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Abstract. Landsat-8 OLI and Sentinel-2 MSI images from years 2015 and 2016, a 1:10,000 
digital soil map and a large number of reference samples were used with a random 
forest machine learning implementation in GRASS GIS to construct a tree species map 
for the entire territory of Estonia (42,755 km2). Class probabilities for seven main tree 
species, an extra class for other species and probability of the forest cover not con-
forming to the forest defi nition were assigned for each pixel. Validation of dominant 
species distribution by area showed very strong correlation at county level both in 
state forests (R2 = 0.98) and in private forests (R2 = 0.93). Validation of tree species 
composition using harvester measurement data from 2,045 regeneration felling areas 
showed also very strong correlation (R2 = 0.75) with the measured values of the pro-
portion of coniferous trees. There was some tendency to underestimate the proportion 
of more common species and overestimation was found for the species with smaller 
proportion in the mixture. The accuracy for the proportion of deciduous species that 
were present in a smaller number of reference observations was substantially smaller. 
Validation of the results by using data from 659 large sample plots from the database 
of the Estonian Network of Forest Research Plots and 3,002 small sample plots from the 
National Forest Inventory (NFI) data base confi rmed the fi ndings based on harvester 
data. The NFI data revealed also a decrease of estimation error with the increase of 
forest age. Cohen’s kappa index of agreement for main species for NFI sample plots 
with main species proportion equal to or greater than 75% decreased from 0.69 to 0.66 
when observations with forests younger than 20 years were included in the comparison. 
Overall, the constructed map provides valuable data about tree species composition 
for the forests where no up to date inventory data are available or for the projects that 
require continuous cover of tree species data of known quality over the entire Estonia.

Key words: forest inventory, random forest, tree species, raster map.

Authors’ addresses: 1Tartu Observatory, Faculty of Science and Technology, Uni-
ver sity of Tartu, 61602 Tõravere, Tartumaa, Estonia; 2Institute of Forestry and Rural 
Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, Estonia; 
3Forest Department, Estonian Environment Agency, Mustamäe tee 33, 10616 Tallinn, 
Estonia; *e-mail: mait.lang@to.ee



6

M. Lang et al.

Introduction

Sustainable forest management planning 
and forest policy making requires forest 
inventory data at different spatial scales 
and generalization levels. Individual forest 
stand data are used for forest management 
planning (Metsakorralduse, 2017). Forest 
policy development and general monitor-
ing of trends is usually based on National 
Forest Inventories (NFI) carried out on a 
sampling grid of permanent sample plots 
(Tomppo et al., 2010). Both of the forest in-
ventory methods use remote sensing data. 
Stands are delineated for the forest man-
agement planning using aerial photographs 
(Spurr, 1948). Maps of wood volume esti-
mates that are constructed with nonpara-
metric estimation methods e.g. k-nearest 
neighbour (kNN) using sample plot meas-
urements and feature variables from multi-
spectral satellite images are some of the out-
puts of NFIs (McRoberts & Tomppo, 2007). 
In Estonia Tamm & Remm (2009) used ref-
erence set observations taken from a forest 
management inventory database (FIDB), 
Landsat ETM+ images and a 1:10,000 digital 
soil map data for machine learning-based 
construction of standing wood volume 
maps and obtained root mean square error 
(RMSE) 87.0 m3 ha–1 (42%) at pixel level and 
74.6 m3 ha–1 (36%) at stand level.

Wood volume data are important for 
the estimation of carbon storage and esti-
mation of timber, but tree species composi-
tion data are required for biodiversity as-
sessment (Laarmann et al., 2009; McRoberts 
et al., 2012), satellite-based estimation of net 
primary production (Zhao et al., 2011; Lang 
et al., 2017), ecosystem models (Duveneck 
et al., 2015), and also for purposes of moni-
toring and forest industry planning. Tree 
species composition of a forest stand is a 
vector of the relative proportions of indi-
vidual species stemwood volume from total 
stemwood volume of the stand. However, 
maps with up-to-date inventory estimates 
in the Forest Inventory Data Bases (FIDB) 
cover usually only the forests where the 

owner is interested in management and the 
number of NFI sample plots per unit area is 
only suffi cient for estimating regional aver-
ages. For spatially continuous estimates, a 
machine learning approach with spatial 
feature variables (multispectral images, air-
borne lidar data, soil maps) can be used to 
construct tree species composition maps at 
medium spatial resolution (20–30 m) for all 
forests in the region. Decision trees-based 
random forest-type (RF) methods have been 
successfully used for tree species classifi ca-
tion and land cover mapping (Yang et al., 
2014; Barrett et al., 2016).

In this study we used a RF implemen-
tation (r.learn.ml) in GRASS GIS (GRASS 
Development Team 2017), Landsat-8 
Operational Land Imager (OLI) and 
Sentinel-2 Multi spectral Instrument (MSI) 
images, a 1:10,000 digital soil map and a 
large number of reference samples drawn 
from an FIDB to construct a tree species 
map for all of Estonia. The map was then 
validated using county level statistics, har-
vester measurements from regeneration 
felling stands, samples from the database of 
Estonian Network of Forest Research Plots 
(Kiviste et al., 2015) and also a set of NFI 
sample plots.

Material and Methods

The location
The study area (Figure 1) included the en-
tire terrestrial territory of Estonia (42,755 
km2) except for Ruhnu, a small and distant 
island in the Baltic Sea. About half (53.2%) 
of the Estonian terrestrial territory is for-
est land, which is 51% publicly owned by 
state or municipalities while the remain-
der belongs to private forest owners; a 
small part (46,341 ha) was retained by the 
state after land restitution following the 
collapse of the Soviet Union (Raudsaar et 
al., 2017, Valgepea & Maamets, 2017). The 
most widespread forest trees in Estonia are 
European aspen (Populus tremula L.), silver 
birch (Betula pendula Roth), downy birch 
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(B. pubescens Ehrh.), Norway spruce (Picea 
abies (L.) Karst.), black alder (Alnus gluti-
nosa (L.) Gaertn.), grey alder (A. incana (L.) 
Moench), Scots pine (Pinus sylvestris L.) and 
common ash (Fraxinus excelsior L.). These 
tree species grow in different mixtures in 
Estonia. On fertile soils Norway spruce 
is also common in the mid-story and the 
understory of the forests. Due to the his-
torical background state owned forests 
stands are dominated by Scots pine, birch 

spp. and Norway spruce and in private 
land the forest stands are dominated by 
birch spp. followed by Scots pine and grey 
alder (Raudsaar et al., 2017). This differ-
ence is caused by the tendency for natural 
regeneration of fast growing broadleaf de-
ciduous species after regeneration fellings 
(Raudsaar et al., 2014) and the large share of 
abandoned agricultural private land where 
fast growing broadleaf deciduous trees do 
occur in the fi rst order.

 
 Figure 1.  The study area covers the entire territory of Estonia. The squares mark eight image sub-

sampling regions that overlap partially. County borders are drawn on the map.
Joonis 1.  Pilditöötlus tehti väiksemate ristkülikukujuliste serviti kattuvate piirkondade (katkend-

jooned) kaupa. Kaardile on kantud ka maakondade piirid.
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Ancillary data and feature variables
Satellite imagery from Landsat-8 Operational 
Land Imager (OLI) and Sentinel-2 Multi-
spectral Instrument (MSI) (Table 1) were 
downloaded from the USGS GloVis por-
tal (https://glovis.usgs.gov) and from the 
Copernicus Open Access Hub (https://
scihub.copernicus.eu). We used top-of-
atmo sphere radiances and did not apply 
atmospheric correction. Using cloud-free 
sub-regions of the images it was possible 
to cover the entire country and pairs of im-
ages on different dates provided informa-
tion on phenology as this has been found 
informative for mapping species composi-
tion (Wilson et al., 2012).

All the images were transformed into 
the Estonian base map coordinate system 
(EPSG:3301) using GDAL tools (www.gdal.
org). A pixel size of 25 m was used as a com-
promise between the original spatial resolu-
tion of the images and the large volume of 
data. Nearest neighbour resampling was 
used for the 30 m resolution Landsat-8 OLI 
(USGS, 2016) bands and for the Sentinel-2 
MSI bands that have 20 m resolution. For the 
Sentinel-2 MSI bands with 10 m resolution 
(SUHET, 2015), the averaging of source pixel 
values was used for raster image resampling. 
Cloud and cloud shadow areas were delin-
eated manually. Both of the scanners have a 
special channel near to the water absorption 
band in the electromagnetic spectrum that 
was useful for haze and cirrus detection. The 
entire territory of Estonia was subdivided 
into partially overlapping regions (Figure 1) 
according to forest growth conditions and 
to establish data processing units with suf-
ficient counts of reference samples. After 
cutting the individual Landsat and Sentinel 
images according to the regional borders for 
data processing there were 85 image combi-
nations with suffi ciently large area and each 
containing a single image or a pair of images 
with phenology effect. In the central region 
the number of image combinations was the 
greatest (15), but in the western Estonia and 
in the islands only 7 image combinations 
could be constructed.

T able 1.  The list of satellite images used in this 
study; Sentinel-2 images are referenced by 
orbit number and Landsat-8 images using 
World Reference System-2 path and row.

Tabel 1.  Satelliidipiltide nimekiri. Asukoht on Senti-
nel-2 puhul orbiidi number ja Landsat-8 
puhul World Reference System-2 orbiit (path) 
ja pildirida (row).

Satellite and scanner
Satelliit ja skanner

Location
Asukoht

Date
Kuupäev

Landsat-8 OLI 185;019 08.08.2015

Landsat-8 OLI 185;019 24.08.2015

Landsat-8 OLI 185;019 06.05.2016

Landsat-8 OLI 186;019 12.06.2015

Landsat-8 OLI 186;019 13.05.2016

Landsat-8 OLI 186;019 14.06.2016

Landsat-8 OLI 187;019 21.07.2015

Landsat-8 OLI 188;019 25.05.2015

Landsat-8 OLI 188;019 11.05.2016

Landsat-8 OLI 189;019 03.07.2015

Sentinel-2 MSI R036 04.08.2015

Sentinel-2 MSI R036 14.08.2015

Sentinel-2 MSI R036 24.08.2015

Sentinel-2 MSI R036 10.05.2016

Sentinel-2 MSI R036 28.08.2016

Sentinel-2 MSI R079 07.08.2015

Sentinel-2 MSI R079 17.08.2015

Sentinel-2 MSI R079 13.05.2016

Sentinel-2 MSI R122 06.05.2016

Sentinel-2 MSI R122 24.08.2016

Sentinel-2 MSI R122 13.09.2016

Sentinel-2 MSI R136 21.08.2015

Sentinel-2 MSI R136 30.09.2015

Sentinel-2 MSI R136 27.04.2016

Sentinel-2 MSI R136 07.05.2016

Processing data by geographical sub-re-
gions has been used to decrease the possibi-
lity of erroneously predicting a species out -
side its realistic region of occurrence (Du-
veneck et al., 2015). We used a similar ap-
proach (Figure 1) but due to the variability 
of the Estonian forested landscape we in-
cluded also data from the 1:10,100 national 
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soil map (Mullakaardi, 2001). The soils 
data base was downloaded from the web-
site (www.maaamet.ee [01.02.2017]) of the 
Estonian Land Board. Each soil polygon is 
associated with a data record containing 
the soil type and morphological informa-
tion. For the machine learning procedure 
the soils were grouped according to Table 
A1.1 using the pedo-ecological schema 
of normally developed mineral soils (see 
Figure 2 in Kõlli et al., 2004). The vector 
map of soils was rasterized, each pixel was 
assigned the soil group code, and the soil 
group code was used as a categorical vari-
able in the RF estimation procedure.

Reference set data
While NFI data are used as reference sets 
in many studies for machine learning we 
used sample plots from the Estonian NFI 
only for validating our results. The NFI 
sampling grid is designed so that each an-
nual sampling unit corresponds to 1,000 ha 
in land category-based estimates. Starting 
from 2014, the grid was modifi ed and the 
estimated number of yearly measured 
sample plots is now 5,600. Since the share 
of forest land is 53%, there will be about 
200 sample plots per county with possible 
tree species composition data. This is not 
much when considering that in addition 
to species composition the spectral signa-
tures of forests also depend on stand age, 
leaf area index, stand density, and ground 
vegetation (Nilson & Peterson, 1994). By 
incorporating sample plots from a larger 
area comprised of regions with different 
growth conditions and from several sam-
pling years, this increases the number of 
observations but also increases the risk of 
mixing samples with similar spectral sig-
nature but different species composition. At 
the same time, reference samples for model 
fi tting and validation of the results are lost 
in places where clouds, cloud shadows and 
haze infl uence pixel values in the satellite 
images. Since NFI sample plots are small 
(radius 7 to 10 m), their positioning errors 
combined with raster image re-sampling 

errors introduce substantial random errors 
in the spectral signatures of the sample 
plots. Finally, the locations of NFI sample 
plots do not follow forest stands, but are 
determined by the sampling grid. Hence, 
sample plots can be located near to stand 
borders and thereby have a mixed spectral 
signature.

We used for our machine learning pro-
cedure the forest management inventory 
database from the Estonian Environmental 
Agency (Forest database, 2016). The data-
base contains a 1:10,000 map of stand bor-
ders and mensurational data (forest age, 
stand height, basal area, stand relative 
density, site class, site type, wood volume, 
etc.) used for forest management planning. 
For each stand element (a tree species grow-
ing in particular social layer) its propor-
tion is given according to wood volume. 
Although total wood volume is known to 
be underestimated in the database (Lang 
et al., 2014; Arumäe & Lang, 2016), the 
distribution of wood among species and 
thereby the tree species composition is usu-
ally reliable. The only exception is a small 
systematic underestimation of Norway 
spruce in state owned forests, according 
to volume measurements made at time of 
harvest (Tavo Uuetalu, The Estonian State 
Forest Management Company, personal 
communication).

A copy of the FIDB was obtained from 
the Estonian Environmental Agency on 13 
February 2017. The FIDB data were pre-
processed similar to Lang et al. (2016) to 
extract suffi ciently large and compact for-
est stands for a reference set and to exclude 
outdated FIDB records and the polygons 
with substantial variability in pixel values. 
As the RF estimation procedure in GRASS 
is pixel-based, the within stand variability 
described by variograms is technically com-
plicated to use. However, training data can 
be prepared separately from the estimation 
procedure and we used mean values of pix-
els located near to stand polygon centroids 
instead of single, nearest to centroid pixel 
value.

Construction of tree species composition map of Estonia using multispectral satellite images
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Firstly, a subset of forest land parcels 
inventoried since 2014 with area between 1 
and 10 hectares was extracted. The extract-
ed polygons were buffered 30 m towards 
the inside and the areas under large ditches 
were cut out. Irregular polygons were then 
deleted from the selection. For each remain-
ing polygon the mean radiance value was 
calculated for each band in the satellite im-
ages and only the polygons for which at 
least 16 pixels were extracted were kept.

Secondly, the selection was fi ltered us-
ing their spectral radiance. Parcels were re-
tained if the ratio of standard deviation to 
mean in the near infrared radiance (NIR) 
bands (OLI5, MSI08) was less than the 97.5th 
percentile of the population value. This fi l-
ter excluded internally variable polygons. 
Next, the remaining observations with pos-
sible disturbances from 2015 to 2016 were 
identifi ed according to radiance changes 
in the blue (OLI2, MSI02) and NIR bands 
(OLI5, MSI08). For this the reference obser-
vations were grouped by main species and 
those deviating more than four residual 
standard errors from a linear regression 
model between radiances from different 
dates were excluded as disturbed.

Thirdly, the concordance of spectral 
ra diance on forest age and wood volume 
of remaining observations were analysed. 
Since the images were taken over two 
years and the forest inventory records were 
also from later dates than the last image, 
some polygons had small radiance in the 
short-wave infrared (SWIR) bands (OLI6, 
MSI11) characteristic of old stands but the 
forest age was zero. This hints at outdated 
or confl icting data, since young stands are 
brighter then old stands (Nilson & Peterson, 
1994). All the observations were removed 
that had zero age and less than average 
radiance of the 1 to 6 year-old forests ob-
servations in the SWIR bands. Finally, all 
the stands older than 20 years or with wood 
volume over 50 m3 ha–1 were grouped ac-
cording to main species and outliers were 
identifi ed by their spectral radiance in 10 
year age classes and 50 m3 ha–1 volume 

classes. The stands with radiance in red, 
NIR or SWIR bands deviating more than 
three standard deviations from the class 
mean were excluded. The procedure was 
repeated three times. Some outliers in the 
classes with a small number of observations 
(very old stands) were identifi ed visually 
from scatter plots of wood volume and 
spectral radiance values. About 480 out-
liers were later detected and excluded when 
feature variable values from a 3 × 3 pixel 
window around polygon centroids were 
calculated for the random forest algorithm. 
The count of reference samples after all the 
outliers were removed was 102,291.

The random forest model fi tting and 
map construction
Random forests is a machine learning algo -
rithm for classification that corrects for 
overfitting of the training set (Breiman, 
2001). The random forest (RF) classifica-
tion algorithm (r.learn.ml) in GRASS has 
the following hyper-parameters: number 
of feature variables during node splitting 
Nfeat, maximum tree depth Hmax, minimum 
number of samples required for node split-
ting Nsplit, minimum number of samples for 
leaf node Nleaf, and number of estimators 
Ntrees. The values for the hyper-parameters 
are recommended to fi t according to the 
user guide. Since the model construction 
involves random sampling of features dur-
ing building of the trees, the results are de-
pendent on the random number generator 
initial state Irand. During some initial tests 
we found that the algorithm was infl uenced 
by the distribution of observations between 
classes similar to kNN as found by Lang et 
al. (2014, 2016). We found that our estimates 
were more reliable with automatic balanc-
ing switched on. We also used the stan-
dardisation option of feature variables. The 
number of permutations of feature variable 
values during model  construction was set 
to 10 (default value). The number of estima-
tors was fi xed to default value Ntrees = 100.

The machine learning module includes 
a cross-validation component. We used 

M. Lang et al.
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non-spatial nested cross-validation with the 
reference set split to 2 folds for smaller sets 
of observations and up to 5 folds for larger 
reference subsets determined by the useful 
area of image pairs. In this study the cross-
validation of a single image or image pair 
based results was not of interest, however, 
cross-validation was important for opti-
misation of the algorithm parameters and 
selection of informative feature variables.

The RF classifi cation algorithm predicts 
a class code and also probabilities of all 
classes for each pixel in the target set. These 
probabilities can be used as reliability esti-
mates (Barrett et al., 2016). However, con-
sidering that spectral signature of a forest 
stand is a linear mixture of the refl ectance 
of the trees, these probabilities can also be 
interpreted as species composition esti-
mates for forest stands assuming that dif-
ferent species have different optical prop-
erties. In this study we used seven classes 
corresponding to the most widespread tree 
species in Estonia and one class for other 
tree species. A separate class was used for 
the reference observations located in recent 
regeneration felling areas where the tree 
canopy did correspond to the forest defi ni-
tion in Estonia.

The estimation procedure was per-
formed in four steps for each image or im-
age pair:
1. search for informative feature variables;
2. preparation of reference sample data;
3. search for the model hyper-parameter 

optimum values; and
4. imputation of target set pixel values.

In the fi rst step the hyper-parameters of the 
RF algorithm were set to Nfeat = 0 (automatic), 
Hmax = 27, Nsplit = 30, Nleaf = 8 and four esti-
mates were imputed using  3,9,41,87randI . 
Feature variable values were extracted from 
centroid pixels of the reference polygons. 
The feature importance’s for each run were 
obtained from nested cross-validation and 
averaged. Soil data were almost always 
ranked at as one of most important feature 
variables and followed usually by the NIR 

bands. The six to ten most informative spec-
tral bands were selected for the RF model 
training and estimation. In the second step 
a training data table was created by sam-
pling pixels located closer than 36 m to the 
reference stand centroid position. Spectral 
radiance was averaged and mode value of 
the pixels in soil map codes was used.

In the third step the RF model was fi t-
ted to the training data to find optimal 
values for the hyper-parameters. We fi xed 
the maximum number of features for node 
splitting to two features less than the num-
ber of features found during the optimiza-
tion step (not all features are always re-
quired), Nleaf was fi xed to a value between 
5–10 depending on the sample size, Nsplit 

was usually set to 3Nleaf, random state was 
Irand = 1 and maximum tree depth value was 
the free parameter searched from the range 
of 15–50.

Finally, imputation of the target set pixel 
values was carried out for  1,3,6randI . The 
procedure yielded 255 estimates consider-
ing all the sub-regions shown in the Figure 
(1); i.e., three Irand states for each of the 85 
image combinations.

For each reference set pixel the proba-
bilities of classes were averaged from avail-
able estimates; this produced 9 raster layers 
that covered all of Estonia. The map layers 
correspond to the probabilities of tree spe-
cies in the composition and one layer con-
tained the probability that the pixel does 
not correspond to forest stand defi nition 
(tree layer was too sparse or trees were too 
small). The species composition estimates 
for each pixel were calculated by scaling the 
tree class probabilities to sum to 100 exclud-
ing the non-forest probability class. Finally, 
the class code with the highest probability 
was then indicated in a separate layer of 
the tree species composition map. Using 
the Estonian 1:10,000 base map, the pixels 
with highly improbable occurrence of tree 
cover were assigned a no data fl ag. The no 
data fl ag was also assigned to agricultur-
al land where the records of the Estonian 
Agricultural Registers and Information 
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Board indicated the landowner applied for 
a subsidy in 2009–2011.

Validation of the species composition 
map
The validation of the tree species composi-
tion map was carried out using four data 
sources. The fi rst validation dataset was the 
area distribution of inventoried stands by 
dominant tree species in counties accord-
ing to offi cial national statistics (Raudsaar 
et al., 2017). The pixel distribution of the 
dominant species layer was calculated from 
the species composition map. The second 
validation dataset contained timber volume 
measurements made by harvesters in re-
generation fellings that was made available 
by the Estonian State Forest Management 
Company. From this dataset we selected 
2,045 records corresponding to the stands 
that contained at least 16 pixels and where 
more than 85% of the pixels were assigned 
a tree species class as the most probable 
and less than 20% of the harvested timber 
(fuelwood, etc.) was not assigned to a tree 
species. The mean proportion of each tree 
species in the species composition map was 
calculated for each stand and stand level 
data were compared with the harvester 
measurements.

The third validation dataset was extract-
ed from the database of Estonian Network 
of Forest Research Plots (ENFRP) (Kiviste et 
al., 2015) from the list of sample plots mea-
sured from 2012 to 2015. The sample plots 
have a radius ranging from 15 m to 30 m 
depending on forest age, thus a sample plot 
could cover an area larger than the 25 m 
pixel. Mean age of the forests was 69 years 
ranging from 17 to 243 years. The sample 
plots were established in homogeneous 
parts of forest stands and therefore are 
representative also for their near vicinity. 
After checking for possible stand replacing 
disturbances using orthophotos and accord-
ing to the forest age and brightness relation-
ship, the number of suitable observations 
was 659 observations.

A subset from the Estonian National Forest 
Inventory (Adermann, 2010) database was 
used for a fourth set of validation tests of 
the stand map. These sample plots have 
a radius of 7 m or 10 m and the error in 
co ordinate values is usually less than 45 
m. A subset of 3,002 sample plots was ex-
tracted to analyse species composition. The 
selection criteria were as follows: the plot 
was not near to roads or ditches, the wood 
volume was greater than 5 m3 ha-1 and the 
probability of the non-forest (NFD) class 
was less than 10%. Each plot was related to 
the imputed values of the nearest pixel of 
the sample plot location. For each sample 
plot Euclidean distance between the mea-
sured and predicted species composition 
vectors was calculated as 

,       (1)

where ki,SMI is the proportion of the species 
i in the NFI data and ki,map is the predicted 
proportion of the ith species. Dependence of  
on the forest age was analysed.

For estimates of categorical variables 
as land cover types it is common to report 
Cohen’s kappa index of agreement. Tree 
species proportion, however, is a complex 
ratio variable. It is reasonable to calculate 
Cohen’s kappa only for the validation sam-
ple plots where proportion of dominating 
species is suffi ciently large to classify the 
observations as pure stands of particular 
tree species. From the NFI data we first 
selected the sample plots where dominat-
ing species proportion was equal or greater 
than 75%. A second validation subsample 
of pure stands was created by excluding 
the stands with age less than 20 years. All 
statistical analyses were carried out in R (R 
Core Team, 2016).

M. Lang et al.
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Results and Discussion

The total area of the map pixels with tree 
species composition is 2.26 million hect-
ares that is about 8% more than the offi cial 
estimate (Raudsaar et al., 2017) of forested 
forest land area of 2.09 million hectares. 
The difference is related to distinction of 
forest land from bush and bog land cat-
egories, and interpretation of land cover 
for small wooded land patches. The com-
parison of the main species distribution 
in inventoried forest stands at the county 
level indicated a high correlation between 
the predicted values and national statistics 
(Figure 2). For state forests (862,136 ha) 
the determination coeffi cient R2 was 0.98 
and for private forests (803,525 ha) R2 was 
0.93. The random forest algorithm-based 
estimates showed a larger share of grey al-
der and birch stands in the private forests 
and a greater share of Scots pine stands 
in state forests, similar to national inven-
tory statistics. This result indicates that 
the constructed map (Figure A3.1) of tree 
species composition (available from Tartu 
Observatory web page (www.to.ee) and 
upon request from the corresponding 
author) can be used for the rest of the for-
est land (410,778 ha) for which there are no 
records in the FIDB.

The aggregated estimates of main spe-
cies at the county level indicated that there 
are no substantial shortcomings in the data 
processing. However, our objective was to 
obtain a map of tree species composition, 
not only the main species. The comparison 
of predicted proportion of tree species in 
stands with the harvester measurements 
showed the strongest correlation for Scots 
pine followed by Norway spruce, birch, 
and European aspen (Table 2). The pre-
dicted proportion of coniferous trees had 
very strong correlation (R2 = 0.75) with 
the measured value. However, there was 
also substantial scatter in the relationship 
(Figure 3) and the gain of the expected 
linear model was only 0.67. There was a 
characteristic lack-of-fi t with large values 

underestimated and small values overesti-
mated. It appeared (Table 2) also that the 
mean proportion of the Norway spruce, 
Scots pine and birch was underestimated 
and the proportion of less common species 

Fig ure 2.  County level comparison of the predicted 
proportion of the main species to in-
ventoried forest stands (Raudsaar et al. 
2017) in state forests (a) and private for-
ests (b). The abbreviations in the legend 
are: HB (Populus tremula L.), KS (Betula 
pendula Roth, B. pubescens Ehrh.), KU 
(Picea abies (L.) Karst.), LM (Alnus glu-
tinosa (L.) Gaertn.), LV (A. incana (L.) 
Moench), MA (Pinus sylvestris L.), SA 
(Fraxinus excelsior L.).

Joonis 2.  Korraldatud puistute jagunemine enamus-
puuliigi järgi maakonniti (a) riigimetsas 
ning (b) erametsades puistuplaani (y-telg) 
ja aastaraamatu Mets 2016 (Raudsaar et 
al., 2017) järgi.

Construction of tree species composition map of Estonia using multispectral satellite images
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tended to be overestimated. Estimation er-
rors can cause biased values because the 
proportion of species cannot be negative 
or greater than 100%. Additionally, the 
random forest algorithm only predicted the 
probability of classes (main species) and the 
scope of this project did not include repro-
gramming of the RF implementation to ac-
cess directly the data vectors of the reference 
observations. Also, the target set pixel values 
were calculated as mean values of several 
estimates based on available image combina-
tions and three selected random state values.

The mean proportion of Norway spruce 
was substantially greater in the harvester 
dataset than in the constructed map, similar 
to the apparent underestimate in the for-
est inventory database (FIDB) compared 
to the harvester data. Since the FIDB was 
used to draw reference set observations for 
the random forest algorithm the imputed 
target set pixel values in the constructed 
map were probably infl uenced by the pos-
sible bias in the FIDB. However, it was not 
possible to identify the true causes of the 
observed systematic difference that exists 
between the harvester measurements and 

the constructed map in the proportion of 
Norway spruce and birch in tree species 
composition in forest stands.

 
F igure 3.  Measured (harvesters) and predicted pro-

portion of coniferous trees in 2,045 for-
est stands having undergone regeneration 
felling.

Joonis 3.  Uuendusraietel (2045 puistus) harvester-
mõõtmiste põhjal saadud okaspuude 
osa kaal puistus võrrelduna puistuplaanil 
oleva hinnanguga.

Tab le 2.  Mean proportion of species in 2,045 forest stands based on harvester measurements and the con-
structed map. Se is standard error. Harvester measurements are used for the independent variable 
in the linear model y = a + bx.

Tabel 2.  Puuliikide osakaalude hinnangud 2045 puistus harvestermõõtmise ja puistuplaani järgi. Se on stan-
dardviga. Seose lineaarmudelis (y = a + bx) on argumendiks harvestermõõtmistel saadud puuliigi 
osakaal.

Species
Puuliik

Harvester /
Harvester

Stand map /
Puistuplaan

Linear model /
Lineaarseose 
parameetrid

Mean Se Mean Se a b R2

Silver and downy birch 19.8 0.4 15.8 0.2 9.5 0.32 0.55

Norway spruce 37.7 0.5 24.7 0.3 12.0 0.34 0.44

Scots pine 28.7 0.7 27.7 0.4 13.1 0.51 0.72

Grey alder 0.0 0.0 5.6 0.1 5.6 2.72 0.01

Black alder 0.3 0.0 7.1 0.1 6.7 1.31 0.12

European aspen 8.9 0.3 10.3 0.1 8.2 0.24 0.42

Common ash 0.0 0.0 3.9 0.1 3.9 4.13 0.00

Other tree species 4.6 0.1 4.8 0.1 3.8 0.21 0.20
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While the harvester measurement data rep-
resented only old forest stands, the sample 
plots from the ENFRP dataset (Kiviste et 
al., 2015) included also younger stands. 
There was a strong correlation (R2 = 0.79) 
between the measured and predicted pro-
portion of evergreen coniferous trees, simi-
lar to harvester dataset, but the gain of the 
expected linear relationship was greater 
(0.76). Nevertheless, there was also rather 
large scatter at the sample plot level (Figure 
4). The validation dataset confi rms that the 
proportions of Norway spruce, Scots pine 
and birch were underestimated and the 
proportion of less common species was 
overestimated in the target set pixels (Table 
3).

The validation based on NFI sample 
plots (Table 4) showed results similar to 
the other validation data sets. However, 
the coeffi cient of determination R2 between 

the measured and predicted proportion of 
coniferous trees at the sample plot level was 
only 0.64. A similar decrease in R2 also was 
present at the species level compared to the 
other validation data sets. The main reason 
for the decreased correlation likely was 
the smaller plot size with respect to pixel 
size and errors in the spatial location of the 
sample plots. However, the NFI dataset 
covered the entire age range of forests and 
this enabled a study of possible dependence 
of the estimation errors in relation to for-
est age. There was a decrease (slope –0.21 
in linear model, p-value < 0.001) (Figure 5) 
in the estimation error depending on for-
est age (R2 = 0.1, p-value < 0.001 at 3,000 
degrees of freedom). There was no age de-
pendence in the number of tree species in 
the NFI sample plots as indicated by non-
signifi cant slope (p-value > 0.2) and R2 = 0 
of the relationship.

T able 3.  Mean proportion of species in 659 sample plots from ENFRP (Kiviste et al., 2015) database and 
the constructed map. Se is standard error. Sample plot measurements are used for the independent 
variable in the linear model y = a + bx.

Tabel 3.  Puuliikide osakaalude hinnangud 6 59 kasvukäiguproovitükil (KKPRT) (Kiviste et al., 2015) mõõt-
miste ja puistuplaani järgi. Se on standardviga. Seose lineaarmudelis (y = a + bx) on argumendiks 
proovitükkidelt saadud puuliigi osakaal.

Species
Puuliik

ENFRP sample plots /
KKPRT proovitükid

Stand map / 
Puistuplaan

Linear model /
Lineaarseose parameetrid

Mean Se Mean Se a b R2

Silver and downy birch 16.3 0.95 10.6 0.39 5.38 0.32 0.61

Norway spruce 32.7 1.28 27.9 0.85 9.21 0.57 0.73

Scots pine 44.2 1.59 40.5 1.08 13.55 0.61 0.81

Grey alder 0.6 0.11 4.0 0.17 3.89 0.25 0.03

Black alder 1.3 0.22 4.6 0.19 4.07 0.43 0.24

European aspen 3.5 0.43 6.1 0.22 5.03 0.3 0.34

Common ash 0.1 0.04 2.9 0.09 2.81 0.44 0.03

Other tree species 1.3 0.2 3.4 0.11 3.19 0.17 0.1

Construction of tree species composition map of Estonia using multispectral satellite images
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F igure 4.  Measured and predicted proportion of co-
niferous trees in sample plots taken from 
ENFRP database (Kiviste et al., 2015).

Joonis 4.  Okaspuude osakaal puistu koosseisus met-
sa kasvukäigu proovitükkide andmete ja 
puistuplaani järgi.

F igure 5.  Mean Euclidean distance (1) between the 
vectors of measured and predicted spe-
cies composition in the NFI sample plots. 
The age groups correspond to 10 years 
interval.

Joonis 5.  Takseeritud ja ennustatud puistukoosseisu-
de eukleidiline kaugus (1) statistilise met-
sainventuuri proovitükkidel 10-aastaste 
vanus rühmade kaupa.

Table 4.  Mean proportion of species in 3,002 NFI sample plots and the constructed map. Se is stan-
dard error. Sample plot measurements are used for the independent variable in the linear model 
y = a + bx.

Tabel 4.  Puuliikide osakaalud 3002 statistilise metsainventuuri (SMI) proovitükil välimõõtmiste ja puistu-
plaani järgi. Se on standardviga. Seose lineaarmudelis (y = a + bx) on argumendiks proovitükkidelt 
saadud puuliigi osakaal.

Species
Puuliik

NFI sample plots /
SMI proovitükid

Stand map /
Puistuplaan

Linear model /
Lineaarseose parameetrid

Mean Se Mean Se a b R2

Silver and downy birch 26.0 0.57 17.6 0.21 11.8 0.22 0.35

Norway spruce 23.0 0.53 18.4 0.31 9.98 0.37 0.4

Scots pine 29.3 0.7 26 0.47 10.27 0.54 0.65

Grey alder 6.5 0.36 8.7 0.17 6.87 0.29 0.35

Black alder 5.4 0.31 9.0 0.13 7.87 0.2 0.23

European aspen 5.8 0.32 10.1 0.13 9.22 0.15 0.15

Other tree species 4.1 0.25 10.3 0.13 9.58 0.17 0.11

M. Lang et al.
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Overall accuracy of the main species esti-
mates was 75.5% for the 1,529 NFI sample 
plots where a single tree species propor-
tion was equal or greater than 75%. Mean 
value of Cohen’s kappa index of agree-
ment was 0.66. Scots pine stands were the 
most accurately discriminated followed by 
Norway spruce stands. Separation of de-
ciduous species was less accurate (Table 
A2.1). This is similar to the results obtained 
from the analysis of species composition. By 
excluding stands less than 20 years-old the 
overall accuracy increased to 78.4% (Table 
A2.2) and kappa increased to 0.69 for the 
subsample of 1,354 NFI sample plots. The 
increase in accuracy is small but consistent 
with the previous analysis (Figure 5) that 
showed increased estimation accuracy of 
tree species composition in older stands. 
We used class membership probabilities of 
RF machine learning procedure as estimates 
of tree species proportions in the species 
composition. The underlying assumption 
was that the spectral signature of a forest 
depends linearly on tree species composi-
tion. The validation results indicated that 
the constructed map of tree species com-
position provided reliable estimates of the 
main tree species in all counties in Estonia. 
Discrimination of deciduous tree species 
proportions in a mixture was less accu-
rate than Norway spruce and Scots pine 
proportion, which is related to the differ-
ences in their spectral signatures. Main 
species estimation accuracy at the pixel 
level for NFI sample plots with dominant 
species proportion of 75% and more was 
75.5% and increased when young stands 
were excluded. However, predictions of 
species proportions in composition at the 
stand or pixel level have a lack-of-fi t char-
acterized by an underestimation of larger 
values and overestimation of smaller val-
ues. While our assumption was justified 
that the class probabilities predicted by 
the random forest procedure may be used 
as linear proportions of species, as shown 
by correlation analyses, there are options 
to improve precision. For example, there 

was always about 2 to 3% probability for 
each class in the imputations. Considering 
that there were 9 classes in the dataset, the 
results have always about 18 to 27% noise. 
This noise could be reduced by direct pro-
cessing of the data vectors of the reference 
samples from leaf nodes of the decision 
trees in the random forest model. However, 
this requires modifi cations in the software 
of the GRASS machine learning module. 
The forest age dependence of the predicted 
species composition indicates that a two-
stage approach could be tested in future 
studies; inclusion of canopy height infor-
mation from airborne laser scanning (ALS) 
also may be useful to separate forests by 
age. It is also possible that calibration of the 
class membership probabilities can improve 
the accuracy (Niculescu-Mizil & Caruana, 
2005), however, the procedure requires an 
additional independent set of observations.

Conclusions

In this study we processed freely distribut-
ed multispectral satellite images using a 
Random Forest implementation in free 
software GRASS and constructed the fi rst 
high spatial resolution map of tree species 
composition for Estonia. Validation of the 
map showed good discrimination between 
deciduous broadleaf and evergreen conif-
erous species, but separation and estima-
tion of proportion of deciduous broadleaf 
species was less accurate and this has to 
be targeted in further studies. Overall, the 
constructed map provides valuable data for 
the forests where no up-to-date inventory 
data are available or for projects that re-
quire continuous cover of tree species data 
of known quality over all of Estonia.
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Appendix A1. Soil type classifi cation.
Lisa A1.  Mullakaardi andmetest moodustatud klassid.

Table A1.1. The grouping schema of soils for machine learning.
Tabel A1.1. Mullakaardi andmestiku rühmitamise skeem masinõppe jaoks.

Soil / Muld Soil / Muld Soil / Muld Soil / Muld

Type / 
Tüüp

Code
Kood

Type / 
Tüüp

Code
Kood

Type / 
Tüüp

Code
Kood

Type / 
Tüüp

Code
Kood

Ag 48 GI1 45 L 61 LkII 51

AG 48 Gk 14 L(k) 61 LkII(g) 51

AG1 48 Gk1 21 L(k)g 63 LkIIg 53

AM’ 16 Gkr 14 L(k)I 61 LkIII 51

AM’’ 37 Go 21 L(k)Ig 63 LkIII(g) 53

AM’’’ 48 Go1 45 L(k)II 61 LkIIIg 53

Ar 48 GoI 45 L(k)IIg 63 LP 42

ArG 48 Gor 21 L(k)III 61 LP(g) 43

Arv 109 Gr 14 L(k)IIIg 63 LPe 42

Av 109 K 11 LG 64 LPg 43

D 42 K(g) 11 Lg 73 LPG 44

D(g) 42 Kg 13 LG1 64 M 37

Dg 43 Kh 10 LI 61 M’ 16

DG 44 Khg 13 LIg 73 M’’ 37

E2I 51 KI 31 LII 61 M’’’ 48

E2k 11 KI(g) 42 LIIg 73 Pp 45

E2o 31 KIg 42 LIII 61 R 77

E3I 51 Ko 21 LIIIg 73 R’ 57

E3k 10 Ko(g) 21 Lk 51 R’’ 77

E3o 31 Kog 21 Lk(g) 53 R’’’ 77

G(o) 21 Kor 21 LkG 44 S 57

G1 45 Korg 21 Lkg 53 S’ 57

Gh 14 Kr 10 LkI 51 S’’ 57

Gh1 14 Kr(g) 11 LkI(g) 51 S’’’ 77

GI 45 Krg 13 LkIg 53 - -
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Appendix A2. Confusion matrices of pixel level dominant tree species estimates.
Lisa A2.  Enamuspuuliigi hinnangute veamaatriksid.

Table A2.1.  Cross-tabulation of estimated (columns) and known (rows) main species code in National 
Forest Inventory (NFI) sample plots where dominant species proportion is more than 75%. 
User, producer and overall accuracies are presented.

Tabel A2.1.  Puistuplaanil (veerud) ja statistilise metsainventuuri (SMI) proovitükkidel teadaoleva (read) 
enamuspuuliigi risttabel vaatlustele, kus enamuspuuliigi koosseisukordaja üle 75%. Tabelis on 
toodud ka üldine-, kasutaja-, tootjatäpsus (O.ACC, User ACC ja Prod. ACC).

NFI sample plots/
SMI proovitükid

Estimated main species / Enamuspuuliiik
Prod. ACC11 12 13 14 15 16 25

Silver birch 11 259 12 20 29 6 17 2 0.75

Norway spruce 12 30 200 43 3 2 5 0 0.71

Scots pine 13 30 27 573 1 2 7 0 0.90

Gray alder 14 18 2 0 71 2 4 0 0.73

Black alder 15 22 1 3 7 25 5 1 0.39

European aspen 16 20 8 2 4 2 23 2 0.38

Other species 25 3 6 0 14 4 8 4 0.10

User ACC 0.68 0.78 0.89 0.55 0.58 0.33 0.44 O. ACC = 75.5%

  
       
Table A2.2.  Cross-tabulation of estimated (columns) and known (rows) main species code in National Forest 

Inventory (NFI) sample plots where dominant species proportion is more than 75% and stands 
are older than 20 years. User, producer and overall accuracies are presented.

Tabel A2.2.  Puistuplaanil (veerud) ja statistilise metsainventuuri (SMI) proovitükkidel teadaoleva (read) 
enamuspuuliigi risttabel üle 20-aastastes puistutes, kus enamuspuuliigi koosseisukordaja üle 
75%. Tabelis on toodud ka üldine-, kasutaja-, tootjatäpsus (O.ACC, User ACC ja Prod. ACC).

NFI sample plots
SMI proovitükid

Estimated main species / Enamuspuuliik
Prod. ACC11 12 13 14 15 16 25

Silver birch 11 228 12 17 15 4 13 2 0.78

Norway spruce 12 17 186 42 0 1 5 0 0.74

Scots pine 13 20 25 552 1 2 4 0 0.91

Gray alder 14 17 1 0 49 2 2 0 0.69

Black alder 15 20 1 3 5 22 4 1 0.39

European aspen 16 18 8 2 2 2 20 1 0.38

Other species 25 3 5 0 9 2 5 4 0.14

User ACC 0.71 0.78 0.90 0.60 0.63 0.38 0.50 O. ACC = 78.4%

Construction of tree species composition map of Estonia using multispectral satellite images
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Appendix A3. Map of main dominant species in Estonia.
Lisa A3.  Eesti puistute enamuspuuliigi kaart.

Figure A3.1.  Dominant species of the estimated species composition. County borders are imposed upon the 
map. Colour fi gure is available in electronic version.

Joonis A3.1.  Puistute liigilise koosseisu enamuspuuliigi kaart. Kaardile on lisatud maakondade piirid. Värviline 
kaart on e-ajakirjas.

M. Lang et al.

No forest
Populus tremula
Picea abies

Alnus glutinosa
A. incana
Pinus sylvestris

Fraxinus excelsior
Other species
Betula pendula, B. pubescens
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Jätkusuutliku metsamajanduse otsuste ka-
van damine vajab metsaökosüsteeme kirjel-
davaid andmed, mis sõltuvalt kavandami-
se eesmärgist võivad olla erineva ruumili-
se, temaatilise ja ajalise üldistustasemega. 
Puistupõhised takseerandmed saadakse 
metsakorralduse käigus (Metsakorralduse, 
2017), riigi tasemel ülevaade saadakse 
statistilise metsainventuuri abil (Tomppo 
et al., 2010). Samas on puistupõhiste tak-
seerandmete uuendamine metsaomaniku 
jaoks enamasti vajalik teatud pikema pe-
rioodi järel või siis ainult neis metsades, 
kus soovitakse kavandada majandusotsu-
seid. Statistilise metsainventuuri vaatluste 
põhjal saab üldistusi teha kõige rohkem 
maakonna tasandil. Teisalt kasvab nõudlus 
pidevalt ülepinnaliselt uuendatavate and-
mete järele uut tüüpi interaktiivse metsa-
korralduse süsteemide arenedes (Kor jus 
et al., 2017), seoses vajadusega korraldada 
seiret või rakendada taimkatte primaar-
produktsiooni mudeleid (Zhao et al., 2011; 
Lang et al., 2017). Ühe lahendusena saab 
kasutada kogu ala katvaid kirjeldavaid 
tunnuseid multispektraalsetelt satelliidi-
piltidelt ning mõnda näidistel põhinevat 
masinõppemeetodit, mille realisatsioone on 
testitud ka Eestis (Tamm & Remm, 2009).

Käesoleva uuringu eesmärgiks oli koos  -
tada Eestit kattev puistute koosseisu hin-
nang keskmise ruumilahutusega (25 m) 
digitaalse kaardina. Selleks kasutati random 
forest masinõppemeetodit (Breiman 2001) 
GRASS GIS paketist r.learn.ml (GRASS 
Development Team, 2017). Kogu ala kir-
jeldavate tunnuste jaoks saadi Landsat-8 
OLI ja Sentinel-2 MSI pildid (tabel 1) 
USGS GloVis (https://glovis.usgs.gov) ja 
Coper nicus Open Access Hub (https://

scihub.copernicus.eu) pildiarhiividest ning 
1:10 000 digitaalne mullakaart (Mulla-
kaardi, 2001) Eesti Maa-ameti kodulehelt. 
Puistute näidiseid võeti metsaregistri 
andmebaasi (Forest database, 2016) koo-
piast seisuga 13.02. 2017. Satelliidipildid 
teisendati Eesti põhikaardi koordinaat-
süsteemi, valides kompromissina piks-
li suuruseks 25 m. Pilve- ja pilvevarjude 
maskid digiti käsitsi. Metsaregistri and-
mebaasist võeti päringuga välja alates 
2014. aastast takseeritud metsamaa eraldi-
sed suurusega 1–10 ha. Esmasesse vali  -
mis se sattunud näidiseraldistel puhver-
dati piirid 30 m sissepoole ning siis jäeti 
alles ainult need, mis sisaldasid vähemalt 
16 pikslit. Kirjeldavate tunnuste väärtuste 
arvutamiseks näidistele kasutati eraldise 
polügoni tsentroidi ümber 36 m raadiuses 
leiduvaid piksleid. Algset näidiste valimit 
puhastati vigadest puistute heleduse ja va-
nuse ning heleduse ja tüvemahu seoste järgi 
ning peale teede ja kraavide läheduses ole-
vate näidiste kõrvaldamist jäid masinõppe 
jaoks alles 102 291 puistu andmed. 

Mullakaardi andmed üldistati tabeli 
A1.1 järgi. Masinõpet rakendati alampiir-
kondade kaupa (joonis 1) järgmiste sammu-
dena iga pildi või pildipaari (fenoloogilise 
info kasutamiseks) korral vastavalt:
1. informatiivsete tunnuste otsing;
2. õpetusandmete ettevalmistamine;
3. random forest algoritmi hüperparameet-

rite optimumi otsing;
4. sihtpikslitele puistu koosseisu ennus -

ta mine.
Töös kasutatud random forest meetodi 

realisatsioon ennustas igale pikslile kõikide 
klasside (puuliigid ning arenguklass lage/
selguseta) tõenäosused. Eeldati, et puistu 
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spektraalne signatuur satelliidipildi piksli-
tel on käsitletav koosseisuliikide spektraal-
sete signatuuride lineaarkombinatsioonina 
ja saadud tõenäosusi tõlgendati puuliikide 
osakaaludena puistu liigilises koosseisus.

Tulemuste valideerimiseks kasutati puis -
tute pindala jagunemist enamuspuuliigi 
järgi aastaraamatust Mets (Raudsaar et al., 
2017) (joonis 2); uuendusraietel kogutud 
harvestermõõtmise andmeid Riigimetsa 
Majandamise Keskuse andmebaasist (tabel 
2, joonis 3); metsa kasvukäigu püsiproovi-
tükkide andmebaasi (Kiviste et al., 2015) 
väljavõtet (tabel 3, joonis 4) ja statistilise 
metsainventuuri (SMI) proovitükke (tabel 
4, joonis 5). Valideerimise tulemusena sel-
gus, et maakonna suuruse ala keskmisena 
on puistuplaani enamuspuuliigi pikslite 
jaotus väga heas kooskõlas statistiliste and-
metega nii riigi (R2 = 0.98) kui erametsade 
(R2 = 0.93) osas. Puistute ja proovitükkide 
tasemel tehtud vaatluste keskmistatud tu-
le muste põhjal ilmneb aga hinnangutes 
vähemlevinud puuliikide osakaalude üle-
hindamine ja enamlevinud puuliikide osa-
kaalu allahindamine koosseisus. Enamus-
puuliiki prognoositakse 78,4%-lise täpsu  -

sega puistutes, kus domineeriva liigi osa-
kaal on vähemalt 75% ning puistu on üle 
20 aasta vana (tabel A2.2). Üsna hästi hin-
natakse okaspuuliikide osakaalu koossei-
sus, kuid lehtpuuliikide omavahelise eris-
tamise osas oleks vaja edasisi uuringuid. 
Esineb ka mõningane tendents hinnangu 
vigade suurenemisele nooremates puistu-
tes (joonis 5, tabelid A2.1 ja A2.2). Üheks 
vigade põhjuseks on asjaolu, et alati olid 
ennustustes esindatud kõik klassid ning 
juba paariprotsendine juhusliku esinemi-
se tõenäosus iga klassi jaoks annab sum-
maarselt üheksa klassi kokkuvõttes üsna 
märkimisväärse vea. Selle tõttu puhtpuis-
tud tulemuseks saadud liigilises koosseisu 
hinnangutes praktiliselt puuduvad. Maa-
konniti tehtud valideerimine ja okaspuu-
de osakaalu analüüs ning koosseisu osa-
kaalude regressioonanalüüs näitasid, et 
käesolevas töös masinõppe meetodil saa-
dud kaart on kasutatav puistuplaanina (joo-
nis A3.1), mis võimaldab saada puistute lii-
gilise koosseisu hinnangu kogu Eesti ula-
tuses aladel, kus ajakohased metsa takseer-
andmed puuduvad.
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