiec (2006) found that four 
components could be isolated properly only under very 
special circumstances (i.e., bright decay curves with easi-
ly distinguishable decay rates) with a 100-s measurement 
and 255 equal-width channels. This means that if the 
brightness of a decay curve is not sufficiently high or if 
the decay constants are not sufficiently distant, then a 
longer stimulated time and more channels would be 
needed to ensure that the estimate is correct.  

To examine these factors, we developed three simple 
scenarios (each simulated 5,000 times) to assess the in-
fluences of the first two kinds of factors on the correct-
ness of the estimate. In Scenario 1, we investigated the 
possible influences of the measurement time and the 

 
Fig. 1. Distributions of the estimated decay rates (Bi) and constants (C, equivalent to the background intensity) for k = 1, 2, 3, and 4. n is the number of 
decay curves, μ and σ denote the average and standard deviation of a decay rate or a constant, respectively. The density plot was smoothed using a 
Gaussian kernel. 
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number of channels on the resultant estimate. In Scenario 
2, we investigated the effect of signal intensity (relative 
to the background level). In Scenario 3, we explored the 
influence of variation in the decay constants on the result. 
Decay curves were synthesized with three components 
(k = 3) and were randomized using a Poisson distribution 
generator. The background was taken to be 40 in all sce-
narios. The scenarios were simulated using the following 
parameter values: 

Scenario 1: The decay rates were set equal to the es-
timated average decay constants of the 345 measured 
decay curves that had an estimated number of compo-
nents equal to 3 (Fig. 1). The three numbers of trapped 
electrons were set equal to 1,000. The number of chan-
nels was generated from integers in the interval [10, 300] 
with equal probability. The total measurement time (s) 
was generated uniformly from the interval (5, 50).  

Scenario 2: The decay rates were set equal to the es-
timated average decay constants of the 345 measured 
decay curves that had an estimated number of compo-

nents equal to 3 (the same as in Scenario 1). The num-
bers of trapped electron was generated uniformly and 
independently from the space (100, 1000). The number of 
channels and the simulation time were fixed at 250 and 
40 s, respectively.  

Scenario 3: The decay rates were generated with a 
truncated normal distribution (all values within 2σ of the 
mean), with the mean values and standard deviations 
equal to the estimated means and standard deviations of 
the 345 measured curves that had an estimated number of 
components equal to 3. That is, only decay constants that 
were generated within two standard deviations of the 
mean were accepted. Note that the lower limit of the 
smallest decay rate (with an average of 0.06 and a stand-
ard deviation of 0.04) was forced to zero. The three num-
bers of trapped electrons were set equal to 1,000 (the 
same as in Scenario 1). The number of channels and the 
measurement time were fixed at 250 and 40 s, respective-
ly (the same as in Scenario 2). 

 
Fig. 2. Distributions of the estimated decay rates (Bi) and constant (C, equal to the background intensity) for simulations that have a correctively 
identified number of components (k = 3) in the three scenarios. n is the number of decay curves, μ and σ denote the average and standard deviation 
of a decay rate or a constant, respectively. 
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A summary of the estimated numbers of components 
(k) for the three scenarios is listed in Table 2. 

Table 3 shows that the smallest decaying component 
may not be recognized and that the background is likely 
to be overestimated if the number of components is un-
derestimated. Fig. 2 shows the distributions of the esti-
mated parameters (decay rates and background constants) 
with an estimated number of components set to 3 for the 
three scenarios. Both the estimated decay constants and 
the backgrounds are comparable to those used for the 
simulation. Fig. 3 to Fig. 5 show the resulting estimates 
for the three scenarios.  

Scenario 1 results in a success rate (i.e., the number 
of simulations with the correct number of components, 
k = 3) of 60.2% (Table 2). Fig. 3 demonstrates that only 
a single component can be recognized if few channels 
(≤ 25 or so) are adopted. Simulations with an identified 
number of components equal to 2 are likely to fall into 
two regions: one with fewer than 50 channels and one 
with a measurement time shorter than 10 s. The estimate 
is characterized by considerable uncertainty if the number 
of channels lies between 50 and 100 or if the measure-
ment time lies between 10 and 30 s. This indicates that a 
longer simulation time or a finer data resolution alone 
does not necessarily ensure that the estimate is correct. 
Unsurprisingly, the quality of the estimates improves 
remarkably with a prolonged measurement time and an 
increased number of channels. It is interesting to note that 
the OSL intensity for the smallest decay rate (0.06) de-
creases to 54.9 and 16.5% of its initial level at measure-
ment durations of 10 and 30 s, respectively. A short 
measurement time keeps the OSL intensity from com-
pletely depleting, and the influence of this effect would 
be especially significant for the recognition of slower 
components. This may also explain why the estimated 
constants for an estimated number of components equal 
to 3 or 4 in Fig. 1 (Table 1) using the measured decay 
curves were significantly larger than the expected back-

ground for a reader: if we assume that a bright decay 
curve contains a slower component (with a decay con-
stant smaller than about 0.06), then it may not be possible 
for its intensity to decrease to a negligible level under a 
40-s measurement duration. 

The results of Scenario 2 (Table 2) show that the 
proportion of successful estimates was 91.3% if the decay 
constants are distinguishable and the data has a moderate 
resolution. The quality of the estimate is strongly related 
to the smallest number of trapped electrons (Fig. 4). 
Many of the estimated numbers of components are 2 
(k = 2) if the smallest number of trapped electrons is less 
than 150 or so, and a correct estimate (k = 3) is generally 
obtained when the smallest number of trapped electrons 
exceeds 500. If the intensity of a decaying component is 
not significantly higher than the background level, then it 
is not likely to be isolated from the curve. Scenario 2 
indicates that the BIC is more applicable to decay curves 
with moderate to high OSL intensities. For dim decay 
curves of samples with a low signal-to-noise ratio, this 
approach is likely to underestimate the number of com-
ponents. 

The proportion of successful estimates for Scenario 3 
was 87.8% (Table 2). Fig. 5 shows that the number of 
components is very likely to be underestimated (k = 2) if 
the smallest decay rate is less than 0.04 or so. Simulations 
that result in k = 2 also appear if the difference between 
the two decay constants is very small (not distinguisha-
ble). Under a measurement time of 40 s, the OSL intensi-
ty decreases to only 20.2% of its initial level with a decay 
constant of 0.04. The number of correct estimates in-
creases to 4735 (from 4391) for an additional scenario 

Table 3. Estimated decay rates (Bi) and constants (C, equal to the 
background intensity) for simulations that underestimated the number 
of components (k = 2) for the three scenarios. Values are mean 
±SDmean. 

Scenario B1 B2 C 
1 4.19 ± 0.06 0.60 ± 0.01 60.97 ± 0.43 
2 5.99 ± 0.06 0.86 ± 0.01 42.37 ± 0.09 
3 6.45 ± 0.05 0.94 ± 0.02 48.69 ± 0.18 

 

 

Table 2. A summary of the estimated values of k for the three scenari-
os. N is the total numbers of simulations, and Fail denotes the number 
of failed simulations. 

Scenario N Fail k = 1 k = 2 k = 3 k = 4 
1 5000 1 224 1763 3011 1 
2 5000 0 1 431 4566 2 
3 5000 0 0 607 4391 2 

 

 

 
Fig. 3. The estimated number of components (k) for Scenario 1. The 
white triangles, grey diamonds, blue crosses, and red star represent 
the results for simulations with k = 1, 2, 3, and 4, respectively. 
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(not presented) in which the measurement time was set to 
80 s. Scenario 3 can be compared with Scenario 1, 
which has three fixed decay rates but a variable meas-
urement time. Both scenarios suggest that the ability to 
recognize a slow component correctively from the decay 
curve depends on whether it is possible for its intensity to 
decline to a negligible level within the stimulation time. 
Thus, for a decaying component with a very small decay 
constant, it may be too time-consuming to allow its inten-
sity to decrease to a negligible level so that it can be iso-
lated. 

5. DISCUSSION AND CONCLUSIONS 

From the three scenarios described in Section 4, it can 
be concluded that the measurement time, the number of 
channels, the intensities of the decaying components, and 
variations of the decay rates can potentially affect the 
estimation of the optimal number of components using 
the BIC approach. To decrease the signals of the slower 
components to negligible levels, it is necessary to use a 
larger number of channels and a longer stimulation time. 
A component may not be isolated correctively from the 
decay curve if its mean life is longer than the stimulation 
time, as we observed in Scenario 1 and Scenario 3. The 
problem of an upper limit for the number of channels in 
the Risø instrument can be solved by conducting a meas-
urement in multiple stages (Adamiec, 2005). The mean 
life of a decaying component is determined by its decay 

constant. The smallest reported decay constant (S4) is 
about 0.0003 under stimulation by blue light with a wave-
length of 470 nm (Jain et al., 2003), which means that to 
identify the component correctly, a very long stimulation 
time is required. It has been observed that the variation of 
the decay constants depends on the stimulation wave-
length (Singarayer and Bailey, 2003; 2004). Stimulation 
using light with a shorter wavelength accelerates the 
decrease of OSL intensity of a decaying component, but 
the differences between decay constants also decrease. 
Consequently, it is difficult to achieve reasonable meas-
urement conditions (for the stimulation wavelength, total 
measurement time, and number of channels) that can both 
decrease the measurement time and still obtain reliable 
estimates, particularly since the optimal settings may vary 
among samples. 

The signal-to-noise ratio of a decay curve (or of a de-
caying component) is determined by its OSL intensity, 
the background, and the uncertainty of photon counts. 
The results of Scenario 2 demonstrate that the intensity 
of a decaying component needs to significantly exceed 
the background in order to suppress the noise sufficiently 
to enable correct isolation from the decay curves. Thus, 
the BIC approach may be more applicable to decay 
curves that have a moderate to high signal-to-noise ratio. 
The variation in OSL photon counts are dispersed more 
than would be expected from the assumed Poisson distri-
bution (Li, 2007), and the degree of uncertainty depends 
on the correction factor (Adamiec et al., 2012). If the 
correction factor is significantly larger than 1, then it may 

 
Fig. 4. The estimated number of components (k) for Scenario 2. 
Values on the x-axis are the simulated smallest number of trapped 
electrons. Values on the y-axis are randomized with a uniform genera-
tor from the space (0, 1). The white triangle, grey diamonds, blue 
crosses and red stars represent simulations with k = 1, 2, 3, and 4, 
respectively. 

 

 
Fig. 5. The estimated number of components (k) for Scenario 3. The 
smallest decay rate is plotted against the difference between the 
second-largest decay rate (B2) and the smallest decay rate (Bmin). The 
grey diamonds, blue crosses and red stars represent simulations with 
k = 2, 3 and 4, respectively. 
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be more feasible to use a Normal distribution to construct 
the likelihood function instead of the Poisson distribution 
used in Eq. 2.3. 

In this study, we investigated the potential of using 
the BIC method to estimate the optimal numbers of com-
ponents in an OSL decay curve. The simulated scenarios 
suggest that the quality of the estimation can be affected 
by several factors. In summary, there are two major limi-
tations for applying the BIC to estimate the optimal num-
ber of components for a decay curve: (1) The signal-to-
noise ratio of a decaying component may affect the cor-
rectness of the component identification, and an incorrect 
estimate is likely to be obtained for a dim sample; thus, 
the signal-to-noise ratio should be significantly greater 
than the background level to avoid this problem. (2) The 
mean life of a decaying component is determined by the 
magnitude of its decay constant, and slower components 
(i.e., with a smaller decay constant) will need longer 
measurement durations (and possibly more channels) to 
ensure that the component can be isolated correctly from 
the decay curve. 
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