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Abstract. Landsat-8 OLI and Sentinel-2 MSI images from years 2015 and 2016, a 1:10,000
digital soil map and a large number of reference samples were used with a random
forest machine learning implementation in GRASS GIS to construct a tree species map
for the entire territory of Estonia (42,755 km?). Class probabilities for seven main tree
species, an extra class for other species and probability of the forest cover not con-
forming to the forest definition were assigned for each pixel. Validation of dominant
species distribution by area showed very strong correlation at county level both in
state forests (R* = 0.98) and in private forests (R* = 0.93). Validation of tree species
composition using harvester measurement data from 2,045 regeneration felling areas
showed also very strong correlation (R? = 0.75) with the measured values of the pro-
portion of coniferous trees. There was some tendency to underestimate the proportion
of more common species and overestimation was found for the species with smaller
proportion in the mixture. The accuracy for the proportion of deciduous species that
were present in a smaller number of reference observations was substantially smaller.
Validation of the results by using data from 659 large sample plots from the database
of the Estonian Network of Forest Research Plots and 3,002 small sample plots from the
National Forest Inventory (NFI) data base confirmed the findings based on harvester
data. The NFI data revealed also a decrease of estimation error with the increase of
forest age. Cohen’s kappa index of agreement for main species for NFI sample plots
with main species proportion equal to or greater than 75% decreased from 0.69 to 0.66
when observations with forests younger than 20 years were included in the comparison.
Overall, the constructed map provides valuable data about tree species composition
for the forests where no up to date inventory data are available or for the projects that
require continuous cover of tree species data of known quality over the entire Estonia.
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Introduction

Sustainable forest management planning
and forest policy making requires forest
inventory data at different spatial scales
and generalization levels. Individual forest
stand data are used for forest management
planning (Metsakorralduse, 2017). Forest
policy development and general monitor-
ing of trends is usually based on National
Forest Inventories (NFI) carried out on a
sampling grid of permanent sample plots
(Tomppo et al., 2010). Both of the forest in-
ventory methods use remote sensing data.
Stands are delineated for the forest man-
agement planning using aerial photographs
(Spurr, 1948). Maps of wood volume esti-
mates that are constructed with nonpara-
metric estimation methods e.g. k-nearest
neighbour (kNN) using sample plot meas-
urements and feature variables from multi-
spectral satellite images are some of the out-
puts of NFIs (McRoberts & Tomppo, 2007).
In Estonia Tamm & Remm (2009) used ref-
erence set observations taken from a forest
management inventory database (FIDB),
Landsat ETM+ images and a 1:10,000 digital
soil map data for machine learning-based
construction of standing wood volume
maps and obtained root mean square error
(RMSE) 87.0 m® ha™ (42%) at pixel level and
74.6 m® ha™ (36%) at stand level.

Wood volume data are important for
the estimation of carbon storage and esti-
mation of timber, but tree species composi-
tion data are required for biodiversity as-
sessment (Laarmann et al., 2009; McRoberts
et al., 2012), satellite-based estimation of net
primary production (Zhao et al., 2011; Lang
et al., 2017), ecosystem models (Duveneck
et al., 2015), and also for purposes of moni-
toring and forest industry planning. Tree
species composition of a forest stand is a
vector of the relative proportions of indi-
vidual species stemwood volume from total
stemwood volume of the stand. However,
maps with up-to-date inventory estimates
in the Forest Inventory Data Bases (FIDB)
cover usually only the forests where the
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owner is interested in management and the
number of NFI sample plots per unit area is
only sufficient for estimating regional aver-
ages. For spatially continuous estimates, a
machine learning approach with spatial
feature variables (multispectral images, air-
borne lidar data, soil maps) can be used to
construct tree species composition maps at
medium spatial resolution (20-30 m) for all
forests in the region. Decision trees-based
random forest-type (RF) methods have been
successfully used for tree species classifica-
tion and land cover mapping (Yang ef al.,
2014; Barrett et al., 2016).

In this study we used a RF implemen-
tation (r.learn.ml) in GRASS GIS (GRASS
Development Team 2017), Landsat-8
Operational Land Imager (OLI) and
Sentinel-2 Multispectral Instrument (MSI)
images, a 1:10,000 digital soil map and a
large number of reference samples drawn
from an FIDB to construct a tree species
map for all of Estonia. The map was then
validated using county level statistics, har-
vester measurements from regeneration
felling stands, samples from the database of
Estonian Network of Forest Research Plots
(Kiviste et al., 2015) and also a set of NFI
sample plots.

Material and Methods

The location

The study area (Figure 1) included the en-
tire terrestrial territory of Estonia (42,755
km?) except for Ruhnu, a small and distant
island in the Baltic Sea. About half (53.2%)
of the Estonian terrestrial territory is for-
est land, which is 51% publicly owned by
state or municipalities while the remain-
der belongs to private forest owners; a
small part (46,341 ha) was retained by the
state after land restitution following the
collapse of the Soviet Union (Raudsaar et
al., 2017, Valgepea & Maamets, 2017). The
most widespread forest trees in Estonia are
European aspen (Populus tremula L.), silver
birch (Betula pendula Roth), downy birch
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Figure 1. The study area covers the entire territory of Estonia. The squares mark eight image sub-
sampling regions that overlap partially. County borders are drawn on the map.

Joonis 1. Pilditéétlus tehti viiksemate ristkiilikukujuliste serviti kattuvate piirkondade (katkend-
Jjooned) kaupa. Kaardile on kantud ka maakondade piirid.

(B. pubescens Ehrh.), Norway spruce (Picea
abies (L.) Karst.), black alder (Alnus gluti-
nosa (L.) Gaertn.), grey alder (A. incana (L.)
Moench), Scots pine (Pinus sylvestris L.) and
common ash (Fraxinus excelsior L.). These
tree species grow in different mixtures in
Estonia. On fertile soils Norway spruce
is also common in the mid-story and the
understory of the forests. Due to the his-
torical background state owned forests
stands are dominated by Scots pine, birch

spp. and Norway spruce and in private
land the forest stands are dominated by
birch spp. followed by Scots pine and grey
alder (Raudsaar et al., 2017). This differ-
ence is caused by the tendency for natural
regeneration of fast growing broadleaf de-
ciduous species after regeneration fellings
(Raudsaar et al., 2014) and the large share of
abandoned agricultural private land where
fast growing broadleaf deciduous trees do
occur in the first order.




M. Lang et al.

Ancillary data and feature variables
Satellite imagery from Landsat-8 Operational
Land Imager (OLI) and Sentinel-2 Multi-
spectral Instrument (MSI) (Table 1) were
downloaded from the USGS GloVis por-
tal (https://glovis.usgs.gov) and from the
Copernicus Open Access Hub (https://
scihub.copernicus.eu). We used top-of-
atmosphere radiances and did not apply
atmospheric correction. Using cloud-free
sub-regions of the images it was possible
to cover the entire country and pairs of im-
ages on different dates provided informa-
tion on phenology as this has been found
informative for mapping species composi-
tion (Wilson et al., 2012).

All the images were transformed into
the Estonian base map coordinate system
(EPSG:3301) using GDAL tools (www.gdal.
org). A pixel size of 25 m was used as a com-
promise between the original spatial resolu-
tion of the images and the large volume of
data. Nearest neighbour resampling was
used for the 30 m resolution Landsat-8 OLI
(USGS, 2016) bands and for the Sentinel-2
MSI bands that have 20 m resolution. For the
Sentinel-2 MSI bands with 10 m resolution
(SUHET, 2015), the averaging of source pixel
values was used for raster image resampling.
Cloud and cloud shadow areas were delin-
eated manually. Both of the scanners have a
special channel near to the water absorption
band in the electromagnetic spectrum that
was useful for haze and cirrus detection. The
entire territory of Estonia was subdivided
into partially overlapping regions (Figure 1)
according to forest growth conditions and
to establish data processing units with suf-
ficient counts of reference samples. After
cutting the individual Landsat and Sentinel
images according to the regional borders for
data processing there were 85 image combi-
nations with sufficiently large area and each
containing a single image or a pair of images
with phenology effect. In the central region
the number of image combinations was the
greatest (15), but in the western Estonia and
in the islands only 7 image combinations
could be constructed.
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Table 1. The list of satellite images used in this
study; Sentinel-2 images are referenced by
orbit number and Landsat-8 images using
World Reference System-2 path and row.

Satelliidipiltide nimekiri. Asukoht on Senti-
nel-2 puhul orbiidi number ja Landsat-8
puhul World Reference System-2 orbiit (path)
Jja pildirida (row).

Tabel 1.

Satellite and scanner  Location Date
Satelliit ja skanner Asukoht Kuupdev
Landsat-8 OLI 185,019 08.08.2015
Landsat-8 QLI 185;019  24.08.2015
Landsat-8 OLI 185,019 06.05.2016
Landsat-8 QLI 186;019 12.06.2015
Landsat-8 OLI 186,019 13.05.2016
Landsat-8 OLI 186;019 14.06.2016
Landsat-8 OLI 187,019 21.07.2015
Landsat-8 OLI 188;019  25.05.2015
Landsat-8 OLI 188,019 11.05.2016
Landsat-8 OLI 189;019  03.07.2015
Sentinel-2 MSI R036 04.08.2015
Sentinel-2 MSI R036 14.08.2015
Sentinel-2 MSI R036 24.08.2015
Sentinel-2 MSI R036 10.05.2016
Sentinel-2 MSI R036 28.08.2016
Sentinel-2 MSI R079 07.08.2015
Sentinel-2 MSI RO79 17.08.2015
Sentinel-2 MSI R079 13.05.2016
Sentinel-2 MSI R122 06.05.2016
Sentinel-2 MSI R122 24.08.2016
Sentinel-2 MSI R122 13.09.2016
Sentinel-2 MSI R136 21.08.2015
Sentinel-2 MSI R136 30.09.2015
Sentinel-2 MSI R136 27.04.2016
Sentinel-2 MSI R136 07.05.2016

Processing data by geographical sub-re-
gions has been used to decrease the possibi-
lity of erroneously predicting a species out-
side its realistic region of occurrence (Du-
veneck ef al., 2015). We used a similar ap-
proach (Figure 1) but due to the variability
of the Estonian forested landscape we in-
cluded also data from the 1:10,100 national
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soil map (Mullakaardi, 2001). The soils
database was downloaded from the web-
site (www.maaamet.ee [01.02.2017]) of the
Estonian Land Board. Each soil polygon is
associated with a data record containing
the soil type and morphological informa-
tion. For the machine learning procedure
the soils were grouped according to Table
Al.1 using the pedo-ecological schema
of normally developed mineral soils (see
Figure 2 in Kolli et al., 2004). The vector
map of soils was rasterized, each pixel was
assigned the soil group code, and the soil
group code was used as a categorical vari-
able in the RF estimation procedure.

Reference set data

While NFI data are used as reference sets
in many studies for machine learning we
used sample plots from the Estonian NFI
only for validating our results. The NFI
sampling grid is designed so that each an-
nual sampling unit corresponds to 1,000 ha
in land category-based estimates. Starting
from 2014, the grid was modified and the
estimated number of yearly measured
sample plots is now 5,600. Since the share
of forest land is 53%, there will be about
200 sample plots per county with possible
tree species composition data. This is not
much when considering that in addition
to species composition the spectral signa-
tures of forests also depend on stand age,
leaf area index, stand density, and ground
vegetation (Nilson & Peterson, 1994). By
incorporating sample plots from a larger
area comprised of regions with different
growth conditions and from several sam-
pling years, this increases the number of
observations but also increases the risk of
mixing samples with similar spectral sig-
nature but different species composition. At
the same time, reference samples for model
fitting and validation of the results are lost
in places where clouds, cloud shadows and
haze influence pixel values in the satellite
images. Since NFI sample plots are small
(radius 7 to 10 m), their positioning errors
combined with raster image re-sampling

errors introduce substantial random errors
in the spectral signatures of the sample
plots. Finally, the locations of NFI sample
plots do not follow forest stands, but are
determined by the sampling grid. Hence,
sample plots can be located near to stand
borders and thereby have a mixed spectral
signature.

We used for our machine learning pro-
cedure the forest management inventory
database from the Estonian Environmental
Agency (Forest database, 2016). The data-
base contains a 1:10,000 map of stand bor-
ders and mensurational data (forest age,
stand height, basal area, stand relative
density, site class, site type, wood volume,
etc.) used for forest management planning.
For each stand element (a tree species grow-
ing in particular social layer) its propor-
tion is given according to wood volume.
Although total wood volume is known to
be underestimated in the database (Lang
et al., 2014; Arumde & Lang, 2016), the
distribution of wood among species and
thereby the tree species composition is usu-
ally reliable. The only exception is a small
systematic underestimation of Norway
spruce in state owned forests, according
to volume measurements made at time of
harvest (Tavo Uuetalu, The Estonian State
Forest Management Company, personal
communication).

A copy of the FIDB was obtained from
the Estonian Environmental Agency on 13
February 2017. The FIDB data were pre-
processed similar to Lang et al. (2016) to
extract sufficiently large and compact for-
est stands for a reference set and to exclude
outdated FIDB records and the polygons
with substantial variability in pixel values.
As the RF estimation procedure in GRASS
is pixel-based, the within stand variability
described by variograms is technically com-
plicated to use. However, training data can
be prepared separately from the estimation
procedure and we used mean values of pix-
els located near to stand polygon centroids
instead of single, nearest to centroid pixel
value.
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Firstly, a subset of forest land parcels
inventoried since 2014 with area between 1
and 10 hectares was extracted. The extract-
ed polygons were buffered 30 m towards
the inside and the areas under large ditches
were cut out. Irregular polygons were then
deleted from the selection. For each remain-
ing polygon the mean radiance value was
calculated for each band in the satellite im-
ages and only the polygons for which at
least 16 pixels were extracted were kept.

Secondly, the selection was filtered us-
ing their spectral radiance. Parcels were re-
tained if the ratio of standard deviation to
mean in the near infrared radiance (NIR)
bands (OLI5, MSI08) was less than the 97.5%
percentile of the population value. This fil-
ter excluded internally variable polygons.
Next, the remaining observations with pos-
sible disturbances from 2015 to 2016 were
identified according to radiance changes
in the blue (OLI2, MSI02) and NIR bands
(OLI5, MSI08). For this the reference obser-
vations were grouped by main species and
those deviating more than four residual
standard errors from a linear regression
model between radiances from different
dates were excluded as disturbed.

Thirdly, the concordance of spectral
radiance on forest age and wood volume
of remaining observations were analysed.
Since the images were taken over two
years and the forest inventory records were
also from later dates than the last image,
some polygons had small radiance in the
short-wave infrared (SWIR) bands (OLIS6,
MSI11) characteristic of old stands but the
forest age was zero. This hints at outdated
or conflicting data, since young stands are
brighter then old stands (Nilson & Peterson,
1994). All the observations were removed
that had zero age and less than average
radiance of the 1 to 6 year-old forests ob-
servations in the SWIR bands. Finally, all
the stands older than 20 years or with wood
volume over 50 m® ha were grouped ac-
cording to main species and outliers were
identified by their spectral radiance in 10
year age classes and 50 m® ha™ volume
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classes. The stands with radiance in red,
NIR or SWIR bands deviating more than
three standard deviations from the class
mean were excluded. The procedure was
repeated three times. Some outliers in the
classes with a small number of observations
(very old stands) were identified visually
from scatter plots of wood volume and
spectral radiance values. About 480 out-
liers were later detected and excluded when
feature variable values from a 3 x 3 pixel
window around polygon centroids were
calculated for the random forest algorithm.
The count of reference samples after all the
outliers were removed was 102,291.

The random forest model fitting and
map construction
Random forests is a machine learning algo-
rithm for classification that corrects for
overfitting of the training set (Breiman,
2001). The random forest (RF) classifica-
tion algorithm (r.learn.ml) in GRASS has
the following hyper-parameters: number
of feature variables during node splitting
Nteay maximum tree depth H,,,,, minimum
number of samples required for node split-
ting Ny, minimum number of samples for
leaf node N, and number of estimators
Niees- The values for the hyper-parameters
are recommended to fit according to the
user guide. Since the model construction
involves random sampling of features dur-
ing building of the trees, the results are de-
pendent on the random number generator
initial state I,,,q. During some initial tests
we found that the algorithm was influenced
by the distribution of observations between
classes similar to kNN as found by Lang et
al. (2014, 2016). We found that our estimates
were more reliable with automatic balanc-
ing switched on. We also used the stan-
dardisation option of feature variables. The
number of permutations of feature variable
values during model construction was set
to 10 (default value). The number of estima-
tors was fixed to default value N = 100.
The machine learning module includes
a cross-validation component. We used
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non-spatial nested cross-validation with the
reference set split to 2 folds for smaller sets
of observations and up to 5 folds for larger
reference subsets determined by the useful
area of image pairs. In this study the cross-
validation of a single image or image pair
based results was not of interest, however,
cross-validation was important for opti-
misation of the algorithm parameters and
selection of informative feature variables.

The RF classification algorithm predicts
a class code and also probabilities of all
classes for each pixel in the target set. These
probabilities can be used as reliability esti-
mates (Barrett et al., 2016). However, con-
sidering that spectral signature of a forest
stand is a linear mixture of the reflectance
of the trees, these probabilities can also be
interpreted as species composition esti-
mates for forest stands assuming that dif-
ferent species have different optical prop-
erties. In this study we used seven classes
corresponding to the most widespread tree
species in Estonia and one class for other
tree species. A separate class was used for
the reference observations located in recent
regeneration felling areas where the tree
canopy did correspond to the forest defini-
tion in Estonia.

The estimation procedure was per-
formed in four steps for each image or im-
age pair:

1. search for informative feature variables;

2. preparation of reference sample data;

3. search for the model hyper-parameter
optimum values; and

4. imputation of target set pixel values.

In the first step the hyper-parameters of the
RF algorithm were set to N, = 0 (automatic),
Hiox = 27, Niie = 30, Nyt = 8 and four esti-
mates were imputed using /,,,, € {3,9,41,87}.
Feature variable values were extracted from
centroid pixels of the reference polygons.
The feature importance’s for each run were
obtained from nested cross-validation and
averaged. Soil data were almost always
ranked at as one of most important feature
variables and followed usually by the NIR

bands. The six to ten most informative spec-
tral bands were selected for the RF model
training and estimation. In the second step
a training data table was created by sam-
pling pixels located closer than 36 m to the
reference stand centroid position. Spectral
radiance was averaged and mode value of
the pixels in soil map codes was used.

In the third step the RF model was fit-
ted to the training data to find optimal
values for the hyper-parameters. We fixed
the maximum number of features for node
splitting to two features less than the num-
ber of features found during the optimiza-
tion step (not all features are always re-
quired), N,.,r was fixed to a value between
5-10 depending on the sample size, N
was usually set to 3N, random state was
L.sna =1 and maximum tree depth value was
the free parameter searched from the range
of 15-50.

Finally, imputation of the target set pixel
values was carried out for/ , € {1 ,3,6}. The
procedure yielded 255 estimates consider-
ing all the sub-regions shown in the Figure
(1); i.e., three I, states for each of the 85
image combinations.

For each reference set pixel the proba-
bilities of classes were averaged from avail-
able estimates; this produced 9 raster layers
that covered all of Estonia. The map layers
correspond to the probabilities of tree spe-
cies in the composition and one layer con-
tained the probability that the pixel does
not correspond to forest stand definition
(tree layer was too sparse or trees were too
small). The species composition estimates
for each pixel were calculated by scaling the
tree class probabilities to sum to 100 exclud-
ing the non-forest probability class. Finally,
the class code with the highest probability
was then indicated in a separate layer of
the tree species composition map. Using
the Estonian 1:10,000 base map, the pixels
with highly improbable occurrence of tree
cover were assigned a no data flag. The no
data flag was also assigned to agricultur-
al land where the records of the Estonian
Agricultural Registers and Information
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Board indicated the landowner applied for
a subsidy in 2009-2011.

Validation of the species composition
map

The validation of the tree species composi-
tion map was carried out using four data
sources. The first validation dataset was the
area distribution of inventoried stands by
dominant tree species in counties accord-
ing to official national statistics (Raudsaar
et al., 2017). The pixel distribution of the
dominant species layer was calculated from
the species composition map. The second
validation dataset contained timber volume
measurements made by harvesters in re-
generation fellings that was made available
by the Estonian State Forest Management
Company. From this dataset we selected
2,045 records corresponding to the stands
that contained at least 16 pixels and where
more than 85% of the pixels were assigned
a tree species class as the most probable
and less than 20% of the harvested timber
(fuelwood, etc.) was not assigned to a tree
species. The mean proportion of each tree
species in the species composition map was
calculated for each stand and stand level
data were compared with the harvester
measurements.

The third validation dataset was extract-
ed from the database of Estonian Network
of Forest Research Plots (ENFRP) (Kiviste et
al., 2015) from the list of sample plots mea-
sured from 2012 to 2015. The sample plots
have a radius ranging from 15 m to 30 m
depending on forest age, thus a sample plot
could cover an area larger than the 25 m
pixel. Mean age of the forests was 69 years
ranging from 17 to 243 years. The sample
plots were established in homogeneous
parts of forest stands and therefore are
representative also for their near vicinity.
After checking for possible stand replacing
disturbances using orthophotos and accord-
ing to the forest age and brightness relation-
ship, the number of suitable observations
was 659 observations.
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A subset from the Estonian National Forest
Inventory (Adermann, 2010) database was
used for a fourth set of validation tests of
the stand map. These sample plots have
a radius of 7 m or 10 m and the error in
coordinate values is usually less than 45
m. A subset of 3,002 sample plots was ex-
tracted to analyse species composition. The
selection criteria were as follows: the plot
was not near to roads or ditches, the wood
volume was greater than 5 m* ha™ and the
probability of the non-forest (NFD) class
was less than 10%. Each plot was related to
the imputed values of the nearest pixel of
the sample plot location. For each sample
plot Euclidean distance between the mea-
sured and predicted species composition
vectors was calculated as

Dspc = \/Z?=1(ki,SMI - ki,map)za 1)

where k; 5\ is the proportion of the species
i in the NFI data and k; ,,, is the predicted
proportion of the i species. Dependence of
on the forest age was analysed.

For estimates of categorical variables
as land cover types it is common to report
Cohen’s kappa index of agreement. Tree
species proportion, however, is a complex
ratio variable. It is reasonable to calculate
Cohen’s kappa only for the validation sam-
ple plots where proportion of dominating
species is sufficiently large to classify the
observations as pure stands of particular
tree species. From the NFI data we first
selected the sample plots where dominat-
ing species proportion was equal or greater
than 75%. A second validation subsample
of pure stands was created by excluding
the stands with age less than 20 years. All
statistical analyses were carried outin R (R
Core Team, 2016).
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Results and Discussion

The total area of the map pixels with tree
species composition is 2.26 million hect-
ares that is about 8% more than the official
estimate (Raudsaar et al., 2017) of forested
forest land area of 2.09 million hectares.
The difference is related to distinction of
forest land from bush and bog land cat-
egories, and interpretation of land cover
for small wooded land patches. The com-
parison of the main species distribution
in inventoried forest stands at the county
level indicated a high correlation between
the predicted values and national statistics
(Figure 2). For state forests (862,136 ha)
the determination coefficient R* was 0.98
and for private forests (803,525 ha) R* was
0.93. The random forest algorithm-based
estimates showed a larger share of grey al-
der and birch stands in the private forests
and a greater share of Scots pine stands
in state forests, similar to national inven-
tory statistics. This result indicates that
the constructed map (Figure A3.1) of tree
species composition (available from Tartu
Observatory web page (www.to.ee) and
upon request from the corresponding
author) can be used for the rest of the for-
est land (410,778 ha) for which there are no
records in the FIDB.

The aggregated estimates of main spe-
cies at the county level indicated that there
are no substantial shortcomings in the data
processing. However, our objective was to
obtain a map of tree species composition,
not only the main species. The comparison
of predicted proportion of tree species in
stands with the harvester measurements
showed the strongest correlation for Scots
pine followed by Norway spruce, birch,
and European aspen (Table 2). The pre-
dicted proportion of coniferous trees had
very strong correlation (R? = 0.75) with
the measured value. However, there was
also substantial scatter in the relationship
(Figure 3) and the gain of the expected
linear model was only 0.67. There was a
characteristic lack-of-fit with large values
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Figure 2. County level comparison of the predicted
proportion of the main species to in-
ventoried forest stands (Raudsaar et al.
2017) in state forests (a) and private for-
ests (b). The abbreviations in the legend
are: HB (Populus tremula L.), KS (Betula
pendula Roth, B. pubescens Ehrh.), KU

(Picea abies (L.) Karst.), LM (Alnus glu-

tinosa (L.) Gaertn.), LV (A. incana (L.)

Moench), MA (Pinus sylvestris L.), SA

(Fraxinus excelsior L.).

Joonis 2. Korraldatud puistute jagunemine enamus-
puuliigi jérgi maakonniti (a) riigimetsas
ning (b) erametsades puistuplaani (y-telg)
ja aastaraamatu Mets 2016 (Raudsaar et
al., 2017) jdrgi.

underestimated and small values overesti-
mated. It appeared (Table 2) also that the
mean proportion of the Norway spruce,
Scots pine and birch was underestimated
and the proportion of less common species
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Table 2. Mean proportion of species in 2,045 forest stands based on harvester measurements and the con-
structed map. S, is standard error. Harvester measurements are used for the independent variable
in the linear model y = a + bx.

Tabel 2. Puuliikide osakaalude hinnangud 2045 puistus harvesterméétmise ja puistuplaani jérgi. S, on stan-
dardviga. Seose lineaarmudelis (y = a + bx) on argumendiks harvesterméotmistel saadud puuliigi
osakaal.

Species Harvester / Stand map / Linear model /
Puuliik Harvester Puistuplaan Lineaarseose
parameetrid
Mean Se Mean Se a b R?
Silver and downy birch 19.8 0.4 15.8 0.2 9.5 0.32 0.55
Norway spruce 37.7 0.5 24.7 0.3 12.0 0.34 0.44
Scots pine 28.7 0.7 27.7 0.4 13.1 0.51 0.72
Grey alder 0.0 0.0 5.6 0.1 5.6 2.72 0.01
Black alder 0.3 0.0 7.1 0.1 6.7 1.31 0.12
European aspen 8.9 0.3 10.3 0.1 8.2 0.24 0.42
Common ash 0.0 0.0 3.9 0.1 3.9 4.13 0.00
Other tree species 4.6 0.1 4.8 0.1 3.8 0.21 0.20

tended to be overestimated. Estimation er-
rors can cause biased values because the
proportion of species cannot be negative
or greater than 100%. Additionally, the
random forest algorithm only predicted the
probability of classes (main species) and the
scope of this project did not include repro-
gramming of the RF implementation to ac-
cess directly the data vectors of the reference
observations. Also, the target set pixel values
were calculated as mean values of several
estimates based on available image combina-
tions and three selected random state values.

The mean proportion of Norway spruce
was substantially greater in the harvester
dataset than in the constructed map, similar
to the apparent underestimate in the for-
est inventory database (FIDB) compared
to the harvester data. Since the FIDB was
used to draw reference set observations for
the random forest algorithm the imputed
target set pixel values in the constructed
map were probably influenced by the pos-
sible bias in the FIDB. However, it was not
possible to identify the true causes of the
observed systematic difference that exists
between the harvester measurements and
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the constructed map in the proportion of
Norway spruce and birch in tree species
composition in forest stands.
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Figure 3. Measured (harvesters) and predicted pro-
portion of coniferous trees in 2,045 for-
est stands having undergone regeneration
felling.

Joonis 3. Uuendusraietel (2045 puistus) harvester-

méotmiste péhjal saadud okaspuude
osakaal puistus vérrelduna puistuplaanil
oleva hinnanguga.
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While the harvester measurement data rep-
resented only old forest stands, the sample
plots from the ENFRP dataset (Kiviste et
al., 2015) included also younger stands.
There was a strong correlation (R* = 0.79)
between the measured and predicted pro-
portion of evergreen coniferous trees, simi-
lar to harvester dataset, but the gain of the
expected linear relationship was greater
(0.76). Nevertheless, there was also rather
large scatter at the sample plot level (Figure
4). The validation dataset confirms that the
proportions of Norway spruce, Scots pine
and birch were underestimated and the
proportion of less common species was
overestimated in the target set pixels (Table
3).

The validation based on NFI sample
plots (Table 4) showed results similar to
the other validation data sets. However,
the coefficient of determination R* between

the measured and predicted proportion of
coniferous trees at the sample plot level was
only 0.64. A similar decrease in R* also was
present at the species level compared to the
other validation data sets. The main reason
for the decreased correlation likely was
the smaller plot size with respect to pixel
size and errors in the spatial location of the
sample plots. However, the NFI dataset
covered the entire age range of forests and
this enabled a study of possible dependence
of the estimation errors in relation to for-
est age. There was a decrease (slope -0.21
in linear model, p-value < 0.001) (Figure 5)
in the estimation error depending on for-
est age (R? = 0.1, p-value < 0.001 at 3,000
degrees of freedom). There was no age de-
pendence in the number of tree species in
the NFI sample plots as indicated by non-
significant slope (p-value > 0.2) and R? =0
of the relationship.

Table 3. Mean proportion of species in 659 sample plots from ENFRP (Kiviste et al., 2015) database and
the constructed map. S, is standard error. Sample plot measurements are used for the independent
variable in the linear model y = a + bx.

Tabel 3. Puuliikide osakaalude hinnangud 659 kasvukdiguproovitiikil (KKPRT) (Kiviste et al., 2015) méét-
miste ja puistuplaani jdrgi. S, on standardviga. Seose lineaarmudelis (y = a + bx) on argumendiks
proovitiikkidelt saadud puuliigi osakaal.

Species ENFRP sample plots / Stand map / Linear model /
Puuliik KKPRT proovitiikid Puistuplaan Lineaarseose parameetrid
Mean Se Mean Se a b R?
Silver and downy birch 16.3 0.95 10.6 0.39 5.38 0.32 0.61
Norway spruce 32.7 1.28 27.9 0.85 9.21 0.57 0.73
Scots pine 44.2 1.59 40.5 1.08 13.55 0.61 0.81
Grey alder 0.6 0.11 4.0 0.17 3.89 0.25 0.03
Black alder 1.3 0.22 4.6 0.19 4.07 0.43 0.24
European aspen 3.5 0.43 6.1 0.22 5.03 0.3 0.34
Common ash 0.1 0.04 2.9 0.09 2.81 0.44 0.03
Other tree species 1.3 0.2 3.4 0.11 3.19 0.17 0.1
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Table 4. Mean proportion of species in 3,002 NFI sample plots and the constructed map. S, is stan-
dard error. Sample plot measurements are used for the independent variable in the linear model
y=a+bx.

Tabel 4. Puuliikide osakaalud 3002 statistilise metsainventuuri (SMI) proovitiikil véiliméotmiste ja puistu-
plaani jérgi. S. on standardviga. Seose lineaarmudelis (y = a + bx) on argumendiks proovitiikkidelt
saadud puuliigi osakaal.

Species NFI sample plots / Stand map / Linear model /
Puuliik SMI proovitiikid Puistuplaan Lineaarseose parameetrid
Mean Se Mean Se a b R?
Silver and downy birch 26.0 0.57 17.6 0.21 11.8 0.22 0.35
Norway spruce 23.0 0.53 18.4 0.31 9.98 0.37 0.4
Scots pine 29.3 0.7 26 0.47 10.27 0.54 0.65
Grey alder 6.5 0.36 8.7 0.17 6.87 0.29 0.35
Black alder 5.4 0.31 9.0 0.13 7.87 0.2 0.23
European aspen 5.8 0.32 10.1 0.13 9.22 0.15 0.15
Other tree species 4.1 0.25 10.3 0.13 9.58 0.17 0.11
o
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Figure 4. Measured and predicted proportion of co-  Figure 5. Mean Euclidean distance (1) between the
niferous trees in sample plots taken from vectors of measured and predicted spe-
ENFRP database (Kiviste et al., 2015). cies composition in the NFI sample plots.

Joonis 4. Okaspuude osakaal puistu koosseisus met- The age groups correspond to 10 years
sa kasvukdigu proovitiikkide andmete ja interval.
puistuplaani jérgi. Joonis 5. Takseeritud ja ennustatud puistukoosseisu-
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de eukleidiline kaugus (1) statistilise met-
sainventuuri proovitiikkidel 10-aastaste
vanusriihmade kaupa.
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Overall accuracy of the main species esti-
mates was 75.5% for the 1,529 NFI sample
plots where a single tree species propor-
tion was equal or greater than 75%. Mean
value of Cohen’s kappa index of agree-
ment was 0.66. Scots pine stands were the
most accurately discriminated followed by
Norway spruce stands. Separation of de-
ciduous species was less accurate (Table
A2.1). This is similar to the results obtained
from the analysis of species composition. By
excluding stands less than 20 years-old the
overall accuracy increased to 78.4% (Table
A2.2) and kappa increased to 0.69 for the
subsample of 1,354 NFI sample plots. The
increase in accuracy is small but consistent
with the previous analysis (Figure 5) that
showed increased estimation accuracy of
tree species composition in older stands.
We used class membership probabilities of
RF machine learning procedure as estimates
of tree species proportions in the species
composition. The underlying assumption
was that the spectral signature of a forest
depends linearly on tree species composi-
tion. The validation results indicated that
the constructed map of tree species com-
position provided reliable estimates of the
main tree species in all counties in Estonia.
Discrimination of deciduous tree species
proportions in a mixture was less accu-
rate than Norway spruce and Scots pine
proportion, which is related to the differ-
ences in their spectral signatures. Main
species estimation accuracy at the pixel
level for NFI sample plots with dominant
species proportion of 75% and more was
75.5% and increased when young stands
were excluded. However, predictions of
species proportions in composition at the
stand or pixel level have a lack-of-fit char-
acterized by an underestimation of larger
values and overestimation of smaller val-
ues. While our assumption was justified
that the class probabilities predicted by
the random forest procedure may be used
as linear proportions of species, as shown
by correlation analyses, there are options
to improve precision. For example, there

was always about 2 to 3% probability for
each class in the imputations. Considering
that there were 9 classes in the dataset, the
results have always about 18 to 27% noise.
This noise could be reduced by direct pro-
cessing of the data vectors of the reference
samples from leaf nodes of the decision
trees in the random forest model. However,
this requires modifications in the software
of the GRASS machine learning module.
The forest age dependence of the predicted
species composition indicates that a two-
stage approach could be tested in future
studies; inclusion of canopy height infor-
mation from airborne laser scanning (ALS)
also may be useful to separate forests by
age. It is also possible that calibration of the
class membership probabilities can improve
the accuracy (Niculescu-Mizil & Caruana,
2005), however, the procedure requires an
additional independent set of observations.

Conclusions

In this study we processed freely distribut-
ed multispectral satellite images using a
Random Forest implementation in free
software GRASS and constructed the first
high spatial resolution map of tree species
composition for Estonia. Validation of the
map showed good discrimination between
deciduous broadleaf and evergreen conif-
erous species, but separation and estima-
tion of proportion of deciduous broadleaf
species was less accurate and this has to
be targeted in further studies. Overall, the
constructed map provides valuable data for
the forests where no up-to-date inventory
data are available or for projects that re-
quire continuous cover of tree species data
of known quality over all of Estonia.
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Appendix Al. Soil type classification.
Lisa A1. Mullakaardi andmetest moodustatud klassid.

Table A1.1. The grouping schema of soils for machine learning.
Tabel A1.1.  Mullakaardi andmestiku riihmitamise skeem masinéppe jaoks.

Soil / Muld Soil / Muld Soil / Muld Soil / Muld
Type / Code Type / Code Type / Code Type / Code
Tiiiip Kood Tiiiip Kood Tiitip Kood Tiitip Kood
Ag 48 GI1 45 L 61 LkII 51
AG 48 Gk 14 L(k) 61 LkII(g) 51
AG1 48 Gk1 21 L(k)g 63 LkIIg 53
AM’ 16 Gkr 14 L(k)I 61 LKITT 51
AM” 37 Go 21 L(k)Ig 63 LKIII(g) 53
AM™ 48 Gol 45 L(k)II 61 LkIIIg 53
Ar 48 Gol 45 L(k)IIg 63 LP 42
ArG 48 Gor 21 L(k)III 61 LP(q) 43
Arv 109 Gr 14 L(k)IIIg 63 LPe 42
Av 109 K 11 LG 64 LPg 43
D 42 K(g) 11 Lg 73 LPG 44
D(q) 42 Kg 13 LG1 64 M 37
Dg 43 Kh 10 LI 61 M’ 16
DG 44 Khg 13 LIg 73 M” 37
E21 51 KI 31 LIT 61 M 48
E2k 11 KI(g) 42 LIIg 73 Pp 45
E20 31 KIg 42 LITT 61 R 77
E3I 51 Ko 21 LIIIg 73 R’ 57
E3k 10 Ko(g) 21 Lk 51 R 77
E30 31 Kog 21 Lk(g) 53 R™ 77
G(0) 21 Kor 21 LkG 4t S 57
G1 45 Korg 21 Lkg 53 S 57
Gh 14 Kr 10 LkI 51 S” 57
Gh1 14 Kr(g) 11 LkI(g) 51 S 77
GI 45 Krg 13 LkIg 53 - -
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Appendix A2. Confusion matrices of pixel level dominant tree species estimates.

Lisa A2.

Table A2.1.

Enamuspuuliigi hinnangute veamaatriksid.

Cross-tabulation of estimated (columns) and known (rows) main species code in National

Forest Inventory (NFI) sample plots where dominant species proportion is more than 75%.
User, producer and overall accuracies are presented.

Tabel A2.1.

Puistuplaanil (veerud) ja statistilise metsainventuuri (SMI) proovitiikkidel teadaoleva (read)

enamuspuuliigi risttabel vaatlustele, kus enamuspuuliigi koosseisukordaja iile 75%. Tabelis on
toodud ka iildine-, kasutaja-, tootjatdpsus (0.ACC, User ACC ja Prod. ACC).

NFI sample plots/

Estimated main species / Enamuspuuliiik

SMI proovitiikid 1 12 13 14 15 16 o5 Prod. ACC
Silver birch 11 259 12 20 29 6 17 2 0.75
Norway spruce 12 30 200 43 3 2 5 0 0.71
Scots pine 13 30 27 573 1 2 0 0.90
Gray alder 14 18 2 0 71 2 4 0 0.73
Black alder 15 22 1 3 25 1 0.39
European aspen 16 20 8 4 2 23 2 0.38
Other species 25 3 6 14 4 8 4 0.10
User ACC 0.68 0.78 0.89 0.55 0.58 0.33 0.44 0.ACC=75.5%
Table A2.2.  Cross-tabulation of estimated (columns) and known (rows) main species code in National Forest
Inventory (NFI) sample plots where dominant species proportion is more than 75% and stands
are older than 20 years. User, producer and overall accuracies are presented.
Tabel A2.2.  Puistuplaanil (veerud) ja statistilise metsainventuuri (SMI) proovitiikkidel teadaoleva (read)

enamuspuuliigi risttabel iile 20-aastastes puistutes, kus enamuspuuliigi koosseisukordaja iile
75%. Tabelis on toodud ka (ldine-, kasutaja-, tootjatdpsus (0.ACC, User ACC ja Prod. ACC).

NFI sample plots

Estimated main species / Enamuspuuliik

SMI proovitiikid 1 12 13 14 15 16 25 Prod. ACC
Silver birch 11 228 12 17 15 4 13 2 0.78
Norway spruce 12 17 186 42 0 5 0 0.74
Scots pine 13 20 25 552 1 2 4 0 0.91

Gray alder 14 17 1 0 49 2 2 0 0.69
Black alder 15 20 1 5 22 4 1 0.39
European aspen 16 18 8 2 20 1 0.38
Other species 25 3 5 0 9 2 5 4 0.14

User ACC 0.71 0.78 0.90 0.60 0.63 0.38 0.50 0. ACC = 78.4%
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Appendix A3. Map of main dominant species in Estonia.
Lisa A3. Eesti puistute enamuspuuliigi kaart.

[o] 25 50 75 km
| | | |

Enamuspuuliik
Dominant tree species

No forest o Alnus glutinosa | Fraxinus excelsior
I Populus tremula A. incana [ Other species p j
B Picea abies W Pinus sylvestris | Betula pendula, B. pubescens | ¥5 B &0

Figure A3.1. Dominant species of the estimated species composition. County borders are imposed upon the
map. Colour figure is available in electronic version.

Joonis A3.1. Puistute liigilise koosseisu enamuspuuliigi kaart. Kaardile on lisatud maakondade piirid. Vérviline
kaart on e-ajakirjas.
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Eesti puistute liigilise koosseisu hindamine multispektraalsete
satelliidipiltide, mullakaardi ja ndidistel pohineva masindppe

abil

Mait Lang, Mihkel Kaha, Diana Laarmann ja Allan Sims

Kokkuuvote

Jatkusuutliku metsamajanduse otsuste ka-
vandamine vajab metsadkostisteeme kirjel-
davaid andmed, mis séltuvalt kavandami-
se eesmdrgist voivad olla erineva ruumili-
se, temaatilise ja ajalise tildistustasemega.
Puistupdhised takseerandmed saadakse
metsakorralduse kdigus (Metsakorralduse,
2017), riigi tasemel iilevaade saadakse
statistilise metsainventuuri abil (Tomppo
et al., 2010). Samas on puistupdhiste tak-
seerandmete uuendamine metsaomaniku
jaoks enamasti vajalik teatud pikema pe-
rioodi jérel v6i siis ainult neis metsades,
kus soovitakse kavandada majandusotsu-
seid. Statistilise metsainventuuri vaatluste
pohjal saab tildistusi teha kdige rohkem
maakonna tasandil. Teisalt kasvab noudlus
pidevalt tilepinnaliselt uuendatavate and-
mete jdrele uut tiitipi interaktiivse metsa-
korralduse stisteemide arenedes (Korjus
et al., 2017), seoses vajadusega korraldada
seiret voi rakendada taimkatte primaar-
produktsiooni mudeleid (Zhao et al., 2011;
Lang et al., 2017). Uhe lahendusena saab
kasutada kogu ala katvaid kirjeldavaid
tunnuseid multispektraalsetelt satelliidi-
piltidelt ning monda néidistel pohinevat
masindppemeetodit, mille realisatsioone on
testitud ka Eestis (Tamm & Remm, 2009).
Kéesoleva uuringu eesmérgiks oli koos-
tada Eestit kattev puistute koosseisu hin-
nang keskmise ruumilahutusega (25 m)
digitaalse kaardina. Selleks kasutati random
forest masindppemeetodit (Breiman 2001)
GRASS GIS paketist r.learn.ml (GRASS
Development Team, 2017). Kogu ala kir-
jeldavate tunnuste jaoks saadi Landsat-8
OLI ja Sentinel-2 MSI pildid (tabel 1)
USGS GloVis (https:/ / glovis.usgs.gov) ja
Copernicus Open Access Hub (https://

scihub.copernicus.eu) pildiarhiividest ning
1:10 000 digitaalne mullakaart (Mulla-
kaardi, 2001) Eesti Maa-ameti kodulehelt.
Puistute ndidiseid voeti metsaregistri
andmebaasi (Forest database, 2016) koo-
piast seisuga 13.02. 2017. Satelliidipildid
teisendati Eesti pohikaardi koordinaat-
slisteemi, valides kompromissina piks-
li suuruseks 25 m. Pilve- ja pilvevarjude
maskid digiti kdsitsi. Metsaregistri and-
mebaasist voeti paringuga vilja alates
2014. aastast takseeritud metsamaa eraldi-
sed suurusega 1-10 ha. Esmasesse vali-
misse sattunud néidiseraldistel puhver-
dati piirid 30 m sissepoole ning siis jaeti
alles ainult need, mis sisaldasid vihemalt
16 pikslit. Kirjeldavate tunnuste vaartuste
arvutamiseks ndidistele kasutati eraldise
poliigoni tsentroidi timber 36 m raadiuses
leiduvaid piksleid. Algset ndidiste valimit
puhastati vigadest puistute heleduse ja va-
nuse ning heleduse ja tiivemahu seoste jargi
ning peale teede ja kraavide ldheduses ole-
vate ndidiste korvaldamist jdid masindppe
jaoks alles 102 291 puistu andmed.

Mullakaardi andmed tildistati tabeli
Al.1 jargi. Masinopet rakendati alampiir-
kondade kaupa (joonis 1) jargmiste sammu-
dena iga pildi voi pildipaari (fenoloogilise
info kasutamiseks) korral vastavalt:

1. informatiivsete tunnuste otsing;

2. opetusandmete ettevalmistamine;

3. random forest algoritmi hiiperparameet-
rite optimumi otsing;

4. sihtpikslitele puistu koosseisu ennus-
tamine.

Toos kasutatud random forest meetodi
realisatsioon ennustas igale pikslile koikide
klasside (puuliigid ning arenguklass lage/
selguseta) tdendosused. Eeldati, et puistu
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spektraalne signatuur satelliidipildi piksli-
tel on kasitletav koosseisuliikide spektraal-
sete signatuuride lineaarkombinatsioonina
ja saadud tdendosusi tolgendati puuliikide
osakaaludena puistu liigilises koosseisus.
Tulemuste valideerimiseks kasutati puis-
tute pindala jagunemist enamuspuuliigi
jdrgi aastaraamatust Mets (Raudsaar et al.,
2017) (joonis 2); uuendusraietel kogutud
harvestermdotmise andmeid Riigimetsa
Majandamise Keskuse andmebaasist (tabel
2, joonis 3); metsa kasvukéigu ptiisiproovi-
tiikkkide andmebaasi (Kiviste et al., 2015)
véljavotet (tabel 3, joonis 4) ja statistilise
metsainventuuri (SMI) proovitiikke (tabel
4, joonis 5). Valideerimise tulemusena sel-
gus, et maakonna suuruse ala keskmisena
on puistuplaani enamuspuuliigi pikslite
jaotus vdga heas kooskolas statistiliste and-
metega nii riigi (R* = 0.98) kui erametsade
(R?=0.93) osas. Puistute ja proovitiikkide
tasemel tehtud vaatluste keskmistatud tu-
lemuste pohjal ilmneb aga hinnangutes
vdhemlevinud puuliikide osakaalude tile-
hindamine ja enamlevinud puuliikide osa-
kaalu allahindamine koosseisus. Enamus-
puuliiki prognoositakse 78,4 %-lise tapsu-

sega puistutes, kus domineeriva liigi osa-
kaal on vdhemalt 75% ning puistu on tile
20 aasta vana (tabel A2.2). Usna hésti hin-
natakse okaspuuliikide osakaalu koossei-
sus, kuid lehtpuuliikide omavahelise eris-
tamise osas oleks vaja edasisi uuringuid.
Esineb ka méningane tendents hinnangu
vigade suurenemisele nooremates puistu-
tes (joonis 5, tabelid A2.1 ja A2.2). Uheks
vigade pohjuseks on asjaolu, et alati olid
ennustustes esindatud koik klassid ning
juba paariprotsendine juhusliku esinemi-
se tdendosus iga klassi jaoks annab sum-
maarselt theksa klassi kokkuvbttes tisna
markimisvadrse vea. Selle tottu puhtpuis-
tud tulemuseks saadud liigilises koosseisu
hinnangutes praktiliselt puuduvad. Maa-
konniti tehtud valideerimine ja okaspuu-
de osakaalu analiitis ning koosseisu osa-
kaalude regressioonanaliiiis nditasid, et
kéesolevas t66s masindppe meetodil saa-
dud kaart on kasutatav puistuplaanina (joo-
nis A3.1), mis vdimaldab saada puistute lii-
gilise koosseisu hinnangu kogu Eesti ula-
tuses aladel, kus ajakohased metsa takseer-
andmed puuduvad.
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