The ammonium content in the Malayer igneous and metamorphic rocks (Sanandaj-Sirjan Zone, Western Iran)

VAHID AHADNEJAD1*, ANN MARIE HIRT2, MOHAMMAD-VALI VALIZADEH3 and SAEED JABBARI BOKANI4

1Geology Department, Payame Noor University (PNU), 19395-4697 Tehran, Iran; *ahadnejad@khayam.ut.ac.ir
2Institute of Geophysics, ETH-Zürich, Sonneggstrasse 5, CH-8092 Zürich, Switzerland
3School of Geology, University College of Science, University of Tehran, Tehran
4Geological Survey of Iran (GSI), Azadi sq. Merraj St. P.O. Box 13185–1494, Tehran

(Manuscript received April 7, 2010; accepted in revised form October 11, 2010)

Abstract: The ammonium (NH4+) contents of the Malayer area (Western Iran) have been determined by using the colorimetric method on 26 samples from igneous and metamorphic rocks. This is the first analysis of the ammonium contents of Iranian metamorphic and igneous rocks. The average ammonium content of metamorphic rocks decreases from low-grade to high-grade metamorphic rocks (in ppm): slate 580, phyllite 515, andalusite schist 242. In the case of igneous rocks, it decreases from felsic to mafic igneous types (in ppm): granites 39, monzonite 20, diorite 17, gabbro 10. Altered granitic rocks show enrichment in NH4+ (mean 61 ppm). The high concentration of ammonium in Malayer granites may indicate metasedimentary rocks as protoliths rather than meta-igneous rocks. These granitic rocks (S-types) have high K-bearing rock-forming minerals such as biotite, muscovite and K-feldspar which their potassium could substitute with ammonium. In addition, the high ammonium content of metasediments is probably due to inheritance of nitrogen from organic matter in the original sediments. The hydrothermally altered samples of granitic rocks show highly enrichment of ammonium suggesting external sources which intruded additional content by either interaction with metasedimentary country rocks or meteoritic solutions.

Key words: Iran, Sanandaj-Sirjan Zone, Malayer, igneous rocks, metasedimentary rocks, ammonium.

Introduction

Recent research has revealed that geological nitrogen has an important role in geological problems such as lithogenetical explorations (Ridgway et al. 1990; Glasmacher et al. 2003), biogeochemical implications (Boyd 2001; Holloway & Dahlgren 2002), environmental studies (Crews et al. 2001), and petrological investigations (Honma & Ithihara 1981; Hall 1999).

Nitrogen is a rare element in igneous rocks which is significant for nutrition of soils and has an important role in petrology. It includes an inorganic component as fixed ammonium, incorporated into potassium silicate minerals and, generally, concentrated in micas, feldspars, and clay minerals. Nitrogen in low-grade metamorphic and igneous rocks occurs as NH4+, and in sediments and sedimentary rocks as NH3 (Wedepohl 1978; Halama et al. 2010). The concentration of NH4+ in igneous rocks is generally related to the kind and amount of the silicate minerals and the ammonium contents that are available for fixation during the existence of the minerals (Stevenson 1962). The NH4+ ion has a similar estimated ionic radius to that of K+ (NH4+ — 1.66 Å, K+ — 1.59 Å), which tends to explain the presence of ammonium in K-bearing minerals. Because of the stability of (NH4+) in high temperature conditions and its survival in metamorphism, the concentration of geological nitrogen as a geochemical tracer in the rocks would be important to crustal processes. In the igneous rocks it is linked to their protolith; if they originate from melting of metasedimentary rocks or assimilated by crystal component, their NH4+ concentrations could be high. The hydrothermal activity and hydrothermal fluids could readily transport NH4+ from other systems into rocks and cause the enrichment of altered samples in NH4+.

Several researchers have reported different mean concentration of N for igneous (e.g. Wedepohl 1978; Hall 1999) and low-grade metamorphic rocks (e.g. Juster et al. 1987). Wedepohl (1978) reported an average N concentration of around 20 ppm for granitoids and half of that amount for the gabbroic and dioritic rocks, whereas Hall (1999) suggested 35 ppm for the granitic, 6 and 2 ppm for the gabbroic and dioritic rocks respectively. Juster et al. (1987) pointed out that the low-grade metamorphic rocks routinely contain 200–400 ppm NH4+.

Hall (1993a) believed that the differences and uncertainties on ammonium contents of rocks may have three reasons: (1) Because analytical determination of ammonium and nitrogen in igneous rocks was developed recently and was not easy in the past, few workers tend to measure this element in their studies and there is not enough data from worldwide rock types to gain a precise average content; (2) Determination of ammonium in igneous rocks and especially volcanic types is difficult because of their very low ammonium content; (3) Geological processes such as alteration and country rocks can affect enrichment of ammonium.

In this study, we performed the first ammonium measurements on Iranian rocks which consist of the Malayer plutonic and metasedimentary country rocks in the Sanandaj-Sirjan Zone of Western Iran, for assessing its importance in the petrological processes.
Geological setting

Sanandaj-Sirjan Zone

The investigated area is located within the Sanandaj-Sirjan Zone (SSZ) which is a part of the Zagros orogeny. The SSZ has 1500 km length from northwest (Sanandaj) to southeast (Sirjan) in the western part of Iran and a width of 150–200 km (Mohajjel & Ferguson 2000) (Fig. 1). It separated from the Arabian platform during the Late Triassic to the Early Jurassic. Mesozoic rocks are dominant in this zone and Paleozoic rocks generally are common in the southeastern part (Berberian 1995). The SSZ is characterized by metamorphosed and complexly deformed rocks associated with abundant deformed and undeformed plutons, as well as widespread Mesozoic volcanics. These magmatic rocks, including the Malayer intrusive complex, generally have calc-alkaline affinities (e.g. Ahmadi-Khalaji et al. 2007; Azizi & Jahangiri 2008; Ahadnejad et al. 2008a; Ghalamghash et al. 2009).

Malayer intrusive complex

The Middle–Jurassic Malayer intrusive complex is an elongated batholith in the northern part of the SSZ. It is composed of granite, granodiorite, diorite and some small monzonitic and gabbroic bodies (Fig. 1). It is 35 km in length and 10 km in width and located in the southwest part of Malayer city, Western Iran. The Malayer complex underwent deformation in the high-strain shear zone and gained a NW–SE direction parallel to the SSZ. Major structural features include thrust faults, strike-slip faults, and a variety of cleavages and foliations. Variable composition of rocks indicated different source rocks and hybridization of mafic and felsic magmas. Analysis of selected samples using ICP showed that they have SiO$_2$ (wt. %) content from 46.82 (gabbro) to 77.35 (alkali-granite). They are highly peraluminous to metaluminous with high-K calc-alkaline affinity (Ahadnejad et al. 2008a).

The field, petrography, geochemistry, geochronology and isotopic data imply that the granitoids are the hybrid products of partial mixing between basic and granitic melts, generating hybrid phases, such as the tonalitic rocks. During ascent and emplacement of magma, mixing was followed by assimilation of metasedimentary country rocks. The assimilation and contamination are shown by metasedimentary enclaves and anadalous xenocrystals occurrences in the granitoids especially next to the contacts. This feature has been detected in the Malayer pluton, where initial 87Sr/86Sr ratios increase from an average of 0.7085 in the marginal Q-diorites and the 0.7087 in granodiorites, to ca. 0.7011 in the syenogranites from the central part of pluton (Ahadnejad et al. 2011). Furthermore, co-existence of antagonistic mineral assemblages (e.g. allanite + titanite + monazite + hornblende + muscovite + ...) indicate that primary magma originating from the mid to lower crust contaminated by supracrustal materials and the overall composition is significantly affected by this process. The scattered pattern of elements may have been caused by this process.

U–Pb zircon ages (Middle–Jurassic) has been obtained from all rock types of complex (Ahadnejad et al. 2011) indicate that emplacement of this pluton was performed during the subduction of Neotethys under Central Iran in an active continental margin tectonic setting. In the Pearce et al. (1984) discrimination diagrams the studied rocks plot mostly within the field of volcanic arc granites (VAG) (Fig. 2a and b). Most of the data are plotted in the peraluminous field in the A/NK–A/CNK diagram (Shand 1943). Despite relatively high A/CNK values, the granitic suite displays some affinities with I-type granitoids, and some samples contain hornblende and allanite. The distribution of samples in the diagrams FeO$_2$/MgO versus 10000 Ga/Al (Fig. 2d) and Nb versus 10000 Ga/Al (Fig. 2e) proposed by Whalen et al. (1987) do not suggest A-type character for Malayer granitoids.
Petrographic studies show that the texture of the granitoids is mainly granular to porphyroid (Fig. 3a). They have mafic microgranular and metasedimentary enclaves which occur as angular to ellipsoidal shapes ranging from several cm to 0.6 meter in size. The mafic microgranular enclaves are dioritic in composition. The rock-forming minerals are mainly composed of K-feldspar (orthose and microcline), plagioclase, quartz, biotite and minor hornblende and muscovite. The accessory minerals are garnet, tourmaline, andalusite, cordierite, allanite, titanite, zircon and apatite. The andalusite is mostly observed in the contact of granitoids and metasedimentary country rocks. It has reaction rims containing aggregates of quartz, andalusite, muscovite, and biotite with symplectitic relationships which imply its disequilibrium with the melt. Clarke et al. (2005) indicate that these disequilibrated andalusites in the granitoid rocks cannot have a magmatic origin and are considered to be xenocrystic derived from local peraluminous country rocks. They may be released from disaggregating, contact-metamorphosed metapelites into a silicate melt and, in general, such xenocrysts derived from local peraluminous country rocks. They may be released from disaggregating, contact-metamorphosed metapelites into a silicate melt and, in general, such xenocrystic grains would be out of chemical equilibrium with that melt. Feldspars are euhedral to subhedral and frequently show exsolution lamellas of albite (microperthite) (Fig. 3b). Plagioclase minerals show polysynthetic twinning and zoning. They experienced mechanical crash and their crash zones are filled by quartz and alkali feldspar. Quartz shows undulatory extinction. Myrmekites can frequently be observed around feldspars. The secondary minerals formed by alteration are muscovite, clinzoisite, sericite, clay minerals, chlorite, calcite and Fe-oxides.

The dioritic unit is located in the southeastern part of the complex and is accompanied by subordinate gabbroic and quartz monzodioritic rocks. It is lenticular in shape, medium- to coarse-grained, dark-coloured and mainly consists of plagioclase, amphibole, biotite, K-feldspar, and minor quartz (Fig. 3c). Accessory minerals are apatite, zircon, epidote and opaque minerals. Andalusite minerals are occasionally seen as xenocrysts. Apatite occurs as euhedral prismatic and acicular shapes resulting from rapid cooling of minor mafic components added to intermediate or felsic magma chambers.

A subordinate gabbroic unit is located in the corner of the diorite. It is dark-coloured, medium- to coarse-grained and its main constituents are plagioclase, amphibole, olivine, augite, and minor biotite and alkali feldspar (Fig. 3d). The apatite, epidote, and opaque minerals are accessory minerals.

Hydrothermal alterations in the Malayer granitic rocks are moderate and mainly occur on the corners of bodies, local shear zones and fractures. The major observed types of alterations are: sericitization, silicification, chloritization, oxidation and tourmalinization. Sericitization is the most...
widespread alteration in the rocks. It is common in feldspars (plagioclase and alkali-feldspar) and sericitized grains reflect the zoning. This alteration implies low pH (acidic) conditions of the mineralized fluid (Faulkner 1992). Chloritization is generally observed along with sericitization due to alteration of mainly mafic minerals (biotite and amphibole). Amphibole and plagioclase minerals have also been altered into calcite. The replacement of the feldspar by epidote and sericite and the hornblende and biotite by chlorite is common and characteristic of the hydrothermal alteration associated with contact metamorphism.

Some small veins and veinlets of quartz and also small quartz crystals are formed due to silicification and rocks are normally silicified along faults and fractures. Tourmalinization in the magmatic rocks occurs as small patches and veinlets and is mainly found in contact with country rocks. Despite lack of mineral chemistry, the field observations demonstrate that tourmaline has probably originated from hydrothermal fluids. On the field scale, the brown surfaces of the granitic hills demonstrate chloritization and the iron oxide varnish of rocks. Locally, these rocks have been deeply weathered and intensely arenized to form soils which are used as wheat farms and almond-tree gardens and have a sharp boundary with non-granitic country rocks.

To quantify alteration, the Ishikawa et al. (1976) alteration index (AI) = 100*(K2O+MgO)/(K2O+MgO+Na2O+CaO) was measured for all the granitic samples (Table 2). The key reactions measured by the index involve the breakdown of sodic plagioclase and replacement by sericite and chlorite:

\[
\begin{align*}
3\text{NaAlSi}_3\text{O}_8 + K^+ + 2\text{H}^+ &= \text{KAl}_3\text{Si}_3\text{O}_{10}(\text{OH})_2 + 6\text{SiO}_2 + 3\text{Na}^+ \\
2\text{KAl}_3\text{Si}_3\text{O}_{10}(\text{OH})_2 + 3\text{H}_2\text{SiO}_3 + 9\text{Fe}^{2+} + 6\text{Mg}^{2+} + 21\text{H}_2\text{O} &= 3\text{Mg}_3\text{Fe}_2\text{Al}_2\text{Si}_3\text{O}_{10}(\text{OH})_8 + 2\text{K}^+ + 28\text{H}^+
\end{align*}
\]

Reactions (1) involves a loss of Na2O (and CaO) and a gain of K2O, whereas reaction (2) involves a loss of K2O and gains in FeO and MgO, on the basis of constant Al2O3. Samples Nos. 116 and 161 display the expectedly high Al values (91 % and 92 %, respectively) and are located in the altered field of Wilt (1995) but sample No. 106 has a low value (ca. 41 %).
which plots in the fresh field (Fig. 4). The samples 116 and 161 are from syenogranite and monzogranite, respectively. The alteration of these samples consists of sericitization of plagioclase, chloritization of biotite and secondary muscovitization of the K-feldspar phenocrysts. The high K content of these samples, therefore, could be ascribed to sericitized plagioclase and secondary muscovite. The occurrence of andalusite caused the high Al-content in sample No. 161. Sample No. 106 is from granodiorite and shows alteration of K-feldspar and biotite to albite, muscovite, chlorite and epidote. This is consistent with sodic-calcic alteration which is supported by a chemical analysis that displays high contents of Na2O and CaO (Table 2). Despite decreases of ammonium due to alteration of K-feldspar to sodic plagioclase (i.e. albite-oligoclase) (Honma & Iihara 1981) and/or epidote, muscovitization of K-feldspar and chloritization of biotite probably caused substantial enrichment of this sample from ammonium. This feature is in good agreement with Hall’s (1993a) argument about the high ammonium content of chloritized biotite. Furthermore, Honma & Iihara (1981) showed that the muscovite contains an average of ~40 % of N concentration in a rock. With respect to high Na2O, FeO, MgO and CaO and low K2O content of 106 it is concluded that the reaction (2) is responsible for alteration in this sample which is supported by petrographic observations of chloritization. In addition, a characteristic feature of this sample is high Cl content which could provide a potential for ammonium concentration via ammonium-chlorite bearing inorganic compounds? (e.g. NH4ClO, NH4ClO2, etc.). However, minerals such as amphiboles, biotite and apatite could contain chlorine. On the other hand, sample No. 56 from fresh samples shows a high Al value (ca. 81 %). Concerning petrography it seems that it is in the incipient step of alteration via reaction (1) as shown by low Na2O and fairly high K2O and H2O. The MgO content of this sample is high due to occurrence of augite (clinoxyroxene).

The occurrences of tonalite, granodiorite and diorite as hybrid rocks, existing of disequilibrated andalusites, garnet, alantite, acicular apatite, titanite and cordierite in the rocks, and mafic microgranular and metasedimentary enclaves implied that they were probably produced by interaction of mafic and felsic rocks accompanied by assimilation into metasedimentary rocks. This is supported by high values of 87Sr/86Sr (0.70797 to 0.7108) which are measured for all plutonic rock types at Isotope Geochemistry and Mineral Resources, ETH-Zurich, Switzerland, using the ID-TIMS technique. In addition, the high- and low-field anisotropy of magnetic susceptibility (AMS) and paleomagnetic analysis that were performed by the first author at the Paleomagnetic Laboratory of the Institute of Geophysics at ETH, show that the igneous rocks have low magnetic susceptibility (4–706 µSI) and belong to the ilmenite-series of Ishihara (1977). The value of 3×10–3 SI unit (equivalent to 100×10–6 emu/g unit of Ishihara 1979) is usually taken as the boundary dividing the magnetite- and ilmenite-series granitoids. The high field analyses (HFA) on the 39 among 90 drilled cores from throughout the pluton shows that all the samples are composed of dominant paramagnetic components except for 3 samples (8 %) which show a ferromagnetic character (Ahadnejad et al. unpubl. data). Finally, the biotite geochemistry of the rocks (Ahadnejad et al. 2008b) displays a reduced magma fugacity (10–15 to 10–10 bar) for a crystallizing temperature of 700 °C at QFM buffer.

Metasedimentary rocks

The regional metamorphic rocks are slate, phyllite, and schist. Quartz, muscovite, biotite and K-feldspar are the main components of the rocks. The micas arranged into preferred orientations and caused slaty cleavages in slates (Fig. 5a). The slates and phyllites show granular and lepidoblastic to lepidogranoelastic textures, respectively. Andalusite and garnet are the major porphyroblasts in the schists (Fig. 5b). These rocks are composed of biotite, muscovite, quartz and feldspars. The schistosity of the rocks is oriented in the NW–SE direction. According to the diagram FeOt/K2O—SiO2/Al2O3 (Fig. 6) suggested by (Herron 1988), different metamorphic rock varieties of Malayer (slate, phyllite and schist) correspond to clays (Fig. 6), and have relatively uniform chemical compositions which may indicate differences from similar sedimentary rocks.

Sampling and analytical methods

Two groups of samples were analysed in this study. One group consists of 17 samples from various igneous rocks ranging from granite to gabbro including 3 altered samples. The modal analysis results indicate that they are syenogranitic to gabbro (Table 1 and Fig. 7). The other group consists of 9 samples from regional metamorphic rocks (slate, phyllite and schist). Samples are represented all rock types that occurred in the Malayer area except for hornfels. The mean amount of material collected was about 4 kg per sample. We crushed the samples and analysed them in the AMDEL laboratories, Australia for major elements and in the Geological Survey of Iran (GSI) for ammonium. The most popular technique for the determination of ammonium in geological samples is the colorimetric method based on the formation of indophenol blue and we used this method to measure the concentration of ammonium in the rocks at the Geological Survey of Iran (GSI). This method consists of sam-

Fig. 4. Alteration diagram proposed by Wilt (1995) (weight percent of SiO2 versus Alteration Index=(MgO+K2O)/(Na2O+K2O+CaO+MgO)*100) shows the altered and fresh samples fields.
ple digestion in cold HF for 7 days, followed by separation of ammonia by distillation from alkaline solution, and a colorimetric finish using the indophenol blue method. A detailed description of the method is given by (Hall 1993b).

Results and discussion

In this research we reported average ammonium contents of 580 for slate, 515 for phyllite, 242 for andalusite schist, 39 for granitoids, 20 for monzonite, 17 for diorite, 10 for gabbro in the Malayer rocks.

The ammonium content of the Malayer igneous rocks systematically increases from basic to more felsic rocks as follows: 10, 17, 20, and 39 as averages for gabbro, diorite, monzonite, and granitoids respectively (Table 2). Among gra-

Table 1: Modal analyses of Malayer igneous rocks.

<table>
<thead>
<tr>
<th>Name</th>
<th>38</th>
<th>44</th>
<th>54</th>
<th>56</th>
<th>61</th>
<th>68</th>
<th>77</th>
<th>80</th>
<th>87</th>
<th>91</th>
<th>149</th>
<th>150</th>
<th>186</th>
<th>192</th>
<th>106*</th>
<th>116*</th>
<th>161*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>21</td>
<td>24</td>
<td>23</td>
<td>17</td>
<td>22</td>
<td>17</td>
<td>4</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>39</td>
<td>8</td>
<td>19</td>
<td>3</td>
<td>23</td>
<td>43</td>
<td>18</td>
</tr>
<tr>
<td>Alkali Feldspar</td>
<td>30</td>
<td>16</td>
<td>28</td>
<td>19</td>
<td>41</td>
<td>30</td>
<td>38</td>
<td>25</td>
<td>3</td>
<td>38</td>
<td>31</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>23</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Plagioclase</td>
<td>25</td>
<td>19</td>
<td>43</td>
<td>18</td>
<td>43</td>
<td>30</td>
<td>38</td>
<td>25</td>
<td>3</td>
<td>38</td>
<td>31</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>23</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Biotite</td>
<td>16</td>
<td>7</td>
<td>15</td>
<td>16</td>
<td>11</td>
<td>16</td>
<td>9</td>
<td>11</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>7</td>
<td>10</td>
<td>6</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Muscovite</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphibole</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>13</td>
<td>5</td>
<td>13</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pyroxene</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Opaque</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Accessory*</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

*Accessory minerals include: Apatite, Zircon, Allanite, Monazite, Tourmaline, Sphene, Andalusite, … .

GEOLOGICA CARPATHICA, 2011, 62, 2, 171–180
Table 2: Whole rock geochemistry and ammonium content of Malayer igneous rocks (SG = Syenogranite; MG = Monzogranite; GD = Granodiorite; Mz = Monzonite; To = Tonalite; Di = Diorite; Gb = Gabbro) (mineral abbreviations from Kretz 1983).

| Sample | Rock | Mineralogy | NH₄ | SiO₂ | Al₂O₃ | K₂O | Na₂O | FeOₙ | MgO | CaO | Sample | Rock | TIO₂ | P₂O₅ | MnO | Ba | Rb | Sr | LO | ASI | DI | AI% | Total |
|--------|-------------------------------|---------------------------------|-----|------|-------|-----|------|------|-----|-----|--------|------|------|------|-----|----|----|----|----|----|-----|----|-----|-------|
| 38 | MG | Qtz+Kfs+Pl+Mc+Bt+Amp+And | 0.30| 0.13 | 0.06 | | 6.39 | 229 | 182 | 2.1 | MG | 0.30 | 0.13 | 0.06 | | 6.39 | 229 | 182 | 2.1 | | | 100.0 |
| 44 | Gd | Qtz+Pl+Kfs+Br+Acc+Zn | 0.99| 0.14 | 0.07 | | 935 | 180 | 285 | 0.91| Gd | 0.54 | 0.16 | 0.07 | | 935 | 180 | 285 | 0.91| | | 99.4 |
| 54 | MG | Qtz+Mc+Kfs+Pl+Tur | 0.54| 0.13 | 0.08 | | 406 | 402 | 568 | 1.97| MG | 0.59 | 0.13 | 0.08 | | 406 | 402 | 568 | 1.97| | | 99.9 |
| 56 | Gd | Qtz+Pl+Acc+Kfs+P+Aug+And | 0.56| 0.14 | 0.07 | | 70.4 | 8.6 | 247 | 2.67| Gd | 0.60 | 0.14 | 0.07 | | 70.4 | 8.6 | 247 | 2.67| | | 100.1|
| 61 | SG | Qtz+Kfs+Mc+Pl+Tur | 0.56| 0.06 | 0.00 | | 83.3 | 268 | 66 | 0.26| SG | 0.56 | 0.06 | 0.00 | | 83.3 | 268 | 66 | 0.26| | | 99.8 |
| 68 | MG | Qtz+Pl+Br+Acc | 0.54| 0.13 | 0.07 | | 935 | 180 | 285 | 0.91| MG | 0.54 | 0.13 | 0.07 | | 935 | 180 | 285 | 0.91| | | 99.9 |
| 77 | Mz | Qtz+Kfs+Bt+Acc+And | 0.54| 0.16 | 0.07 | | 935 | 180 | 285 | 0.91| Mz | 0.54 | 0.16 | 0.07 | | 935 | 180 | 285 | 0.91| | | 99.7 |
| 80 | MG | Qtz+Pl+Mc+Kfs+Br+Acc | 0.54| 0.16 | 0.07 | | 935 | 180 | 285 | 0.91| MG | 0.54 | 0.16 | 0.07 | | 935 | 180 | 285 | 0.91| | | 99.7 |
| 87 | To | Qtz+Pl+Br+Acc+Ms+And | 0.54| 0.16 | 0.07 | | 935 | 180 | 285 | 0.91| To | 0.54 | 0.16 | 0.07 | | 935 | 180 | 285 | 0.91| | | 99.7 |
| 91 | SG | Qtz+Kfs+Mc+Br+Acc+Ms+Tur | 0.54| 0.16 | 0.07 | | 935 | 180 | 285 | 0.91| SG | 0.54 | 0.16 | 0.07 | | 935 | 180 | 285 | 0.91| | | 99.7 |
| 149 | SG | Qtz+Kfs+Mc+Br+Acc+Ms+Tur | 0.54| 0.16 | 0.07 | | 935 | 180 | 285 | 0.91| SG | 0.54 | 0.16 | 0.07 | | 935 | 180 | 285 | 0.91| | | 99.7 |
| 150 | Br | Qtz+Kfs+Mc+Br+Acc+And+Aln | 0.54| 0.16 | 0.07 | | 935 | 180 | 285 | 0.91| Br | 0.54 | 0.16 | 0.07 | | 935 | 180 | 285 | 0.91| | | 99.7 |
| 192 | Gd | Qtz+Kfs+Mc+Br+Acc+Ol | 0.54| 0.16 | 0.07 | | 935 | 180 | 285 | 0.91| Gd | 0.54 | 0.16 | 0.07 | | 935 | 180 | 285 | 0.91| | | 99.7 |
| 1007 | Gd | Qtz+Kfs+Mc+Br+Acc+Ol+P+Ep+Chl+And | 0.54 | 0.16 | 0.07 | | 935 | 180 | 285 | 0.91| Gd | 0.54 | 0.16 | 0.07 | | 935 | 180 | 285 | 0.91| | | 99.7 |
| 1167 | SG | Qtz+Kfs+Mc+Br+Acc+And+Chl+Ser | 0.54| 0.16 | 0.07 | | 935 | 180 | 285 | 0.91| SG | 0.54 | 0.16 | 0.07 | | 935 | 180 | 285 | 0.91| | | 99.7 |
| 1617 | MG | Qtz+Kfs+Mc+Br+Acc+And+Chl+Ser | 0.54| 0.16 | 0.07 | | 935 | 180 | 285 | 0.91| MG | 0.54 | 0.16 | 0.07 | | 935 | 180 | 285 | 0.91| | | 99.7 |

Fig. 8. The positive correlations of a – SiO₂ vs. NH₄, and b – K₂O.
tallization or production by partial melting of metasedimentary rocks. On the other hand, altered samples show an alteration trend of increasing CaO + FeO + MgO with increasing NH₄⁺ (Fig. 9).

The alkali ratios (Na₂O/K₂O) against ammonium contents diagram shows distinctive ammonium enrichment for altered samples (Fig. 10). As seen in the diagram, by decreasing value of Na₂O/K₂O, which implies increasing of alteration (Hall 1999), the ammonium contents are raised. The variability and scattering of data can be explained by assimilation processes that involved additional ammonium from country rocks. This is supported by abundant metasedimentary enclaves as assimilation traces in igneous rocks. However, no clear correlation between rock type and NH₄⁺ content is evident from this diagram.

Because Rb is incorporated in K minerals and Sr in Ca minerals, during fractional crystallization, Sr tends to become concentrated in plagioclase, leaving Rb in the liquid phase. Hence, the Rb/Sr ratio in residual magma may increase over time, resulting in rocks with increasing Rb/Sr ratios with increasing differentiation. Typically, Rb/Sr increases in the order plagioclase, hornblende, K-feldspar, biotite, muscovite. The Rb/Sr ratios of the studied igneous rocks increased from mafic to felsic rocks. The ammonium contents correlate positively with Rb/Sr ratios (Fig. 11) which indicate increasing ammonium concentration in more differentiated rocks.

Generally, the wide range of ammonium concentration in the granitoids prevent us classifying them into I- and S-type based on their ammonium content (e.g. Hall 1999; Kohút & Pieczka 2003). The S-type granitic rocks, which originate from molten sedimentary rocks, may have different values of the NH₄⁺ due to inhomogeneous sources and overlap with I-types. However, Tainosho & Itihara (1988) show that NH₄⁺ contents of biotites from S-type granitic rocks are higher than those for I-type granitic rocks. In the Malayer granitoids, because most of the NH₄⁺ data overlap, it is difficult to distinguish I- and S-types granitoids.

The samples of 106, 116, and 161 were selected from altered ones for assessing alteration effects on the ammonium concentration in granitoids. The results show that the ammonium content is high in these rocks (Table 2).

Hall et al. (1991) assumed that in the altered granites, the hydrothermal solutions have introduced additional ammonium from an external source to the granitic plutons. This source could be decay of nitrogenous organic compounds of sediments or soil that converted to ammonia. Subsequently, the ammonia immediately converted to the ammonium ion by solution in groundwater and can then be incorporated into silicate minerals and preserved indefinitely. This is a significant petrological characteristic of ammonium that enables geologists to distinguish initial hydrothermal alteration in granites.
The 2 samples from slates, 4 samples from phyllites and 3 samples from schists of the Malayer metamorphic country rocks were analysed. As shown in Table 3, ammonium is progressively depleted from slate with 580 ppm, to the phyllite with 515 ppm and andalusite schist with 242 ppm. Bebout & Fogel (1992) suggested that during regional and contact metamorphism, the ammonium contents decrease with increasing temperature. This is fully confirmed by our research, where the ammonium contents decrease from low-/medium-grade to schists. This feature may reflect a loss of nitrogen by breakdown of NH₄⁺-bearing minerals during thermal decomposition, devolatilization, or cation exchange (Hallam & Eugster 1976).

Conclusions

(i) The current paper presents the first ammonium analysis for Iranian rocks in the Malayer area. The results show that ammonium contents increase from mafic (gabbro) to felsic (granite) igneous rocks. This is probably caused by increasing of potassic minerals in felsic types. Due to good correlation between K and ammonium, it is concluded that at least in granitoids the main carrier of NH₄⁺ is biotite and muscovite. In the case of mafic types, feldspars could be suitable hosts for ammonium.

(ii) The altered granitoids are highly enriched in ammonium (with an average of 61 ppm) compared with those fresh samples (39 ppm) which suggests that the solutions feed rocks for ammonium from external sources.

(iii) There is a significant negative correlation between NH₄⁺ and mafic elements (CaO + FeO + MgO). This implies a magmatic trend for ammonium concentration in igneous rocks and documents that ammonium concentration increases during differentiation of a rock suite.

(iv) It is difficult to ascribe the Malayer granitic rocks to I- or S-type granitoids, on the basis of ammonium contents.

(v) The altered samples show the opposite trend of increasing NH₄⁺ with increasing mafic elements.

(vi) The metametamorphic rocks have high concentration of ammonium which may imply nitrogen rich source materials (clays). The micas are the NH₄⁺ carrier in metamorphic rocks.

(vii) Progress in metamorphism caused a decreasing of ammonium contents in metamorphic rocks by thermal decomposition and devolatilization.

Acknowledgments: The authors would like to thank Dr. Milan Kohút and Igor Petrik for their constructive comments.

This research was financially supported by the Iran National Science Foundation, Grant No. 86103/32.

References

Ahadnejad V., Valizadeh M.V. & Esmaeili D. 2008a: The role of shear zone on the emplacement of Malayer Granitoid Complex, NW Iran. J. Appl. Sci. 8, 4238–4250.

