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Abstract. Fagus sylvatica L. is one of the most important commercial tree species in Eu-
rope and its natural distribution range is expected to shift northwards due to climatic 
changes. Detailed information of factors affecting its growth is crucial as a basis for 
recommendations of wider use of this tree species. Aim of the study was to characterize 
the changes of radial growth intensity of European beech during a vegetation season. 
In mature beech stand in northwest Latvia two sample trees (dominant (DT) and sup-
pressed (ST)) were selected in Hylocomiosa forest type. Continuous measurements of 
changes of stem diameter and xylem sap fl ow as well as meteorological parameters 
were carried out. Stem cycle approach was applied to distinguish the duration of con-
traction, expansion and increment of the stem. Onset and cessation of growth of the 
ST tree was observed several days later compared with DT and mean growth intensity 
during the entire observation period was considerably lower (0.014 mm/day-1 for ST 
and 0.022 mm/day-1 for DT, respectively). Most intensive growth increment diurnally 
was observed in the early morning before sunrise, and seasonally till beginning of 
July. Positive effect of precipitation and low water pressure defi cit (VPD) on growth 
was observed, while high VPD coincided with stem contraction. Results indicate the 
sensitivity of radial growth of European beech to water defi cit and high atmospheric 
transpirational demand; therefore, future potential of cultivation of beech in Latvia 
depends on changes in moisture regime. 
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Introduction

European beech (Fagus sylvatica L.) is one 
of the most important commercial tree spe-
cies in Europe, its distribution range cur-
rently stretches from the southern part of 
the Scandinavian Peninsula in the North 
till Sicily in the South and from the Iberian 
Peninsula in the West till Western Ukraine 
in the East (Ellenberg, 1988, 1996; Fang & 

Lechowicz, 2006). Continentality, which 
can be characterized by high summer tem-
peratures, summer droughts (Betsch et al., 
2011) and late spring frosts (Augustaitis et 
al., 2015), is considered as one of the limit-
ing factors of the distribution of European 
beech (Fang & Lechowicz, 2006). Modelled 
occurrence and severity of drought occa-
sions (Rasztovits et al., 2014) and decrease 
of probability of extreme cold events in the 
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southern and northern parts of its distri-
bution range, respectively, coincide with 
forecasted effects of global climate change 
(IPCC, 2014) and therefore with the natural 
distribution range of beech, which is expect-
ed to shift northwards (Hickler et al., 2012). 
Currently, in several forest stands (estab-
lished at the end of 19th century) in Western 
Latvia, beech have shown high level of ac-
climatization (Jansons et al., 2015), success-
ful natural regeneration (Puriņa et al., 2016) 
and productivity similar to that of common 
tree species, like Norway spruce and silver 
birch (Dreimanis, 2006).

Detailed understanding of tree short 
term response to environmental conditions 
is important for predictions of tree growth 
in changing climate and subsequent de-
velopment of forest management strategy. 
Data on short term responses based on 
stem diameter variation (SDV) can be con-
veniently gathered by means of dendrom-
etry. Several studies (Ceschia et al., 2002; 
Knott, 2004; Charru et al., 2010; Šimpraga et 
al., 2011; Michelot et al., 2012) have used it 
to assess intra-annual growth of European 
beech. Fluctuations of stem diameter are 
result of contraction and expansion caused 
by irreversible increment of xylem, changes 
in tissue water storage, wood thermal prop-
erties and internal tensions of conducting 
elements (Daudet et al., 2005). Therefore, 
SDV can indicate the level of tissue hydra-
tion and potential drought stress (De Swaef 
et al., 2015).

As demonstrated by Steppe & Lemeur 
(2004) and Michelot et al. (2012), growth of 
both juvenile and mature beech trees was 
drought sensitive. Suffi cient water uptake 
ensures cell turgor pressure which is the 
main force providing cell expansion and 
division (Lockhart, 1967). Thereofre, mini-
mized cell expansion in drought stressed 
trees is related to insufi cient xylem hydra-
tion (Hsiao, 1973; Abe et al., 2003). Due to 
water defi cit, newly-formed vessels are re-
duced in size (Sass & Eckstein, 1995) which, 
in combination with reduction of xylem 
conductance (Barigah et al., 2013) hinders 

further water supply and hence assimila-
tion.

So far such studies have not been car-
ried out for European beech on the edge 
of its current distribution. Signifi cant dif-
ferences in water use have been found 
between dominant and suppressed beech 
trees, suggesting suppressed trees being 
under a higher drought stress risk beneath 
a closed canopy compared with dominant 
trees (Dalsgaard, 2008). Therefore, the aim 
of the study was to assess the intra-annual 
radial growth dynamics between dominant 
and suppressed European beech trees grow-
ing in northwest Latvia. We hypothesized 
that the intra-annual radial growth dynam-
ics of beech in northwest Latvia is sensitive 
to water defi cit.

Material and Methods

Study area and study period
The study area is located in north west 
Latvia (57º14´ N, 22º41´ E) in the central 
part of Ziemeļkursas upland which is situ-
ated in a hemiboreal mixed forest of the 
temperate climatic zone where annual air 
temperature and the sum of precipitation is 
+ 6.3 ºC and 750 mm, respectively (Latvian 
Environment, Geology and Meteorology 
Centre). Movement of North Atlantic air 
masses generally determines climatic condi-
tions in Latvia; however, a gradient of small 
scale continentality in the territory of Lat-
via increases in direction from the coast in 
south west to inland in north east (Laiviņš 
& Melecis, 2003; Draveniece, 2007). There-
fore, regional differences in the duration of 
the vegetation period (in the western part of 
Latvia the vegetation period is 2 to 3 weeks 
longer than in the eastern part) are observed 
(Klavins & Rodinov, 2010). According to the 
data from the closest meteorological obser-
vation station in Stende (about 20 km from 
the study site), both mean daily air tempera-
ture (14.9 °C) and sum of precipitation (327 
mm) of the studied period (May–August, 
2014) exceeded 30-year means of the cor-
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responding period (14.5 °C and 271 mm, 
respectively).

Two nearby trees located 8 m from each 
other (DT–34.0 m high, diameter at breast 
height (DBH) 55 cm, 127 years old and 
ST–12.6 m high, DBH 16 cm, 43 years old) 
were sampled in a mixed Scots pine and Eu-
ropean beech stand on well drained loamy 
soil in Hylocomiosa forest type. Sample trees 
were selected according to differences in 
dominance (DT formed the emergent layer 
of the stand while ST was located in the un-
derstory).

Measurements of SDV, sap fl ow and 
weather parameters
Monitoring of SDV was done at the breast 
height once per 10 minutes by automated 
band dendrometers DRL26C (EMS Brno, 
Czech Republic). Simultaneously, at the 
same height (4 m) of the trunk, xylem sap 
fl ow was measured every 10 minutes by ap-
plying the heat ratio method integrated in 
a SFM1 sap fl ow meter (ICT International, 
Australia). Probes of SFM1 have two mea-
surement points with 15 mm spacing in 
between, and, to avoid the infl uence of am-
bient temperature on sap fl ow data, outer 
measurement point was placed in the depth 
of 5 mm below cambium layer within the 
sapwood (Burgess et al., 2001). Accordingly, 
inner measurement point was located in the 
sapwood in the depth of 20 mm. Raw sap 
fl ow data were arranged by Sap Flow Tool 
software (ICT International, Australia) re-
moving logging errors and applying correc-
tion factors (bark thickness, sapwood depth 
and tree size) for calculating the sap fl ow 
rate for the whole tree. Meteorological data 
used in study were obtained from a mo-
bile weather station (Vantage Pro2, Davis 
Instruments, USA) located near the forest 
stand. Soil water potential was measured 
in the study site by using tensiometers (T8, 
UMS GmbH, Germany) and obtained data 
were stored in the DL6 logger (Delta-T De-
vices, UK).

Data analysis
Dendrometer data were analysed according 
to the methodology of stem cycle approach 
by Deslauriers et al. (2007) and Deslauriers et 
al. (2011). This method is based on division 
of daily pattern of stem shrinking/swelling 
cycles into different phases. Accordingly, 
phases of contraction (period between the 
daily maximum and next minimum), expan-
sion (period between the end of contraction 
and next maximum) and increment (part of 
the expansion phase from the time the stem 
radius exceeds the previous maximum un-
til the next maximum) were distinguished 
(Deslauriers et al., 2007) using DendrometeR 
package (van der Maaten et al., 2016) in R 
v.3.0.2. (R Core Team, 2016) software.

In order to characterize the relationship 
between sap fl ow rate and vapour pressure 
defi cit (VPD), Gompertz function was fi tted 
in analysis of nonlinear least squares:

f (VPD) =  –β –γ * VPD

where  = asymptote, β = shape parameter, 
γ = scale parameter. Coeffi cient of deter-
mination (R2) of the nonlinear model was 
obtained by the formula:

R2 = (1–∑ri
2) / (∑(y–x y)2),

where ∑ri
2 is residual sum of squares and 

∑(y-x y)2 is total sum of squares. Statisti-
cal analysis was done in R v.3.0.2. (R Core 
Team, 2016) software.

Results and Discussion

The sum of precipitation and average air 
temperature of the studied period were 285 
mm and 17.2 °C, respectively, but the mean 
value of VPD reached 1.2 kPa (Figure 1C). 
Maximum air temperature was 33.4 °C, re-
corded in the beginning of August during a 
no rain period. Groundwater remained very 
low – between 19.48 and 19.41 m (Figure 
1B), which, due to the geomorphological 
properties of the study site, is located in 

O. Krišāns et al.
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the aquifer under a confi ning layer formed 
by fat clay. Therefore, capillary rise of wa-
ter is excluded and soil moisture available 
for trees is supplied by precipitation only. 
Values of soil water potential fl uctuated 
between drought conditions during the 
longest no rain periods with high VPD in 
the end of July/beginning of August and 
saturation right after intense rainfall along 
with decrease of VPD (Figure 1C).

Total radial increment for DT and ST tree 
was 2.2 and 1.5 mm, respectively (Figure 
1A). Nevertheless, ST had larger relative 
increment from the initial DBH compared 
to DT (0.93 and 0.38%, respectively). At the 

end of dormancy, tissue rehydration and 
translocation of growth stimulants occur 
(Mäkinen et al., 2008), explaining the onset 
of fl uctuations of stem diameter for both 
trees observed several weeks before the 
fi rst record of increment phase. Following 
winter dehydration, restoration of suffi cient 
xylem water content is one of preconditions 
for initiation of division of vascular cam-
bium cells (Yamashita et al., 2006; Mäkinen 
et al., 2008); therefore, a rapid increase of 
stem diameter as it was observed for DT 
in the last decade of May (Figure 1) can be 
explained by reduced transpirational water 
loss due to a decrease of VPD (Steppe & 

Figure 1.  Seasonal course of changes in total (solid lines) and relative (dashed lines, secondary axis) radial 
increment (A), soil water potential and groundwater level (secondary axis) (B), and air tempera-
ture, vapour pressure defi cit (VPD) and hourly sums of precipitation (secondary axis) (C).
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Lemeur, 2004).
Notable increase of stem diameter for ST 
started 2 weeks after DT during the pe-
riod with rain events (Figure 1A). Earlier 
growth onset for DT can be explained by 
higher root competitiveness of dominant 
trees which are very competitive, ensuring 
better water absorption (Le Goff & Ottorini, 
2001). During the observation period, cu-
mulative changes of stem diameter formed 
a sawblade shaped curve with fl uctuations 
caused by daily variations of wood hydra-
tion (Steppe & Lemeur, 2004; Michelot et al., 
2012). Pronounced leaps, corresponding to 
rain events and/or a decrease in VPD and 
air temperature, are distinguished as phases 
of increment. During such conditions, water 
absorbed from the soil is not being trans-
pired completely but integrated into forma-
tion of xylem cells (Pallardy, 2008). Subse-
quently, for both trees the highest values of 
single increment phases were recorded just 
after rain events during periods when both 

air temperature and VPD decreased (Figure 
1). Cumulative radial growth was complet-
ed in 98 and 101 days for DT and ST, respec-
tively, which corresponds to results of the 
study from Slovenia by Čufar et al. (2008) 
showing that the average time of cambial 
activity for beech is 100 days. The timing 
of growth cessation generally is controlled 
by shortening of the photoperiod; however, 
age, vigour as well as environmental condi-
tions infl uence the control of development 
of dormancy (Kozlowski & Pallardy, 1997).

On the diurnal cycle, a period of the 
most intensive growth was observed in 
early morning, just before sunrise and 
subsequent start of daily sap fl ow; it was 
especially pronounced after stem rehydra-
tion following the rain events (Figure 2). 
Contraction of stems coincided with the 
increase of sap fl ow due to intensifi cation 
of transpiration. 

In the afternoon, sap fl ow decreased 
and expansion of stems due to restoration 

Figure 2. Hourly sums of duration of distinct phases of SDV (A; B) and mean hourly sap velocity (C; D).
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of xylem water storage (Čermák et al., 2007) 
followed. Diurnal distribution of stem cy-
cle phases between both trees was similar. 
However, during the diurnal cycle, total du-
ration of increment phase for ST exceeded 
the duration of expansion and was longer 
compared with DT. Earlier onset of daily 
sap fl ow and following stem contraction 
for DT is caused by both higher root com-
petitiveness and canopy exposure to direct 
solar radiation and wind compared with ST. 
In the understory layer, in the morning, air 
temperature increase and subsequent onset 
of transpiration is delayed in comparison 
with emergent layer of the stand (Granier, 
1987). A diurnal peak of increment phase 
duration for ST was observed on average 3 
hours later compared with DT, and subse-
quent start of contraction for ST was 1 hour 
later. Additionally, this phase lasted longer 
in the afternoon. Therefore, diurnal course 
of radial growth of ST showed less xylem 
water loss resulting in less sensitivity to 
weather conditions. 

Since the success of tree growth is re-
lated to water availability (Pallardy, 2008), 

sap fl ow measurements can be used to trace 
tissue hydration and changes in vigour 
(Čermák et al., 2007). Čermák et al. (2007) 
showed that an increase of sap fl ow rate 
and depletion of internal water storage of 
the stem coincides. Comparing both sample 
trees, higher sap fl ow rates were observed 
for DT (up to 5000 cm3 ha-1) than for ST (up 
to 1000 cm3 ha-1). For both trees, high sap 
fl ow rates during very low VPD indicates 
rehydration during nights (Daley & Phil-
lips, 2006) or rainy/cloudy and cool days 
when formation of radial increment was 
observed (Figures 2, 3). High sap fl ow rates 
during high VPD indicates water movement 
through xylem driven by transpiration dur-
ing sunny, warm days coinciding with con-
traction of the stem or very low radial incre-
ment (Figure 1). An increase of VPD above 
1.5 kPa indicates upper limits of sap fl ow 
capacity for both trees. A high transpira-
tion in combination with insuffi cient water 
supply causes stomata closure and cavita-
tion leading to cessation of xylem sap fl ow 
(Jones, 1998; Tyree & Sperry, 1989). There-
fore, hydration of xylem tissue is hindered 

Figure 3.  Relationship between sap fl ow rate and VPD in dominant (A) suppressed (B) tree.
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(Zeppel et al., 2004). Turgor pressure is con-
sidered to be the main driving factor of ves-
sel enlargement (Ray et al., 1972). Therefore, 
vessel growth is negatively affected by the 
water defi cit (Sass & Eckstein, 1995). Since 
larger vessels in diameter have higher water 
conducting capacity (Tyree & Zimmermann, 
2013), insuffi cient tissue hydration can have 
negative effect on growth during next veg-
etation period (Sass & Eckstein, 1995).

Analysis of nonlinear least squares (Fig-
ure 3 and Table 1) resulted in a sigmoidal 
relationship between sap fl ow rate and VPD 
for both trees. 

Differences in explained variances by 
the model for DT (R2 = 0.76) and ST (R2 = 
0.66) and more rapid increase of sap fl ow 
rate (determined by differences in scale 
parameter (γ)) of DT at low values of VPD 
compared with ST, as already mentioned, 
can be explained by exposure of the canopy 
of DT to direct sunlight and wind favoring 
transpiration, thus providing large amounts 
of water for transpiration (Le Goff & Ot-
torini, 2001).

Conclusions

Due to water defi cit, formation of radial in-
crement is very slow or completely interrupt-
ed until the restoration of stem water storage 
is completed facilitating the expansion of 
xylem cells. Thus, confi rming our hypoth-
esis that radial growth of European beech in 
northwest Latvia is sensitive to water defi -
cit. Therefore, according to the predicted in-
crease in mean annual air temperature, the 
future cultivation potential of beech in Latvia 
depends on the precipitation regime.
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