Intensive low-temperature tectono-hydrothermal overprint of peraluminous rare-metal granite: a case study from the Dlhá dolina valley (Gemericum, Slovakia)

KAREL BREITER¹, IGOR BROSKA² and PAVEL UHER³

¹Institute of Geology, Czech Academy of Sciences, v.v.i., Rozvojová 269, CZ-16500 Praha 6, Czech Republic; breiter@gli.cas.cz
²Geological Institute of the Slovak Academy of Sciences, Dúbravská 9, 840 05 Bratislava, Slovak Republic; geolbros@savba.sk
³Department of Mineralogy and Petrology, Faculty of Natural Sciences, Comenius University, Mlynská dolina G, 842 15 Bratislava, Slovak Republic; puher@fns.uniba.sk

(Manuscript received June 4, 2014; accepted in revised form December 10, 2014)

Abstract: A unique case of low-temperature metamorphic (hydrothermal) overprint of peraluminous, highly evolved rare-metal S-type granite is described. The hidden Dlhá dolina granite pluton of Permian age (Western Carpathians, eastern Slovakia) is composed of barren biotite granite, mineralized Li-mica granite and albitite. Based on whole-rock chemical data and evaluation of compositional variations of rock-forming and accessory minerals (Rb-P-enriched K-feldspar and albite; biotite, zinnwaldite and di-octahedral micas; Hf-(Sc)-rich zircon, fluorapatite, topaz, schorlomite tourmaline), the following evolutionary scenario is proposed: (1) Intrusion of evolved peraluminous melt enriched in Li, B, P, F, Sn, Nb, Ta, and W took place followed by intrusion of a large body of biotite granites into Paleozoic metapelites and metarhyolite tuffs; (2) The highly evolved melt differentiated in situ forming tourmaline-bearing Li-biotite granite at the bottom, topaz-zinnwaldite granite in the middle, and quartz albitite at the top of the cupola. The main part of the Sn, Nb, and Ta crystallized from the melt as disseminated cassiterite and Nb-Ta oxide minerals within the albitite, while disseminated wolframite appears mainly within the topaz-zinnwaldite granite. The fluid separated from the last portion of crystallized magma caused small scale greisenization of the albitite; (3) Alpine (Cretaceous) thrusting strongly tectonized and mylonitized the upper part of the pluton. Hydrothermal low-temperature fluids enriched in Ca, Mg, and CO₂ unfiltered mechanically damaged granite. This fluid-driven overprint caused formation of carbonate veinlets, alteration and release of phosphorus from crystal lattice of feldspars and Li from micas, precipitating secondary Sr-enriched apatite and Mg-rich micas. Consequently, all bulk-rock and mineral markers were reset and now represent the P-T conditions of the Alpine overprint.

Key words: rare-metal granite, low-temperature overprint, Western Carpathians, Slovakia.

Introduction

Huge number of ore-bearing granitic systems of different geochemical types (S-, A-, I-type) have been described through the world and many genetic models and strategies for the detection of hidden Sn-W and Ta-bearing mineral deposits were proposed (Beus & Zalashkova 1962; Koval 1975; Kovalenko & Kovalenko 1976; Frolov 1978; Taylor & Strong 1985; Tischendorf et al. 1989; Lehmann 1990; Štěmprok 1993; Sehlmann et al. 1994; Štěmprok et al. 1994; Haapala 1995; Breiter et al. 1999; Jarchovský 2004; Bastos Neto et al. 2009; Káster 2009; Solomovich et al. 2012). The majority of ore-bearing objects examined in detail are preserved in their “primary” high-temperature magmatic to early hydrothermal stage which involves magmatic crystallization and the complex of immediately following relatively high-temperature “autometasomatic” processes, like feldspatization and greisenization. Sn-W granite-related mineral deposits/occurrences which underwent HP-HT (high pressure—high temperature) regional metamorphism have only rarely been described. The examples include Cetoraz (Němec & Páša 1986) and Kovárová near Nedvědice (Losos & Vižda 2006), both in the Moldanubian block of the Bohemian Massif, Czech Republic.

In this study, a unique case of LT (low-temperature) metamorphic (tectono-hydrothermal) overprint of ore-bearing Li, P, F, Sn, W, Nb, Ta-rich, rare-metal S-type granite is described. The hidden Permian granite occurring in the Dlhá dolina valley (Western Carpathians, Gemeric Superunit, eastern Slovakia) underwent intensive Alpine (Cretaceous) overprint (Radvanec et al. 2004; Petrasová et al. 2007). However, the chemical composition of the rock-forming and indicative accessory minerals from the Li-bearing granites discovered by drilling in 1980 located in Dlhá dolina are still insufficiently characterized (Dianiška et al. 2002). The neighbouring Li-bearing granites from the Surovec body and Vrchsůľová contain Li-rich phengitic mica which was formed during Alpine metamorphism from primary zinnwaldite series and muscovite (Petrik et al. 2014). We evaluate compositional variations of the rock-forming and accessory minerals in the context of bulk-rock vertical chemical zoning of the Dlhá do-лина granite body, in comparison with a wide range of worldwide rare-metal granites, as important potential sources of critical metals, such as Sn, Nb, Ta, Li and W.
Geological setting and sampling

Geological background

Within the Western Carpathians, the rare-metal granites are developed only in the Gemeric Superunit as so-called specialized S-type granites due to their special ore-bearing, Li-Sn-W-Nb-Ta mineralization (Uher & Broska 1996). The first outcrop of tin mineralization in the granites was detected near the Hnilec village (e.g. Baran et al. 1970, 1971; Drnžíková et al. 1975). Hidden P, F, Li, Nb, Ta, Sn-rich granite represents a strongly fractionated small granite pluton composed of barren biotite granite, mineralized Li-mica granite and albite. The granite was discovered in the Dlhá dolina valley close to the village of Gemerská Poloma (Fig. 1) on the basis of heavy mineral prospection (Tréger & Matula 1977). About twenty inclined exploration boreholes were realized to recognize the shape and composition of the pluton (Malachovský et al. 1983, 1992). Among them, the 912.9 m long hole DD-3 was the deepest and this work describes the main geochemical findings from this drillhole.

The Dlhá dolina pluton was emplaced within the intensively folded Lower Paleozoic volcano-sedimentary complex of the Vlachovo Formation, metamorphosed in the greenschist-facies during Variscan orogeny (Carboniferous). Moreover, the granites and metamorphic rocks were overprinted by Alpine (Cretaceous) regional metamorphism, which reached ~600 to 700 MPa and ~400 °C (Petrasová et al. 2007). The country rocks composed mainly of phyllites, metarhyolites and their metapyroclastic equivalents as well as layers or lenses of coarse-grained metadolomites and strongly steatitized magnesites with a talc deposit near Gemerská Poloma (Kilik 1997; Petrasová et al. 2007; Vozárová et al. 2010). The U-Pb SHRIMP dating of zircon from the metamorphosed rhyolitic rocks of the Vlachovo Formation gave Late Cambrian age (494±1.6 Ma — Vozárová et al. 2010). According to the drilling survey (Malachovský et al. 1992), the hidden Dlhá dolina granite pluton forms a NE-SW
oriented, 2 km long and 200 to 1000 m wide granite body (dimensions at sea level). The actual shape of the pluton is determined through multiple NE-SW trending, to the SE inclined, local Alpine thrusting. The original upper contact of the pluton was probably generally flat with two cupolas with diameters of about 500 m rising about 200 m above the entire pluton. The SW-cupola, cut by the borehole DD-3 (Fig. 2), had more steep contacts and its upper part was filled by albite, while within the more flat-shaped NE cupola only mild greisenization took place (Malachovský et al. 1992).

The age of the granite intrusion is probably similar to that of the nearest outcropping Hnilec granite body, which is interpreted on the basis of zircon U-Pb dating of granites (Poller et al. 2002) and Re-Os in molybdenite dating of Sn-W-Mo mineralization (Kohút & Stein 2005) as Late Permian (~260 to 250 Ma)

Sampling and description of granites

We studied samples from the core of the deepest DD-3 borehole located in the Dlhá dolina valley at an altitude of 800 m above sea level, 1.8 km to the NW from the Volovec hill (1212 m a.s.l.) (Fig. 1). Each sample for chemical analysis (Table 1) consisted of several fragments (2—6 pieces, 3—5 kg in the whole) from the macroscopically homogeneous section of the core. Polished thin sections were prepared from the most typical rock pieces. The pluton is composed of two co-magmatic constituents: the deeper suite of barren biotite granites, and the upper suite of highly fractionated, rare-metal Li-mica granites and quartz albite.

The deeper intrusive suite (biotite granites)

1. Distinctly porphyritic biotite granite in the depth of 880 to 913 m is grey coloured, composed of phenocrysts of K-feldspars (up to 3 cm) and quartz (up to 1 cm) in fine-grained groundmass of K-feldspar, albite (Ab80), quartz, and biotite, mostly altered to a mixture of chlorite and phengitic mica. Zircon, apatite, ilmenite, rutile and tourmaline are characteristic accessory mineral phases. Many tectonic planes are covered by secondary chloride and phengitic muscovite.

2. Slightly porphyritic biotite granite in the depth of 720 to 880 m is pink-coloured and composed of phenocrysts of twinned K-feldspars (up to 15 mm) and quartz (up to 8 mm) in medium-grained groundmass consisting of subhedral K-feldspar, albite (An80), quartz and partly chloritized biotite. The typical accessory minerals comprise apatite, zircon, schorl, tourmaline and almandine garnet.

The upper intrusive suite (Li-mica granites)

3. Li-biotite granite with tourmaline (hereinafter tourmaline granite) forms the lower part of the ore-bearing intrusion in the depth of 620 to 720 m. This is grey, coarse to medium grained (3—8 mm) leucogranite, composed of albite (An80), K-feldspar, quartz and Li-Fe mica. Black tourmaline (schorl) forms common disseminated grains (<1 mm) and occasionally aggregates up to 15 mm in size. The K-feldspar locally forms phenocrysts up to 12 mm in size. Accessory phases are apatite, zircon, monazite, xenotime, wolframite, wolframinolite, columbite, cassiterite, uraninite, thorite, goyazite, fluorspar, etc. Upwards the tourmaline granite gradually changed into topaz granite.

4. Zinnwaldite granite with topaz (hereafter topaz granite) forms the medium part of the intrusion at the depth of 554 to 620 m. This part of the granite cupola was affected with strong deformation and metasomatism and only the domain at the depth of ca. 575 to 590 m is preserved in a nearly primary shape. The granite is light grey to white in colour, fine- to medium-grained and leucocratic, composed of albite (An80), P-enriched K-feldspar, snow-ball textured quartz, and zinnwaldite. Zircon, apatite, fluorspar, monazite, xenotime, Nb-rich wolframite (mainly ferberite), columbite-group minerals, W-rich ixiolite-like phase, ilmenite, cassiterite, uraninite, and Bi-sulfosalts occur among the accessory minerals. Some discontinuity planes are coated with fluorite. The uppermost part of this unit (in depth of 555 to 575 m) is strongly mylonitized.

5. Quartz albite to albite granite (hereinafter albite granite) forms the uppermost part of the cupula at the depth of 454 to 554 m. This rock type is usually hololeucocratic, fine- to medium-grained, composed of albite (An80), quartz and K-feldspar in highly variable amounts (Ab>Qtz>>Kfs). The modal content of albite varies in the range 50—90 vol. %, mostly 70—90 vol. %. In some parts, apatite and/or muscovite are present as major constituents. Intercalations of K-feldspar- and mica-enriched facies in the depth of 490 to 495 m approach the composition of topaz granite. Some parts of the albite body were silicified and these quartz (+apatite) enriched domains were originally described as “greisens” (Malachovský et al. 1992). The genesis of these quartz-rich rock and real extension of high-temperature metasomatism (+greisenization) remains questionable, due to strong mylonitization. In zones of intensive mylonitization, feldspars were replaced by a young generation of quartz and phengitic mica. Disseminated cassiterite, Nb-Ta oxide minerals (ferrocolumbite to manganocolumbite, Nb-Ta-rich rutile) and U-phases (uraninite, brannerite) were found through the whole albite body without specific relation to the silicified areas.
Table 1: Studied samples from the borehole DD-3 Dlhá dolina.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Depth (m)</th>
<th>Unit Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3626</td>
<td>459.0–461.0</td>
<td>Upper intrusive suite, albrites</td>
</tr>
<tr>
<td>3627</td>
<td>471.2–473.4</td>
<td>Quartz albite</td>
</tr>
<tr>
<td>3628</td>
<td>487.0–489.0</td>
<td>Slightly silicified albite</td>
</tr>
<tr>
<td>3629</td>
<td>489.0–490.5</td>
<td>Strongly silicified (greisenized) and mylonitized albite</td>
</tr>
<tr>
<td>3630</td>
<td>504.2–507.7</td>
<td>Apatite-rich albite</td>
</tr>
<tr>
<td>3631</td>
<td>559.0–561.7</td>
<td>Mylonitized albite</td>
</tr>
<tr>
<td>3632</td>
<td>569.8–574.0</td>
<td>Magnetite</td>
</tr>
<tr>
<td>3633</td>
<td>577.4–582.4</td>
<td>Magnetite</td>
</tr>
<tr>
<td>3634</td>
<td>594.9–597.8</td>
<td>Magnetite</td>
</tr>
<tr>
<td>3635</td>
<td>607.9–611.4</td>
<td>Magnetite</td>
</tr>
<tr>
<td>3636</td>
<td>627.4–633.9</td>
<td>Magnetite</td>
</tr>
<tr>
<td>3637</td>
<td>657.9–664.0</td>
<td>Magnetite</td>
</tr>
<tr>
<td>3638</td>
<td>681.6–691.5</td>
<td>Magnetite</td>
</tr>
<tr>
<td>3639</td>
<td>783.3–787.7</td>
<td>Upper intrusive suite, Li-mica granites</td>
</tr>
<tr>
<td>3640</td>
<td>870.2–873.8</td>
<td>Upper intrusive suite, Li-mica granites</td>
</tr>
<tr>
<td>3641</td>
<td>908.2–910.9</td>
<td>Upper intrusive suite, Li-mica granites</td>
</tr>
</tbody>
</table>

Analytical methods

Whole-rock analyses

The major element analyses were performed by wet technique at the Czech Geological Survey, Praha. The control analyses of the international whole-rock reference materials yield a total error (1-sigma) of ±0.5 %. Trace element analyses were obtained in the ACME Labs, Vancouver, using ICP-MS method after melting with lithium borate.

Cathodoluminescence (CL)

The CL images of the selected samples were obtained using a microscope HC2-LM (Lumic), accelerating voltage 14 kV, and current density 10–40 μA/mm². The images were captured with an Olympus C-5060 digital camera (setting: ISO 400, exposure time 1–10 sec) at the Department of Geological Sciences, Masaryk University, Brno, Czech Republic.

EMPA analyses of minerals

Silicate minerals and apatite were analysed using a Cameca SX100 electron microprobe in the Geological Institute, Czech Academy of Science in Prague, at an accelerating voltage and beam current of 15 kV and sample current of 2 µm. The CL images of the selected samples were obtained using a microscope HC2-LM (Lumic), accelerating voltage 14 kV, and current density 10–40 µA/mm². The images were captured with an Olympus C-5060 digital camera (setting: ISO 400, exposure time 1–10 sec) at the Department of Geological Sciences, Masaryk University, Brno, Czech Republic.

Whole-rock geochemistry

Typical whole-rock chemical analyses are shown in Table 2. Contents of some elements and their relations are visualized in Fig. 3.

Both intrusive suites have different geochemical characteristics. The lower suite of biotite granites, although variable in texture, is chemically homogeneous. It is slightly peraluminous (ASI=1.1) and alkaline (75.0–75.6 wt. % SiO₂, 12.2–13.1 wt. % Al₂O₃, 0.6 wt. % CaO, 2.8–3.2 wt. % Na₂O, 4.8–5.3 wt. % K₂O) with low contents of fluxing elements (about 0.01 wt. % Li₂O, 0.12–0.14 wt. % P₂O₅, 0.2 wt. % F). The contents of trace elements (425–459 ppm Rb, 20–31 ppm Sr, 10–11 ppm Nb, 24–30 ppm Sn, 73–93 ppm Zr, 21–30 ppm Ce and 24–30 ppm Y) are comparable with other biotite and two-mica granites in the Gemeric Superunit, especially in its western part (Hnilec area – Broska & Uher 2001).

The upper ore-bearing intrusive suite as a whole shows a much higher grade of geochemical specialization. In comparison with the foregoing biotite granites, the Li-mica granites are depleted in Si, Ti, Fe, K, Zr, Y, REE, and enriched in Al, Na, Li, P, F, Cs, Ga, Nb, Rh, Sn, Ta, and W. The contents of Fe, Mg, Ca, Ba, Sr, U, and Th are scattered and strongly influenced by late processes. Going from the lower tourmaline- to the upper topaz-bearing facies, the content of Si decreases (73 to 71 wt. %), while contents of other index elements increase: P (0.3 to 0.6 wt. % P₂O₅), F (0.5 to 1.5 wt. % F), Li (0.05 to 0.3 wt. % Li₂O), Nb (22 to 63 ppm), and W (8 to 82 ppm).

Abititite in the uppermost part of the cupola is rich in Na (up to 9.4 wt. % Na₂O), Ga (ca. 50 ppm), Sn (400–900 ppm), Ta (40–95 ppm) and poor in K (0.5–1.8 wt. % K₂O), F (ca. 0.1 wt. %), and Rb (87–118 ppm). Secondary processes (silification, monilization, sericitization, carbonatization) are
Table 2: Bulk-rock chemical analyses of studied granitoids (wt.%, trace elements in ppm).

<table>
<thead>
<tr>
<th>Rock</th>
<th>Quartz albite</th>
<th>Silicified and mylonitized albite</th>
<th>Mylonitized topaz granite</th>
<th>Topaz granite</th>
<th>Tourmaline granite</th>
<th>Biotite granite</th>
<th>Porphyritic biotite granite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>3626</td>
<td>3628</td>
<td>3631</td>
<td>3633</td>
<td>3638</td>
<td>3640</td>
<td>3641</td>
</tr>
<tr>
<td>SiO₂</td>
<td>72.81</td>
<td>79.69</td>
<td>69.21</td>
<td>71.68</td>
<td>73.24</td>
<td>74.96</td>
<td>75.57</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.06</td>
<td>0.10</td>
<td>0.14</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.80</td>
<td>11.33</td>
<td>16.30</td>
<td>15.66</td>
<td>14.11</td>
<td>13.06</td>
<td>12.71</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.05</td>
<td>0.26</td>
<td>0.27</td>
<td>0.18</td>
<td>0.46</td>
<td>0.44</td>
<td>0.82</td>
</tr>
<tr>
<td>FeO</td>
<td>0.09</td>
<td>0.33</td>
<td>0.45</td>
<td>0.51</td>
<td>0.58</td>
<td>0.83</td>
<td>1.19</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.005</td>
<td>0.021</td>
<td>0.037</td>
<td>0.050</td>
<td>0.022</td>
<td>0.037</td>
<td>0.056</td>
</tr>
<tr>
<td>MgO</td>
<td>0.14</td>
<td>0.66</td>
<td>1.66</td>
<td>0.92</td>
<td>0.26</td>
<td>0.16</td>
<td>0.18</td>
</tr>
<tr>
<td>CaO</td>
<td>0.43</td>
<td>0.87</td>
<td>2.81</td>
<td>0.72</td>
<td>0.70</td>
<td>0.56</td>
<td>0.56</td>
</tr>
<tr>
<td>Li₂O</td>
<td>0.005</td>
<td>0.018</td>
<td>0.021</td>
<td>0.282</td>
<td>0.050</td>
<td>0.010</td>
<td>0.012</td>
</tr>
<tr>
<td>Na₂O</td>
<td>9.37</td>
<td>0.92</td>
<td>1.54</td>
<td>4.13</td>
<td>3.57</td>
<td>3.22</td>
<td>2.85</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.61</td>
<td>3.46</td>
<td>4.94</td>
<td>4.36</td>
<td>4.66</td>
<td>5.26</td>
<td>4.87</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.30</td>
<td>0.52</td>
<td>0.45</td>
<td>0.49</td>
<td>0.27</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>F</td>
<td>0.08</td>
<td>0.31</td>
<td>0.29</td>
<td>1.38</td>
<td>0.48</td>
<td>0.18</td>
<td>0.21</td>
</tr>
<tr>
<td>LOI</td>
<td>0.46</td>
<td>1.74</td>
<td>3.41</td>
<td>1.15</td>
<td>1.08</td>
<td>0.92</td>
<td>0.89</td>
</tr>
<tr>
<td>H₂O⁻</td>
<td>0.04</td>
<td>0.06</td>
<td>0.07</td>
<td>0.05</td>
<td>0.06</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>Total</td>
<td>100.17</td>
<td>100.08</td>
<td>100.35</td>
<td>100.11</td>
<td>99.4</td>
<td>99.81</td>
<td>99.62</td>
</tr>
<tr>
<td>ASI</td>
<td>0.94</td>
<td>1.66</td>
<td>1.46</td>
<td>1.22</td>
<td>1.16</td>
<td>1.09</td>
<td>1.11</td>
</tr>
<tr>
<td>Nb/Ta</td>
<td>1.0</td>
<td>1.4</td>
<td>2.9</td>
<td>3.3</td>
<td>2.9</td>
<td>4.0</td>
<td>4.8</td>
</tr>
<tr>
<td>Zr/Hf</td>
<td>6.3</td>
<td>9.0</td>
<td>10.5</td>
<td>19.9</td>
<td>24.5</td>
<td>28.2</td>
<td>28.2</td>
</tr>
<tr>
<td>Ba</td>
<td>15</td>
<td>47</td>
<td>40</td>
<td>58</td>
<td>96</td>
<td>84</td>
<td>81</td>
</tr>
<tr>
<td>Be</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Cs</td>
<td>3.9</td>
<td>26</td>
<td>51</td>
<td>74</td>
<td>52</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>Ga</td>
<td>51</td>
<td>25</td>
<td>45</td>
<td>40</td>
<td>27</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Hf</td>
<td>4.8</td>
<td>4.5</td>
<td>2.7</td>
<td>2.4</td>
<td>2.9</td>
<td>3</td>
<td>3.3</td>
</tr>
<tr>
<td>Nb</td>
<td>70</td>
<td>138</td>
<td>83</td>
<td>601</td>
<td>22</td>
<td>9.7</td>
<td>10</td>
</tr>
<tr>
<td>Rb</td>
<td>100</td>
<td>744</td>
<td>1209</td>
<td>1698</td>
<td>802</td>
<td>459</td>
<td>436</td>
</tr>
<tr>
<td>Sn</td>
<td>654</td>
<td>926</td>
<td>198</td>
<td>92</td>
<td>57</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>Sr</td>
<td>52</td>
<td>118</td>
<td>57</td>
<td>187</td>
<td>24</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>Ta</td>
<td>71</td>
<td>96</td>
<td>29</td>
<td>189</td>
<td>7.6</td>
<td>2.4</td>
<td>2.1</td>
</tr>
<tr>
<td>Th</td>
<td>6.5</td>
<td>8.2</td>
<td>6.9</td>
<td>9.4</td>
<td>11</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>U</td>
<td>21</td>
<td>26</td>
<td>24</td>
<td>24</td>
<td>26</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>W</td>
<td>4.3</td>
<td>13</td>
<td>8</td>
<td>82</td>
<td>8.4</td>
<td>6.1</td>
<td>5.5</td>
</tr>
<tr>
<td>Zr</td>
<td>30</td>
<td>27</td>
<td>24</td>
<td>25</td>
<td>58</td>
<td>73</td>
<td>93</td>
</tr>
<tr>
<td>Y</td>
<td>0.4</td>
<td>1.3</td>
<td>2.3</td>
<td>5</td>
<td>17</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>La</td>
<td>0.2</td>
<td>0.5</td>
<td>1.2</td>
<td>0.6</td>
<td>5.4</td>
<td>9.2</td>
<td>12.9</td>
</tr>
<tr>
<td>Ce</td>
<td>0.4</td>
<td>0.9</td>
<td>2.5</td>
<td>2.1</td>
<td>12.3</td>
<td>21.4</td>
<td>30.2</td>
</tr>
<tr>
<td>Pr</td>
<td>0.06</td>
<td>0.14</td>
<td>0.31</td>
<td>0.31</td>
<td>1.53</td>
<td>2.59</td>
<td>3.67</td>
</tr>
<tr>
<td>Nd</td>
<td><0.3</td>
<td>0.6</td>
<td>1.2</td>
<td>1.3</td>
<td>5.5</td>
<td>8.9</td>
<td>13.4</td>
</tr>
<tr>
<td>Sm</td>
<td>0.09</td>
<td>0.29</td>
<td>0.45</td>
<td>0.69</td>
<td>1.84</td>
<td>2.6</td>
<td>3.44</td>
</tr>
<tr>
<td>Eu</td>
<td>0.05</td>
<td>0.08</td>
<td>0.16</td>
<td><0.02</td>
<td>0.07</td>
<td>0.15</td>
<td>0.2</td>
</tr>
<tr>
<td>Gd</td>
<td>0.11</td>
<td>0.38</td>
<td>0.41</td>
<td>0.6</td>
<td>1.96</td>
<td>2.65</td>
<td>3.6</td>
</tr>
<tr>
<td>Tb</td>
<td>0.02</td>
<td>0.07</td>
<td>0.08</td>
<td>0.19</td>
<td>0.5</td>
<td>0.62</td>
<td>0.81</td>
</tr>
<tr>
<td>Dy</td>
<td>0.08</td>
<td>0.31</td>
<td>0.36</td>
<td>0.93</td>
<td>3.18</td>
<td>4.09</td>
<td>5.26</td>
</tr>
<tr>
<td>Ho</td>
<td><0.02</td>
<td>0.05</td>
<td>0.05</td>
<td>0.12</td>
<td>0.58</td>
<td>0.84</td>
<td>1.09</td>
</tr>
<tr>
<td>Er</td>
<td>0.04</td>
<td>0.12</td>
<td>0.17</td>
<td>0.36</td>
<td>1.63</td>
<td>2.61</td>
<td>3.24</td>
</tr>
<tr>
<td>Tm</td>
<td><0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.07</td>
<td>0.27</td>
<td>0.44</td>
<td>0.52</td>
</tr>
<tr>
<td>Yb</td>
<td><0.05</td>
<td>0.1</td>
<td>0.28</td>
<td>0.56</td>
<td>1.71</td>
<td>3.04</td>
<td>3.49</td>
</tr>
<tr>
<td>Lu</td>
<td><0.01</td>
<td>0.02</td>
<td>0.04</td>
<td>0.07</td>
<td>0.23</td>
<td>0.44</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Mineralogy

Feldspars

Biotite granites contain perthitic K-feldspar (Ab02, max. 0.14 wt. % BaO, Rb-free) in association with slightly zoned altered albite (An03-08). The K-feldspar is locally enriched in phosphorus (max. 0.4 wt. % P₂O₅, 0.015 apfu P), while albite is P-free (Table 3).

Li-mica granites contain pure albite (An₂₉ₐ-ₙₐ) and Ba-free perthitic K-feldspar (Ab₀₂). The content of Rb in Kfs increases upwards from 0.1 wt. % Rb₂O in tourmaline granite to ca. 0.4 wt. % Rb₂O (0.013 apfu Rb) in topaz granite and is not influenced by the low-temperature alteration. In contrast, the primary high content of phosphorus in both feldspars is preserved only rarely in the core of some grains (up to 0.54 wt. % P₂O₅ in Kfs and 0.30 wt. % P₂O₅ in albite). The majority of feldspar grains are actually P-free, but contain plenty of µm-sized inclusions of secondary apatite.
Fig. 3. Harker diagrams and chondrite normalized REE patterns of the Dlhá dolina granitic rocks. The atomic Zr/Hf-value (x-axis) is the most stable indicator of magma fractionation in the case of altered rocks. For comparison, representative analyses of Hnilec granites (unpublished data by I. Broska), Surovec granites (Petrík et al. 2011) and pure magmatic rare-metal granites from the Podlesí, western Krušné hory/Erzgebirge, Czech Republic (unpublished data by K. Breiter) are shown. a — Zr/Hf vs. Al₂O₃, b — Zr/Hf vs. P₂O₅, c — Zr/Hf vs. F, d — Zr/Hf vs. Li₂O, e — Zr/Hf vs. Sn, f — Zr/Hf vs. Rb, g — Zr/Hf vs. Ta, h — chondrite normalized REE patterns. HREE in the albite are lower than the detection limits of ICP-MS. Chondrite values according to Mc Donough & Sun (1995).
Albitite contains only pure albite \((\mathrm{An}_{<0.01})\). Like the Li-mica granite, this albite equilibrated with hydrothermal fluids and contains numerous inclusions of secondary apatite. Some grain cores contain max. 0.4 wt. % \(\mathrm{P}_2\mathrm{O}_5\) (0.015 apfu P).

Micas

Micas originated in all episodes of granite evolution: magmatic crystallization, high-temperature alteration (greisenization), and low-temperature Alpine overprint. The later processes have not only produced a new population of mica, but also re-equilibrated mica grains crystallized during the earlier episode, so the micas represent genetically the most complicated mineral group.

The most important signature of the magmatic micas is, along with their texture, relatively high contents of F, Li, and Rb. While it is not technically possible to analyse Li using the electron microprobe, high contents of F and Rb are the most important indicators of the magmatic origin of a particular mica. Biotite from the deeper intrusive suite is poor in Mg (\#Mg 0.25—0.30) and Rb (0.10—0.14 wt. % Rb\(_2\)O) and free of fluorine (<0.1 wt. % F) (Fig. 4, Table 4). Associated Fe-dominant chloride (chamosite) is relatively slightly Mg-depleted (\#Mg 0.15) in comparison with the biotite.

In the whole body of tourmaline and topaz granites, only the sample from the depth of ca. 580 m contains mica, which can be considered as primary magmatic mica. This zinnwaldite forms typical bright brownish flakes 0.5 mm in size containing inclusions of zircon and ore minerals. The fresh cores are relatively rich in Fe (9.4 wt. % FeO, 1.15 apfu Fe), Rb (up to 1.5 wt. % Rb\(_2\)O, 0.14 apfu Rb) and F (up to 7.7 wt. % F, 3.7 apfu F), while slightly altered rims are enriched in Al (up to 24 wt. % Al\(_2\)O\(_3\), 4.0 apfu Al) and depleted in all the aforementioned elements (6.1—7.0 wt. % FeO, 0.13—0.78 wt. % Rb, 4.7—5.9 wt. % F). Contents of SiO\(_2\) are scattered between 48.5—49.4 wt. % (7.0—7.4 apfu Si). Using the published equations for correlation between contents of Li and Si and Al\(_2\)O\(_3\), the lower values seem to be more realistic.

The micas from all other samples from the “Li-mica granites” are to variable degrees altered: enriched in Al (30—32 wt. % Al\(_2\)O\(_3\)), Mg (up to 1.9 wt. % MgO), and depleted in Fe (4.3 to 0.3 wt. % Fe), Rb (<0.3 wt. % Rb\(_2\)O), and F (<2.4 wt. % F). This mica should be termed as phengitic muscovite.
Fig. 4. Diagrams of mica composition (recalculated on the basis of 22 atoms of oxygen). a — Diagram Si vs. Fe+Mg+Mn shows different trends in magmatic micas from the Nejdek-Podlesí pluton, Czech Republic (unpublished data by K. Breiter) and low-temperature altered micas from the Dlhá dolina pluton. For comparison, published analyses of micas from near Surovec and Dlhá dolina granites (Petrík et al. 2011, 2014) are also shown. b — Diagram Fe vs. Mg in micas documents depletion in Fe and enrichment of Mg during Alpine LT alteration of the Dlhá dolina and Surovec granites. Rare phlogopite (4.0–4.5 apfu Mg) found in the mylonitized albite do not match the field of this diagram. Remember, these diagrams are not IMA-classification diagrams of micas.

Zircon

It forms euhedral to subhedral crystals, usually 50 to 150 µm in size, scattered in quartz, albite and muscovite. The crystals are commonly partly to totally metamict, in some cases with tiny inclusions or intergrowths of xenotime-(Y), ThSiO₄ phase (thorianite or huttonite), uraninite, cassiterite, and (W)-Nb-Ta oxide minerals (Fig. 5). Composition of zircon strongly depends on the fractionation degree of parental granitic rock: concentrations of Hf and Sc generally increase from less fractionated biotite granites to the most fractionated topaz-zinnwaldite granite and quartz albite or from core to rim (Table 5).

The HfO₂ content and Zr/Hf wt. ratio attain 1.4–4.1 wt. % and 38–13 in biotite granites, 2.0–2.6 wt. % and 30–20 in tourmaline granite, 3.3–13 wt. % and 14.5–3.5 in topaz granite, and 6.6–12 wt. % and 7.9–4.0 in albite, respectively (Fig. 6a).

Fig. 5. BSE photomicrographs of zircon from the Dlhá dolina granites. a — Elongated zircon crystal with inclusions of fluorapatite (anhedral black), xenotime (larger white) and thorite/huttonite (smaller white), biotite granite (sample 3641); b — Zircon crystals (dark grey) with xenotime intergrowths (pale grey) and thorite/huttonite (white), tourmaline granite (sample 3638); c — Zircon crystal (dark grey) with ferrocolumbite (pale grey) and W-rich ixiolite/columbite phase (white), tourmaline granite (sample 3638); d — Euhedral zircon crystal with diffuse zoning, mylonitized topaz granite (sample 3634); e — Zircon crystals and intergrowths of uraninite+ferrocolumbite+microlite phase (white) in muscovite, mylonitized topaz granite (sample 3634); f — Zircon (grey) with numerous tiny inclusions of uraninite, rarely cassiterite (white) in association with W-rich ixiolite/columbite phase (large white mineral, upper part of figure), topaz granite (sample 3633).
Table 4: Representative compositions (in wt. %) and empirical formulae (based on 22 oxygen atoms) of micas. Contents of Li$_2$O were calculated only in primary magmatic Mg-free micas according to algorithms by Breiter et al. (2002).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lithium-rich biotite</th>
<th>Lithium-poor biotite</th>
<th>Hornblende</th>
<th>Pyrope</th>
<th>Ca$_2$Mg$_3$Si$_2$O$_8$</th>
<th>Mg$_2$Si$_2$O$_5$</th>
<th>Si$_2$O$_5$</th>
<th>Cr$_2$O$_3$</th>
<th>Fe$_2$O$_3$</th>
<th>MgO</th>
<th>CaO</th>
<th>Na$_2$O</th>
<th>K$_2$O</th>
<th>MgO (Mg/Fe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3626</td>
<td>48.99</td>
<td>48.83</td>
<td>47.97</td>
<td>47.75</td>
<td>48.77</td>
<td>48.81</td>
<td>48.77</td>
<td>48.83</td>
<td>48.99</td>
<td>48.83</td>
<td>47.97</td>
<td>47.75</td>
<td>48.77</td>
<td>48.81</td>
</tr>
<tr>
<td>3627</td>
<td>48.83</td>
<td>47.97</td>
<td>47.75</td>
<td>48.77</td>
<td>48.81</td>
<td>48.77</td>
<td>48.83</td>
<td>48.99</td>
<td>48.83</td>
<td>47.97</td>
<td>47.75</td>
<td>48.77</td>
<td>48.81</td>
<td>48.77</td>
</tr>
<tr>
<td>3632</td>
<td>47.97</td>
<td>47.75</td>
<td>48.77</td>
<td>48.81</td>
<td>48.77</td>
<td>48.83</td>
<td>48.99</td>
<td>48.83</td>
<td>47.97</td>
<td>47.75</td>
<td>48.77</td>
<td>48.81</td>
<td>48.77</td>
<td>48.83</td>
</tr>
<tr>
<td>3633</td>
<td>47.75</td>
<td>48.77</td>
<td>48.81</td>
<td>48.77</td>
<td>48.83</td>
<td>48.99</td>
<td>48.83</td>
<td>47.97</td>
<td>47.75</td>
<td>48.77</td>
<td>48.81</td>
<td>48.77</td>
<td>48.83</td>
<td>48.99</td>
</tr>
<tr>
<td>3638</td>
<td>48.77</td>
<td>48.81</td>
<td>48.77</td>
<td>48.83</td>
<td>48.99</td>
<td>48.83</td>
<td>47.97</td>
<td>47.75</td>
<td>48.77</td>
<td>48.81</td>
<td>48.77</td>
<td>48.83</td>
<td>48.99</td>
<td>47.97</td>
</tr>
<tr>
<td>3641</td>
<td>48.81</td>
<td>48.77</td>
<td>48.83</td>
<td>48.99</td>
<td>48.83</td>
<td>47.97</td>
<td>47.75</td>
<td>48.77</td>
<td>48.81</td>
<td>48.77</td>
<td>48.83</td>
<td>48.99</td>
<td>47.97</td>
<td>47.75</td>
</tr>
</tbody>
</table>

GEOLOGICA CARPATICA, 2015, 66, 1, 19–36
<table>
<thead>
<tr>
<th>Rock</th>
<th>Sample No.</th>
<th>Zircon</th>
<th>TTGn granite</th>
<th>Zircon grain</th>
<th>TTGn granite</th>
<th>Zircon grain</th>
<th>Topaz granite</th>
<th>Zircon grain</th>
<th>Topaz granite</th>
<th>Zircon grain</th>
<th>Quartz albite</th>
<th>Zircon grain</th>
<th>Topaz granite</th>
<th>Zircon grain</th>
<th>Quartz albite</th>
<th>Zircon grain</th>
<th>Topaz granite</th>
<th>Zircon grain</th>
<th>Quartz albite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.15</td>
<td>0.14</td>
<td>0.16</td>
<td>0.19</td>
<td>0.2%</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
<td>0.27</td>
<td>0.28</td>
<td>0.30</td>
<td>0.31</td>
<td>0.32</td>
<td>0.33</td>
<td>0.34</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.30</td>
<td>0.31</td>
<td>0.32</td>
<td>0.33</td>
<td>0.34</td>
<td>0.35</td>
<td>0.36</td>
<td>0.37</td>
<td>0.38</td>
<td>0.39</td>
<td>0.40</td>
<td>0.41</td>
<td>0.42</td>
<td>0.43</td>
<td>0.44</td>
<td>0.45</td>
<td>0.46</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.65</td>
<td>0.66</td>
<td>0.67</td>
<td>0.68</td>
<td>0.69</td>
<td>0.70</td>
<td>0.71</td>
<td>0.72</td>
<td>0.73</td>
<td>0.74</td>
<td>0.75</td>
<td>0.76</td>
<td>0.77</td>
<td>0.78</td>
<td>0.79</td>
<td>0.80</td>
<td>0.81</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.90</td>
<td>0.91</td>
<td>0.92</td>
<td>0.93</td>
<td>0.94</td>
<td>0.95</td>
<td>0.96</td>
<td>0.97</td>
<td>0.98</td>
<td>0.99</td>
<td>1.00</td>
<td>1.01</td>
<td>1.02</td>
<td>1.03</td>
<td>1.04</td>
<td>1.05</td>
<td>1.06</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.08</td>
<td>1.09</td>
<td>1.10</td>
<td>1.11</td>
<td>1.12</td>
<td>1.13</td>
<td>1.14</td>
<td>1.15</td>
<td>1.16</td>
<td>1.17</td>
<td>1.18</td>
<td>1.19</td>
<td>1.20</td>
<td>1.21</td>
<td>1.22</td>
<td>1.23</td>
<td>1.24</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Table 5: Representative compositions of zircon (in wt.%, contents of La, Pr, Nd, Sm, Eu, Tb, Ho, Tb, Ho, Ta, Lu, and M are under detection limit of EMPA).

GEOLOGICA CARPATHICA, 2015, 66, 1, 19–36
In both suites contents of Sc increased upwards, while contents of Y decreased: from 0.0–0.2 to 0.1–0.7 wt. % Sc$_2$O$_3$ and 0.2–1.6 to 0.2–0.5 wt. % Y$_2$O$_3$ in biotite granites, and from 0.1–0.3 to 0.8–2.8 wt. % Sc$_2$O$_3$ (Fig. 6b) and 0.5–1.0 to 0.0–0.6 wt. % Y$_2$O$_3$ in Li-mica granites. However, zircon from the topaz granite occasionally shows irregular Y, HREE-rich zones with 1 to 2 wt. % Y$_2$O$_3$. Contents of REEs in zircon are generally low to moderate, heavy REE (HREE – Gd to Lu) apparently prevail over light REE (LREE – La to Eu), attaining 0.3 to 1 wt. % HREE$_2$O$_3$ in all studied granite types. The contents of phosphorus attain 0.1 to 3.8 wt. % P$_2$O$_5$ (up to 0.1 apfu P, Fig. 6c), it positively correlates with trivalent A-site cations, especially Sc and Y. Moreover, zircon from the most evolved granites reveals elevated niobium concentrations: up to 0.4 wt. % Nb$_2$O$_5$ in albitite and up to 0.9 wt. % Nb$_2$O$_5$ (0.013 apfu Nb) in topaz granite. Slightly elevated contents of Al (up to 0.25 wt. % Al$_2$O$_3$; 0.01 apfu Al), Fe (max. 0.6 wt. % Fe$_2$O$_3$; 0.015 apfu Fe), Ca (up to 1.0 wt. % CaO; 0.03 apfu Ca) and Sr (up to 0.002 apfu Sr) are characteristic mainly for the (metamictized?) zircons from the topaz granite. Elevated contents of As (up to 0.5 wt. % As$_2$O$_3$; 0.008 apfu As, Fig. 6d) in some zircons from topaz granite and albite may indicate reequilibration with hydrothermal fluid during greisenization.

The compositional relationships indicate a presence of HfZr-1, ScP(Zr,Hf)$_4$Si$_4$, YP(Zr,Hf)$_4$Si$_4$, and especially (Sc,Y)(P, As,Nb)(Zr,Hf)$_4$Si$_4$ substitutions in the majority of analysed zircon crystals. However, limited AlSi$_2$, beryllium-like substitution could also play a role. Uranium-rich compositions commonly show positive correlation with Fe and Ca.

Fluorapatite

Fluorapatite in the biotite granites should be considered as a magmatic mineral. It forms homogeneous, mostly isometric grains, 20–50 µm across. Fluorapatite is sometimes included in mica; in other cases it is interstitial. It is fully saturated in fluorine and relatively poor in Mn (0.1–1.4 wt. % MnO, up to 0.1 apfu Mn), but slightly enriched in Ce (max. 0.3 wt. % Ce$_2$O$_3$).

Fluorapatite within the Li-mica granites and albitite was strongly affected by the Alpine low-temperature processes. Individual crystals or their parts differ greatly in intensity and colour of CL: from intensive yellow through red and violet to yellowish-grey. The intensity of CL generally increases with increasing contents of Mn, Fe, and Sr, but without clear correlation to one of the above mentioned elements. The distribution of Mn, Fe, and Sr is highly variable not only between samples, but also within individual grains (Table 6). Maximum contents of minor elements in fluorapatite from Li-mica granites attain 3.0 wt. % MnO (0.22 apfu Mn), 0.6 wt. % FeO (0.05 Fe), and 1.8 wt. % SrO (0.09 apfu Sr).

Within albite, including their silicified (greisenized) parts, fluorapatite variegated in even broader intervals as in the granites: 0–3.3 wt. % MnO (0.25 apfu Mn), 0–0.6 wt. % FeO
Table 6: Representative composition (in wt. %) and empirical formulæ (based on 12.5 oxygen atoms) of fluorapatite (contents of Ti, Al, Mg, Ba, Rb, Ce, and Cl are under the detection limit of the microprobe). Content of F fitted to the maximum amount of \((F+Cl+OH) = 1\) when overestimated by analysis.

Table 7: Representative composition (in wt. %) and empirical formulæ (based on 5 oxygen atoms) of topaz from the sample 3633. Contents of elements Ti, Mg, Ca, Ba, Rb, Na, and K in all cases lower than detection limit 0.05 wt. %.

Table 8: Representative compositions (in wt. %) and empirical formulæ (based on 24 oxygen atoms) of tourmaline (contents of Ba, Rb, P, and F are under the detection limit of EMPA).

<table>
<thead>
<tr>
<th>Sample</th>
<th>3628</th>
<th>3628</th>
<th>3628</th>
<th>3641</th>
<th>3631</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock</td>
<td>Albite</td>
<td>Albite</td>
<td>Albite</td>
<td>Topaz</td>
<td>Biotite</td>
</tr>
<tr>
<td>Colour in CL</td>
<td>violet</td>
<td>red</td>
<td>yellow</td>
<td>yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.06</td>
<td>0.00</td>
</tr>
<tr>
<td>FeO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.28</td>
<td>0.00</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
<td>2.77</td>
<td>1.42</td>
<td>0.60</td>
</tr>
<tr>
<td>CaO</td>
<td>55.85</td>
<td>55.83</td>
<td>48.30</td>
<td>53.75</td>
<td>54.05</td>
</tr>
<tr>
<td>SrO</td>
<td>0.00</td>
<td>0.00</td>
<td>5.67</td>
<td>0.00</td>
<td>1.85</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.00</td>
<td>0.00</td>
<td>0.08</td>
<td>0.13</td>
<td>0.05</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.13</td>
<td>0.00</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>42.82</td>
<td>42.51</td>
<td>41.20</td>
<td>41.94</td>
<td>42.08</td>
</tr>
<tr>
<td>F</td>
<td>3.61</td>
<td>3.75</td>
<td>3.66</td>
<td>3.75</td>
<td>3.75</td>
</tr>
<tr>
<td>F+O</td>
<td>-1.52</td>
<td>-1.62</td>
<td>-1.55</td>
<td>-1.56</td>
<td>-1.56</td>
</tr>
<tr>
<td>Total</td>
<td>100.75</td>
<td>104.56</td>
<td>100.89</td>
<td>99.87</td>
<td>100.81</td>
</tr>
<tr>
<td>Si</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>Mn</td>
<td>0.02</td>
<td>0.00</td>
<td>0.26</td>
<td>0.10</td>
<td>0.03</td>
</tr>
<tr>
<td>Ca</td>
<td>4.968</td>
<td>4.990</td>
<td>4.570</td>
<td>4.855</td>
<td>4.906</td>
</tr>
<tr>
<td>Sr</td>
<td>0.00</td>
<td>0.00</td>
<td>0.269</td>
<td>0.00</td>
<td>0.091</td>
</tr>
<tr>
<td>Na</td>
<td>0.00</td>
<td>0.00</td>
<td>0.013</td>
<td>0.021</td>
<td>0.008</td>
</tr>
<tr>
<td>K</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.014</td>
<td>0.00</td>
</tr>
<tr>
<td>P</td>
<td>3.010</td>
<td>3.002</td>
<td>3.067</td>
<td>2.993</td>
<td>3.018</td>
</tr>
<tr>
<td>F</td>
<td>0.947</td>
<td>0.989</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Table: Tourmaline composition (in wt. %) and empirical formulæ (based on 24 oxygen atoms) of tourmaline (contents of Ba, Rb, P, and F are under the detection limit of EMPA).

Tourmaline

Fine grains of tourmaline (max. 0.1 mm across), bluish in polarized light, scarcely occur in the biotite and tourmaline granites. Macroscopically black tourmaline, brownish in polarized light, is common in the lower part of the younger intrusive suite. It is disseminated as small individual grains or forms aggregates up to several cm across. According to its chemical composition, both varieties of tourmaline should be termed as schorlitic tourmaline with \(Fe/(Fe+Mg)\) ratio between 0.60 to 1.00.

Discussion

Evolution of micas in the Dlhá dolina pluton

To distinguish the primary high-temperature (Variscan) and low-temperature (Alpine) micas and to assess the degree of secondary overprint of the former, we examined several diagrams (Fig. 4a,b). Already published analyses of micas from the Surovec granite and the Dlhá dolina topaz granite (Petrik et al. 2011, 2014) and representative analyses of pure magmatic micas from the peraluminous P-Fi rich granitic system of Nejdek-Podlesí, western Krušně hory Mts (Breiter 2002; Breiter et al. 2005) are plotted in all diagrams for comparison. All micas from the DD-3 borehole are rich in alumina containing 4.8–5.3 apfu Al (Table 4). The content of Al in the octahedral position usually reached 3.3–3.5 apfu, which indicated that most of the analysed micas are di-octahedral. The exceptions are altered biotite from the biotite granites (Al\(^{VI}\)–3)
and zinnwaldite from the “fresh” topaz granite at the depth of 580 m (AlVI ~2.7–2.9). The low total of divalent elements (Fe+Mg+Mn<1 apfu, Fig. 4a) and especially the low content of Fe (mostly <1 apfu) is a logical counterpart of the high (Fe+Mg+Mn<1 apfu, Fig. 4a) and especially the low content of MgO and thus high #Mg (atomic ratio Mg/(Mg+Fe)) of the majority of micas from the Dlhá dolina pluton is noticeable at the first view. With the exception of the relatively less tectonically affected sample of the topaz-zinnwaldite granite (MgO<0.1 wt. %, #Mg<0.05), the MgO and #Mg are substantially higher than usual in micas from fractionated granites or leucogranites (Fig. 4b, compare the compilation in Tischendorf et al. 1999).

Fig. 4b summarizes the changes in chemical composition from slightly Fe-deficient, but still F, Li-rich zinnwaldite from the topaz granite at a depth of 580 m, the Alpine Li-rich phengite (altered primary Li-Fe mica) from the tourmaline granite, to Mg-enriched F-free phengite from the uppermost strongly mylonitized part of the topaz granite and albitite.

Published data from the Dlhá dolina granites (Petrík et al. 2014) are closer to the theoretical magmatic evolution than our data, because they analysed the tectonically least affected parts of the borehole DD-3, while we studied samples from the whole core to ascertain the extent of post-magmatic changes. Summarizing all the available data, following scenario of mica evolution can be proposed:

- The deeper suite of biotite granites: primary annite was partially chloritized and/or muscovitized. Timing of the alteration (post-magmatic vs. Alpine) is not clear;
- The upper suite, tourmaline granite: primary Li-mica (protolithionite?) was partially muscovitized (Li, Fe, F-decreased), but not enriched in Mg;
- The upper suite, topaz granite: primary zinnwaldite is preserved in tectonically undeformed domains. In deformed parts, the mica was muscovitized (Li, F, Fe-decreased) producing Li-rich phengite from the surface of mineral grains downwards, and enriched in Mg;
- The upper suite, albitite: all textural types of mica represent Mg-rich muscovite (phengite), as a result of the Alpine overprint. The primary character of these micas cannot be deciphered, but part of the micas with relatively higher fluoride (0.5–1.5 apfu F) could by remnants after primary zinnwaldite. The F-poor micas represent the low-temperature Alpine generation.

Magmatic evolution of the Dlhá dolina pluton

Abrupt changes in contents of some chemical elements support sharp, intrusive contact between the lower barren and the upper rare-metal granite suites in the Dlhá dolina pluton. Moreover, these granites were tectonically modified (Fig. 2). Both granite suites represent late-orogenic peraluminous crystall melts. While the deeper intrusion formed a chemically homogeneous body, the upper magma batch underwent differentiation in situ resulting in remarkable stratification.

The direction and manner of crystallization of the upper suite resulted mainly from a combination of two factors: chemical stratification within the water- and fluxes-rich magma batch (London 2014), and cooling. Petrasová et al. (2007) estimated the metamorphic conditions in the country rock during the intrusion of Li-mica granites near 100 MPa and 430 °C. This means relatively shallow, nearly sub-volcanic conditions with a fast cooling rate of the granites.

The increase of Na, F, P, Li, and Rb combined with decrease of Si, K, Fe in the depth interval from 720 to 550 m upwards (Fig. 7a) are mineralogically expressed in transition of the tourmaline (+Li-rich biotite or protolithionite) to the topaz (+zinnwaldite) granite. The uppermost part of the topaz granite (in the depth of 575–550 m) is strongly affected by shearing and primary character of the contact between topaz granite and overlaying albitite is difficult to interpret. Presence of some K-feldspar in approximately the lowermost 50 m of the albitites (in the depth of 550–500 m) suggests that the contact between topaz granite and quartz albitite was primarily transitional. This transition is marked by increases of Na, Ga, Nb, Ta, and Sn and decreases of K, Fe, P, F, Li, Rb, Cs, W, Y, and REE. Contents of Si, Al, and Zr remain the same.

![Fig. 7. Distribution of some chemical elements in the borehole DD-3, the Dlhá dolina pluton. a — Contents of Na2O, K2O, P, and F along the borehole DD-3 (moving average of 5 adjacent samples, computed by authors from original data of Malachovsky et al. 1992); b — Correlation between Na2O and K2O in rocks from the borehole DD-3 (data from Malachovsky et al. 1992). The sum of the alkali oxides in magmatic rocks ranges between 8–10 wt. %; during fractionation contents of Na2O generally increased, while K2O decreased. Decrease in Na2O in some samples is caused by mylonitization (in Li-mica granites) and silicification-greisenization (in albitite).](image-url)
The sum of the alkalis (Na₂O + K₂O) in all the rock facies varies in a relatively narrow interval 8–10 wt. % (Fig. 7b) and is consistent with fully magmatic origin of the albitite. Albite grains in the albitite are enriched in phosphorus suggesting their primary magmatic origin (London et al. 1993; Breiter et al. 2002). Also the texture of non-mylonitized albitite is consistent with crystallization from melt; no signs of Na-metasomatosis were found. Thus, the upper part of the magma batch should have been enriched in Na before the feldspar started to crystallize. We found no indications of later additional metasomatic input of alkalis into the albitite. Differentiation of crystallized hydrous silicate melt into K- and Na-dominated domains is typical for layered aplitepegmatite systems (Jahns 1955; London 2014). Among lithophile elements, if we neglect the irregularities caused by the low-temperature Alpine overprint, the primary magmatic contents of Li, Rb, Sn, Nb, and Ta in tourmaline and topaz granites increased systematically upwards: ca. 400 → 1200 ppm Rb, 200 → 1000 ppm Li, 50 → 250 ppm Sn, 2060 ppm Nb, and 10 → 100 ppm Ta. Sharp decreases of Rb- and Li-contents in the albitite are caused by nearly complete disappearance of Li-mica and an abrupt decrease of K-feldspar. The systematic increase of Sn, Nb and Ta in the upper part of the cupola does not correlate with the extent of greisenization and suggests a mostly magmatic origin of disseminated columbite in albitite. Distribution of Sn is much more scattered, but the highest contents of Sn were encountered in the Na-most enriched domains of the albitite body (Fig. 8). In contrast, the highest contents of W were found in the topaz granite. Decoupling of Nb + Ta and Sn and W during final stage of fractionation of peraluminous F, Li-rich granite was also described from the Podlesí granite stock, Krušné hory Mts, Czech Republic (Breiter et al. 2007).

The absence of signs of greisenization within the topaz and tourmaline granite made any later supply of fluids (+ore elements) from the depth unlikely. Separation of greisenizing fluids from the melt should appear in situ already during crystallization of the tourmaline and mainly topaz granite. The irregular, but dominantly steep joins may have formed via hydrofracturing during “second boiling” of the residual melt.

Low degree of greisenization

According to the original description by Malachovský et al. (1992) greisenization (early post-magmatic silicification) along sub-vertical (?)-cm-dm-scale joins affected only the albitite.

Among 65 samples of 1–2 m long segments of the core from the albitite (depth 454–554 m, Malachovský et al. 1992), only two samples from the depth 488 and 489.5 m contain less than 1 wt. % of Na₂O and should be designated as greisen. Moreover, 7 samples contain 3.5–5.9 wt. % Na₂O, and another 56 samples contain more than 6.0 wt. % Na₂O. Thus, excluding the section 486–489 m, the range of silicification (greisenization) of the albitite is minimal. Above that, the Si-rich samples are Li-poor (<100 ppm Li) and Sn does not correlate positively with Si, but with Na. The “greisens” are slightly enriched in apatite; necessary phosphorus was liberated from crystal lattice of altered albite. Summing up, the range of greisenization in the DD-3 section and its influence on mineralization is minimal, if it occurs at all.

Low-temperature Alpine overprint

The conditions of the Alpine metamorphism in the Dlhá dolina area were estimated at 350 °C and 180–280 MPa (Radvanec et al. 2004), however distinctly higher pressures (~400 °C and 600–700 MPa) were reported by Petrasová et al. (2007). The granite body was affected by shearing and mylonization. The intensity of mechanical deformation is highly variable: zones composed of only relics of magmatic quartz flowing in aggregates of fine-grained phengitic muscovite alternate with nearly fresh primary granite and albrite. The brittle deformation of granitoids was accompanied by supply of fluids from dolomite, magnesite and talc bodies to the granite cupula (Kilik 1997; Radvanec et al. 2004; Petrasová et al. 2007). These fluids, enriched in Ca, Mg and CO₂, permeated the upper part of the granite body resulting in crystallization of Ca, Mg-carbonates in thin joints and small cavities. Carbonate minerals, inconspicuous under an optical microscope, are clearly detectable on CL-images. During this process, the whole-rock content of Mg was enriched up to 0.9 wt. % in mylonitized albite and up to 1.7 wt. % in mylonitized topaz granite. Similarly, Ca was enriched up to 1.4 and 2.9 wt. % in albite and granite, respectively. Exhumation (end of the metasomatic processes) was dated to 87.7 (±5.9 Ma) using zircon fission-track analyses (Plašienka et al. 2007).

Comparison of the Dlhá dolina pluton with other Gemeric granites

Three other granite bodies cropped out in the vicinity of the Dlhá dolina pluton. The geographically closest body, the Surovec granite, is also the most similar from the point of view of chemical composition (enrichment in F, P, and Li), mineralogy (topaz, zinnwaldite, P-rich primary feldspars), and strong Alpine overprint. The bodies near Hnilec and Betliar are B-specialized containing common tourmaline in association with Li-poor micas.

![Fig. 8. Contents of Na and Sn in 1–2 m long segments of the borehole DD-3, the Dlhá dolina pluton (primary data from Malachovský et al. 1992). Enrichment of tin correlated well with high content of albite. The "greisenized" samples poor in Na are relatively Sn-poor.](image-url)
The mineral composition of the Surovec body published by Petrík et al. (2011, 2014) allows a comparison with the Li-granites from the Dlhá dolina granite system, whereas analogues of albite and biotite granite were not found in the Surovec body. In both localities, remnants of primary magmatic mineral assemblages alternate with domains of strong Alpine low-temperature hydrothermal overprint. Increasing intensity of the overprint is marked by nearly complete loss of phosphorus in feldspars (from 1.5 to <0.1 wt. % P$_2$O$_5$ in Surovec, from 0.5 to <0.1 wt. % P$_2$O$_5$ in Dlhá dolina) and transformation of primary zinnwaldite (5–11.5 wt. % FeO in Surovec, 8.7–9.4 wt. % FeO in Dlhá dolina) to secondary Li-rich phengite (5–7.5 wt. % FeO in Surovec, 0.4–4.5 wt. % FeO in Dlhá dolina). Fluorapatite, which was primarily Mn-rich (up to 6 wt. % MnO in Surovec and 3.3 wt. % MnO Dlhá dolina) was metasomatically strongly enriched in Sr (up to 13.6 wt. % in Surovec and 5.7 wt. % SrO in Dlhá dolina). A specific feature of the Dlhá dolina granites is the enrichment of secondary micas in magnesium (commonly ~2 wt. % in phengitic muscovite and up to 20 wt. % in flogopite), which may be attributed to the processes of steatization of the nearby Gemerská Poloma talc deposit (Kilik 1997; Radvanec et al. 2004). Topaz from both localities differs significantly: while topaz from Surovec granite is enriched in phosphorus (up to 1.2 wt. % F) and relatively poor in F (14–15 wt. %, only 68–75 atom. % of (F+OH)-site occupancy); topaz from Dlhá dolina is P-poor (max. 0.2 wt. % P$_2$O$_5$), but F-rich (20–21 wt. % F, ~100 atom. % of (F+OH)-site occupancy). The composition of the Dlhá dolina topaz fits well with topaz from peraluminous topaz-zinnwaldite granites in the western Erzgebirge (Breiter & Kronz 2004), while the Surovec topaz was probably re-equilibrated during Alpine processes. The differences in composition of topaz, apatite and secondary micas, and the appearance of varied assemblages of hydrated secondary phosphate minerals (Petrík et al. 2011) indicate somewhat different P-T conditions and composition of Alpine hydrothermal fluids at the two localities.

We interpret the Dlhá dolina pluton as a combination of two intrusive pulses: (i) biotite granites, and (ii) Li-mica granites+albite. Two-stage granite evolution has also been reported from the nearby Betliar and Hnilec areas. However, in Betliar, the first magmatic stage has formed evolved volatile-rich magmas which intruded into an open fault system as sill-like bodies crystallizing as equigranular fine-grained granites followed by subsequent high-temperature post-magmatic alteration. The second stage intrusion from a deeper seated magmatic reservoir resulted in formation of the porphyric granite body. The emplacement of both granite intrusions were dated as Middle or Late Permian (Kubiš & Broska 2010).

In the Hnilec area, volatiles (mainly B, in a lesser amount also F) concentrated in hydromagma under the carapace of fast quenched fine-grained granites. Overpressure due to separation of B-rich fluids caused hydrofracturing of roof fine-grained granites and exocontact rocks. The F-rich portion of the fluid greisenized some domains in the endoc-ontact. The porphyric to coarse-grained two-mica and biotite granites are situated below this fine-grained metasomatized and greisenized granite carapace (Kubiš & Broska 2005).

Comparison with other rare-metal granites worldwide

Two main genetically important issues should be discussed to correctly interpret the geological structure and development of the Dlhá dolina pluton: (i) time/space relation of the less- and more evolved rock types (biotite granites vs. Li-mica granites), and (ii) relations between the most-evolved ore-bearing granite facies, feldspatite and greisens.

The simplified vertical cross-section of the Dlhá dolina is compared with several long time studied and thus well recognized Sn, W, Nb, Ta-bearing plutons from the Krusně hory/Erzgebirge and French Massif Central (Fig. 9). Among the five compared profiles, only the Sn, W-mineralized Krásno pluton (Jarchovský 1998, 2004) is composed of one intrusion. In all other plutons, two intrusive units were recognized and the more-evolved rock suites are situated in the upper part of the profiles above the less-fractionated granites. Both suites have sharp intrusive contacts, but they are interpreted as co-magmatic. In Cínovec and Podlesí (both the Krusně hory, Czech Republic), the younger Li-mica granite formed a tongue-like body which intruded generally along the contact plane between the older biotite granite and its envelope (Štem- prok et al. 1994; Breiter et al. 2005). The origin of the Beauvoir pluton (France) was interpreted in another way: the more-evolved part of the melt, due to lower viscosity, intruded faster and crystallized in the upper part of the cupola. The less evolved more viscose part of the melt arrived later and remained in the lower part of the known profile (Rainbault et al. 1995). In the Dlhá dolina, the relative age relation between the lower and upper granite suites remains unresolved.

Comparing the Dlhá dolina magmatic system with well-known Sn-W greisen deposits in the Krusně hory/Erzgebirge, such as Geyer and Ehrenfriedersdorf (Hösel 1994) in (Germany), and Krásno (Jarchovský 2004) and Cínovec (Štem- prok & Šuleck 1969), both Czech Republic, the major difference should be seen in the position of feldspar-rich rocks (feldspatites, albitites) in the vertical evolution of the granite cupola, and time/space relation between feldspatitic rocks and greisening. In the Krusně hory/Erzgebirge, the greisens form the uppermost part of the cupolas. The interval about 200 m thick below the greisen is occupied by leuocratic mica-poor granite with individual layers of feldspatites in its deeper part (Jarchovský 2004). Within the feldspatites, facies with very different K/Na-ratio occur (K$_2$O 2–8 wt. %, Na$_2$O 3–8 wt. %). Non-altered Li-F granite occurs below the feldspatites. Feldspatization is a geologically younger or contemporaneous process than greisening. In contrast, only Na-rich feldspatites were found in Dlhá dolina, forming the uppermost part of the cupula. Greisen stringers cut the albrite, which means that here the greisenization is somewhat younger than the origin of feldspar-rich rocks. Vertical zonality similar to that of the Dlhá dolina was described by Koval (1975) as typical for the so-called muscovite-albite type of rare-metal granites in the eastern parts of the former Soviet Union. Moreover, 40 years ago Koval (l.c.) interpreted the albite in Kazakhstan and Transbaikalia as metasomatic supporting an earlier model established by Beus (e.g. Beus & Zalaškova 1962), but the overall zoning of plutons is conspicuously similar.
The highly fractionated S-type granites of the Moldanubian and Saxothuringian zones of the European Variscides were formed during the Late Carboniferous: granites in the western and central Krušné hory/Erzgebirge at 318–327 Ma (Förster & Römmer 2010), granites in the Moldanubicum (southern Czech Republic and northern Austria) between 310–320 Ma (Scharbert 1998), and the Beauvoir granite in French Massif Central at 308±2 Ma (Cherel et al. 1992). The early post-orogenic A-type rare-metal granites in the eastern Krušné hory/Erzgebirge is dated with still relatively large uncertainty into the broad interval of ca. 320–305 Ma (see Förster & Römmer (2010) and Breiter (2012) for discussion). The peraluminous Sn-bearing granites in Cornwall have distinctly younger–Late Permian date (274–293 Ma — Chen et al. 1993). The granites of the Gemeric Superunit, including the Dlhá dolina pluton, show only ~260 to 250 Ma age (Poller et al. 2002; Kohút & Stein 2005). Therefore they are probably the youngest tin-bearing granites found in the Variscan orogenic belt through the Europe, emplaced after termination of the Variscan orogeny. Moreover, the same age (262±4 Ma) is found in the hypersolvus rift-related A-type granite from Turčok in the same Gemeric Superunit (Radvanec et al. 2009; Uher unpublished data). However, the Turčok granite shows different geochemical and mineralogical features in comparison to the Dlhá dolina granite: especially high Zr and REE but low Li, B, P, Sn, Ta and W contents as well as dissimilar REE and Nb phases, reflecting its metaluminous A-type character (Uher & Broska 1996; Broska & Uher 2001; Uher et al. 2009). Consequently, the Gemeric Permian S- and A-type granites do not represent an analogy with the Krušné hory/Erzgebirge area, where both fractionated S- and A-type members show enrichment in Li, Sn, B, Ta, and W (Breiter 2012).

Conclusions

In the Dlhá dolina pluton (DD-3 borehole), the primary character of contacts between different granite facies was strongly tectonically modified during Alpine (Cretaceous) thrusting; therefore, our interpretation concerning zoning, magma differentiation and evolution, despite all objective data, remains partly speculative. Nevertheless, taking into account all available information from the Dlhá dolina area and experience from better exposed ore-bearing plutons, we are able to formulate the following genetic scenario:

- Intrusion of common peraluminous magma formed a large body of biotite granites and intrusion of evolved peraluminous melt enriched in Li, P, F, Sn, Nb, Ta, and W took place;

- The evolved melt differentiated in situ forming three different rock types: tourmaline-Li-biotite granite at the bottom, topaz-zinnwaldite granite in the middle, and quartz albite to albite at the top. The composition of primary feldspar, micas, zircon and apatite document a relatively high degree of magmatic fractionation;

- A crucial part of Sn, Nb, and Ta crystallized from the melt as disseminated cassiterite and columbite within the albite, while disseminated wolframite appears mainly within the topaz granite;

Fig. 9. Comparison of simplified vertical sections through different rare-metal granite plutons (see text for details). DD-3 Dlhá dolina, Slovakia (this work); PTP-3 Podlesí, Czech Republic (Breiter 2002); K-25 Krásno, Czech Republic (Jarchovský 1998); GBP-1 Beauvoir, France (Raimbault et al. 1995); CS-1 Cínovec, Czech Republic (Stemprok & Sulc 1969).
• Fluids separated from the last portion of crystallized magma (topaz-zinnwaldite granite) penetrated overlying albite and resulted in small scale greisenization. Phosphorus from alkali feldspars was partially released forming secondary apatite. Disseminated bismuthinite originated at the same time;
• Much later, during Alpine thrusting, the upper part of the pluton was strongly tectonized and mylonitized along flat joints. Metamorphic Ca, Mg, and CO₂ rich fluids in neighbouring metacarbonates penetrated the fractured granite, forming thin carbonate veinlets and filling small cavities. These fluids also reacted with feldspars releasing the rest of the phosphorus from their crystal lattice, and forming Mg-rich mica varieties from magmatic and greisen micas. All bulk-rock and mineral markers were reset and now represent the P-T conditions of the Alpine overprint.

Acknowledgments: The granite samples were taken from the deposited DD-3 borehole in the storage house of the State Geological Institute of Dionýz Štúr on the basis of an official permit. We thank Mrs. Katerína Svecová (Masaryk University Brno) for help with the cathodoluminescence analysis, Mr. Patrik Konečný and Mrs. Viera Kollárová (D. Štúr State Geological Institute of Dionýz Štúr) and Mrs. Zuzana Korbelová from the Geological Institute of Dionýz Štúr for help with the cathodoluminescence analysis, Mr. Igor Petrik and Milan Kohút are acknowledged. This investigation was supported by the Czech Science Foundation, Project Nos. P210/14/13600S and RVO 67985831, the VEGA Project 1/0257/13, and the APVV-0081-10 Project. We thank Mrs. Kateřina Švecová (Masaryk University Brno) for help with the cathodoluminescence analysis, Mr. Patrik Konečný and Mrs. Viera Kollárová (D. Štúr State Geological Institute of Dionýz Štúr) and Mrs. Zuzana Korbelová (Geological Institute of CAS Praha) for assistance during electron-microprobe analyzing. Inspiring reviews by Igor Petrik and Milan Kohút are acknowledged. This investigation was supported by the Czech Science Foundation, Project Nos. P210/14/13600S and RVO 67985831, the VEGA Project No. 1/0257/13, and the APVV-0081-10 Project.

References

Bastos Neto A.C., Pereira V.P., Ronchi L.H., De Lima E.F. & Frantz J.C. 2009: The world-class Sn, Nb, Ta, F (Y, REE, Li) deposit and the massive cryolite associated with the albitite-enriched facies of the Madeira A-type granite, Pittinga Mining District, Amazonas State, Brazil. Canad. Mineralogist 47, 1329—1357.

Kubíš M. & Broska I. 2005: Role of boron and fluorine in evolved granitic rock systems (on example Hnilec area, Western Carpathians). Geol. Carpathica 56, 193—204.

GEOLOGICA CARPATHICA, 2015, 66, 1, 19—36

