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Summary. Tim Makarios (with Isabelle/HOL1) and John Harrison (with
HOL-Light2) have shown that “the Klein-Beltrami model of the hyperbolic plane
satisfy all of Tarski’s axioms except his Euclidean axiom” [2, 3, 15, 4].

With the Mizar system [1], [10] we use some ideas are taken from Tim Maka-
rios’ MSc thesis [12] for formalized some definitions (like the tangent) and lemmas
necessary for the verification of the independence of the parallel postulate. This
work can be also treated as a further development of Tarski’s geometry in the
formal setting [9].
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1. Beltrami-Cayley-Klein Disk Model

The BK-model yielding a non empty subset of the projective space over E3
T

is defined by the term

(Def. 1) the interior of the conic for 1, 1, −1, 0, 0 and 0.

Now we state the propositions:

(1) The BK-model misses the absolute.

(2) Let us consider an element P of the projective space over E3
T, and

a non zero element u of E3
T. Suppose P = the direction of u and P ∈

the BK-model. Then u(3) 6= 0.

1https://www.isa-afp.org/entries/Tarskis_Geometry.html
2https://github.com/jrh13/hol-light/blob/master/100/independence.ml
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Let P be an element of the BK-model. The functor BK-to-REAL2(P ) yiel-
ding an element of the inside of circle(0,0,1) is defined by

(Def. 2) there exists a non zero element u of E3
T such that the direction of u = P

and u(3) = 1 and it = [u(1), u(2)].

LetQ be an element of the inside of circle(0,0,1). The functor REAL2-to-BK(Q)
yielding an element of the BK-model is defined by

(Def. 3) there exists an element P of E2
T such that P = Q and it = the direction

of [(P )1, (P )2, 1].

Now we state the propositions:

(3) Let us consider an element P of the BK-model.
Then REAL2-to-BK(BK-to-REAL2(P )) = P .
Proof: Consider u being a non zero element of E3

T such that the direction
of u = P and u(3) = 1 and BK-to-REAL2(P ) = [u(1), u(2)]. Consi-
der Q being an element of E2

T such that Q = BK-to-REAL2(P ) and
REAL2-to-BK(BK-to-REAL2(P )) = the direction of [(Q)1, (Q)2, 1]. [(Q)1,
(Q)2, 1] and u are proportional. �

(4) Let us consider elements P , Q of the BK-model. Then P = Q if and
only if BK-to-REAL2(P ) = BK-to-REAL2(Q).

(5) Let us consider an element Q of the inside of circle(0,0,1).
Then BK-to-REAL2(REAL2-to-BK(Q)) = Q.

(6) Let us consider elements P , Q of the BK-model, and elements P1, P2,
P3 of the absolute. Suppose P 6= Q and P1 6= P2 and P , Q and P1 are
collinear and P , Q and P2 are collinear and P , Q and P3 are collinear.
Then

(i) P3 = P1, or

(ii) P3 = P2.

Proof: P3 = P1 or P3 = P2. �

(7) Let us consider an element P of the BK-model, an element Q of the pro-
jective space over E3

T, and a non zero element v of E3
T. Suppose P 6= Q

and Q = the direction of v and v(3) = 1. Then there exists an element P1

of the absolute such that P , Q and P1 are collinear.
Proof: Consider u being a non zero element of E3

T such that the direction
of u = P and u(3) = 1 and BK-to-REAL2(P ) = [u(1), u(2)]. Reconsider
s = [u(1), u(2)], t = [v(1), v(2)] as a point of E2

T. Set a = 0. Set b = 0. Set
r = 1. Reconsider S = s, T = t, X = [a, b] as an element of R2. Re-

consider w1 = −2·|(t−s,s−[a,b])|+
√

∆(
∑

(2(T−S)),2·|(t−s,s−[a,b])|,
∑

(2(S−X))−r2)
2·
∑
2(T−S)

as a real number. s 6= t. Consider e1 being a point of E2
T such that
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{e1} = HalfLine(s, t) ∩ circle(a, b, r) and e1 = (1 − w1) · s + w1 · t. Re-
consider f = [(e1)1, (e1)2, 1] as an element of E3

T. Reconsider e3 = f as
a non zero element of E3

T. 1 · e3 + (−(1− w1)) · u+ (−w1) · v = 0E3T . �

(8) Let us consider an element P of the BK-model, and a line L of Inc-ProjSp
(the real projective plane). Then there exists an element Q of the projec-
tive space over E3

T such that

(i) P 6= Q, and

(ii) Q ∈ L.

(9) Let us consider real numbers a, b, c, d, e, and elements u, v, w of E3
T.

Suppose u = [a, b, e] and v = [c, d, 0] and w = [a + c, b + d, e]. Then
〈|u, v, w|〉 = 0.

(10) Let us consider real numbers a, b, and a non zero real number c. Then
[a, b, c] is a non zero element of E3

T.

(11) Let us consider elements u, v of E3
T, and real numbers a, b, c, d, e.

Suppose u = [a, b, c] and v = [d, e, 0] and u and v are proportional. Then
c = 0.

(12) Let us consider elements P , Q, R of the projective space over E3
T, and

non zero elements u, v, w of E3
T. Suppose P = the direction of u and

Q = the direction of v and R = the direction of w and (u)3 6= 0 and
(v)3 = 0 and w = [(u)1 + (v)1, (u)2 + (v)2, (u)3]. Then

(i) R 6= P , and

(ii) R 6= Q.

(13) Let us consider a line L of Inc-ProjSp(the real projective plane), and
elements P , Q of the projective space over E3

T. If P 6= Q and P , Q ∈ L,
then L = Line(P,Q).

(14) Let us consider a line L of Inc-ProjSp(the real projective plane), elements
P , Q of the projective space over E3

T, and non zero elements u, v of E3
T.

Suppose P , Q ∈ L and P = the direction of u and Q = the direction of v
and (u)3 6= 0 and (v)3 = 0. Then

(i) P 6= Q, and

(ii) the direction of [(u)1 + (v)1, (u)2 + (v)2, (u)3] ∈ L.

Proof: P 6= Q. Reconsider w = [(u)1 + (v)1, (u)2 + (v)2, (u)3] as a non
zero element of E3

T. 〈|u, v, w|〉 = 0. �

(15) Let us consider elements u, v, w of E3
T. Suppose (v)3 = 0 and w =

[(u)1 + (v)1, (u)2 + (v)2, (u)3]. Then 〈|u, v, w|〉 = 0.

(16) Let us consider a line L of Inc-ProjSp(the real projective plane), an ele-
ment P of the projective space over E3

T, and a non zero element u of E3
T.
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Suppose P = the direction of u and P ∈ L and u(3) 6= 0. Then there exists
an element Q of the projective space over E3

T and there exists a non zero
element v of E3

T such that Q = the direction of v and Q ∈ L and P 6= Q

and v(3) 6= 0. The theorem is a consequence of (15).

(17) Let us consider an element P of the BK-model, and a line L of Inc-ProjSp
(the real projective plane). Suppose P ∈ L. Then there exists an element
Q of the projective space over E3

T such that

(i) P 6= Q, and

(ii) Q ∈ L, and

(iii) for every non zero element u of E3
T such that Q = the direction of u

holds u(3) 6= 0.

The theorem is a consequence of (16).

(18) Let us consider non zero elements u, v of E3
T, and a non zero real number

k. Suppose u = k · v. Then the direction of u = the direction of v.

(19) Let us consider an element P of the BK-model, and an element Q of
the projective space over E3

T. Suppose P 6= Q. Then there exists an element
P1 of the absolute such that P , Q and P1 are collinear.
Proof: Reconsider L = Line(P,Q) as a line of Inc-ProjSp(the real
projective plane). Consider R being an element of the projective space
over E3

T such that P 6= R and R ∈ L and for every non zero element u
of E3

T such that R = the direction of u holds u(3) 6= 0. Consider u being
a non zero element of E3

T such that the direction of u = P and u(3) = 1
and BK-to-REAL2(P ) = [u(1), u(2)]. Consider v′ being an element of E3

T
such that v′ is not zero and the direction of v′ = R. Reconsider k = 1

(v′)3
as a non zero real number. k · v′ is not zero. Reconsider v = k · v′ as
a non zero element of E3

T. the direction of v = R and v(3) = 1. Reconsider
s = [u(1), u(2)], t = [v(1), v(2)] as a point of E2

T. Set a = 0. Set b = 0. Set
r = 1. Reconsider S = s, T = t, X = [a, b] as an element of R2. Re-

consider w1 = −2·|(t−s,s−[a,b])|+
√

∆(
∑

(2(T−S)),2·|(t−s,s−[a,b])|,
∑

(2(S−X))−r2)
2·
∑

(2(T−S)

as a real number. s 6= t. Consider e1 being a point of E2
T such that

{e1} = HalfLine(s, t) ∩ circle(a, b, r) and e1 = (1 − w1) · s + w1 · t. Re-
consider f = [(e1)1, (e1)2, 1] as an element of E3

T. Reconsider e3 = f as
a non zero element of E3

T. 1 · e3 + (−(1− w1)) · u+ (−w1) · v = 0E3T . �

(20) Let us consider elements P , Q of the BK-model. Suppose P 6= Q. Then
there exist elements P1, P2 of the absolute such that

(i) P1 6= P2, and

(ii) P , Q and P1 are collinear, and
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(iii) P , Q and P2 are collinear.

Proof: Consider u being a non zero element of E3
T such that the direction

of u = P and u(3) = 1 and BK-to-REAL2(P ) = [u(1), u(2)]. Consi-
der v being a non zero element of E3

T such that the direction of v =
Q and v(3) = 1 and BK-to-REAL2(Q) = [v(1), v(2)]. Reconsider s =
[u(1), u(2)], t = [v(1), v(2)] as a point of E2

T. Set a = 0. Set b = 0. Set
r = 1. Reconsider S = s, T = t, X = [a, b] as an element of R2. Re-

consider w1 = −2·|(t−s,s−[a,b])|+
√

∆(
∑

(2(T−S)),2·|(t−s,s−[a,b])|,
∑

(2(S−X))−r2)
2·(
∑

(2(T−S)))

as a real number. Consider e1 being a point of E2
T such that {e1} =

HalfLine(s, t) ∩ circle(a, b, r) and e1 = (1 − w1) · s + w1 · t. Reconsider

w2 = −2·|(s−t,t−[a,b])|+
√

∆(
∑

(2(S−T )),2·|(s−t,t−[a,b])|,
∑

(2(T−X))−r2)
2·(
∑

(2(S−T )))
as a real

number. Consider e2 being a point of E2
T such that {e2} = HalfLine(t, s)∩

circle(a, b, r) and e2 = (1 − w2) · t + w2 · s. Reconsider f = [(e1)1, (e1)2,
1] as an element of E3

T. Reconsider e3 = f as a non zero element of E3
T.

Reconsider P1 = the direction of e3 as a point of the projective space over
E3

T. 1 · e3 + (−(1− w1)) · u+ (−w1) · v = 0E3T . Reconsider g = [(e2)1, (e2)2,
1] as an element of E3

T. Reconsider e4 = g as a non zero element of E3
T.

Reconsider P2 = the direction of e4 as a point of the projective space over
E3

T. 1 · e4 + (−(1− w2)) · v + (−w2) · u = 0E3T . P1 6= P2. �

(21) Let us consider elements P , Q, R of the real projective plane, non ze-
ro elements u, v, w of E3

T, and real numbers a, b, c, d. Suppose P ∈
the BK-model and Q ∈ the absolute and P = the direction of u and
Q = the direction of v and R = the direction of w and u = [a, b, 1] and
v = [c, d, 1] and w = [a+c

2 , b+d2 , 1]. Then

(i) R ∈ the BK-model, and

(ii) R 6= P , and

(iii) P , R and Q are collinear.

Proof: Reconsider P6 = P as an element of the BK-model. Consider
u2 being a non zero element of E3

T such that the direction of u2 = P6

and u2(3) = 1 and BK-to-REAL2(P6) = [u2(1), u2(2)]. Consider p being
a point of E2

T such that [v(1), v(2)] = p and |p − [0, 0]| = 1. Reconsider
R1 = [w(1), w(2)] as an element of E2

T. |R1 − [0, 0]|2 < 1. Consider P1

being an element of E2
T such that P1 = R1 and REAL2-to-BK(R1) =

the direction of [(P1)1, (P1)2, 1]. P 6= R by [13, (29)]. �

(22) Let us consider elements P , Q of the real projective plane. Suppose
P ∈ the absolute and Q ∈ the BK-model. Then there exists an element R
of the real projective plane such that
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(i) R ∈ the BK-model, and

(ii) Q 6= R, and

(iii) R, Q and P are collinear.

The theorem is a consequence of (21).

(23) Let us consider a line L of Inc-ProjSp(the real projective plane), points
p, q of Inc-ProjSp(the real projective plane), and elements P , Q of the real
projective plane. Suppose p = P and q = Q and P ∈ the BK-model and
Q ∈ the absolute and q lies on L and p lies on L. Then there exist points
p1, p2 of Inc-ProjSp(the real projective plane) and there exist elements
P1, P2 of the real projective plane such that p1 = P1 and p2 = P2 and
P1 6= P2 and P1, P2 ∈ the absolute and p1 lies on L and p2 lies on L. The
theorem is a consequence of (1), (22), and (20).

(24) Let us consider an element P of the BK-model, and an element Q of
the absolute. Then there exists an element R of the absolute such that

(i) Q 6= R, and

(ii) Q, P and R are collinear.

The theorem is a consequence of (1) and (23).

(25) Let us consider an element P of the BK-model, and a non zero element
u of E3

T. Suppose P = the direction of u and u(3) = 1. Then (u(1))2 +
(u(2))2 < 1.

(26) Let us consider elements P1, P2 of the absolute, an element Q of the BK-
model, and non zero elements u, v, w of E3

T. Suppose the direction of
u = P1 and the direction of v = P2 and the direction of w = Q and
u(3) = 1 and v(3) = 1 and w(3) = 1 and v(1) = −u(1) and v(2) = −u(2)
and P1, Q and P2 are collinear. Then there exists a real number a such
that

(i) −1 < a < 1, and

(ii) w(1) = a · u(1), and

(iii) w(2) = a · u(2).

The theorem is a consequence of (25).
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2. Tangent

Let P be an element of the absolute. The functor PoleInfty(P ) yielding
an element of the real projective plane is defined by

(Def. 4) there exists a non zero element u of E3
T such that P = the direction of u

and u(3) = 1 and (u(1))2 + (u(2))2 = 1 and it = the direction of [−u(2),
u(1), 0].

Now we state the propositions:

(27) Let us consider an element P of the absolute. Then P 6= PoleInfty(P ).

(28) Let us consider elements P1, P2 of the absolute. Suppose PoleInfty(P1) =
PoleInfty(P2). Then

(i) P1 = P2, or

(ii) there exists a non zero element u of E3
T such that P1 = the direction

of u and P2 = the direction of [−(u)1,−(u)2, 1] and (u)3 = 1.

Proof: Consider u1 being a non zero element of E3
T such that P1 =

the direction of u1 and u1(3) = 1 and u1(1)2 + u1(2)2 = 1 and PoleInfty
(P1) = the direction of [−u1(2), u1(1), 0]. Consider u2 being a non zero
element of E3

T such that P2 = the direction of u2 and u2(3) = 1 and
(u2(1))2 + (u2(2))2 = 1 and PoleInfty(P2) = the direction of [−u2(2),
u2(1), 0]. Reconsider w1 = [−u1(2), u1(1), 0] as a non zero element of E3

T.
Reconsider w2 = [−u2(2), u2(1), 0] as a non zero element of E3

T. Consider
a being a real number such that a 6= 0 and w1 = a · w2. If a = 1, then
P1 = P2. If a = −1, then there exists a non zero element u of E3

T such
that P1 = the direction of u and P2 = the direction of [−(u)1,−(u)2, 1]
and (u)3 = 1. �

Let P be an element of the absolute. The functor tangent(P ) yielding a line
of the real projective plane is defined by

(Def. 5) there exists an element p of the real projective plane such that p = P

and it = Line(p,PoleInfty(P )).

Let us consider an element P of the absolute. Now we state the propositions:

(29) P ∈ tangent(P ).

(30) tangent(P ) ∩ (the absolute) = {P}.
Proof: {P} ⊆ tangent(P )∩(the absolute). tangent(P )∩(the absolute) ⊆
{P}. �

(31) Let us consider elements P1, P2 of the absolute. If tangent(P1) =
tangent(P2), then P1 = P2. The theorem is a consequence of (30).

(32) Let us consider elements P , Q of the absolute. Then there exists an ele-
ment R of the real projective plane such that
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(i) R ∈ tangent(P ), and

(ii) R ∈ tangent(Q).

(33) Let us consider elements P1, P2 of the absolute. Suppose P1 6= P2.
Then there exists an element P of the real projective plane such that
tangent(P1) ∩ tangent(P2) = {P}. The theorem is a consequence of (31).

(34) Let us consider a square matrix M over R of dimension 3, an element
P of the absolute, an element Q of the real projective plane, non zero
elements u, v of E3

T, and finite sequences f3, f7 of elements of R. Suppose
M = symmetric3(1, 1,−1, 0, 0, 0) and P = the direction of u and Q =
the direction of v and u = f3 and v = f7 and Q ∈ tangent(P ). Then
SumAll QuadraticForm(f7,M, f3) = 0.
Proof: Consider p being an element of the real projective plane such that
p = P and tangent(P ) = Line(p,PoleInfty(P )). Consider w being a non
zero element of E3

T such that P = the direction of w and w(3) = 1 and
(w(1))2 + (w(2))2 = 1 and PoleInfty(P ) = the direction of [−w(2), w(1),
0]. Consider a1 being a real number such that a1 6= 0 and w = a1 · u.
w(1) = a1 · ((u)1) and w(2) = a1 · ((u)2) and w(3) = a1 · ((u)3). len f3 =
widthM and len f7 = lenM and len f3 = lenM and len f7 = widthM and
len f3 > 0 and len f7 > 0. �

(35) Let us consider elements P , Q, R of the absolute, and points P1, P2, P3,
P4 of the real projective plane. Suppose P , Q, R are mutually different
and P1 = P and P2 = Q and P3 = R and P4 ∈ tangent(P ) and P4 ∈
tangent(Q). Then

(i) P1, P2 and P3 are not collinear, and

(ii) P1, P2 and P4 are not collinear, and

(iii) P1, P3 and P4 are not collinear, and

(iv) P2, P3 and P4 are not collinear.

Proof: P4 /∈ the absolute. Consider p being an element of the real pro-
jective plane such that p = P and tangent(P ) = Line(p,PoleInfty(P )).
Consider q being an element of the real projective plane such that q = Q

and tangent(Q) = Line(q,PoleInfty(Q)). P1, P2 and P4 are not collinear.
P1, P3 and P4 are not collinear. P2, P3 and P4 are not collinear. �

(36) Let us consider elements P , Q of the absolute, an element R of the re-
al projective plane, and non zero elements u, v, w of E3

T. Suppose P =
the direction of u and Q = the direction of v and R = the direction of w
and R ∈ tangent(P ) and R ∈ tangent(Q) and u(3) = 1 and v(3) = 1 and
w(3) = 0. Then

(i) P = Q, or
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(ii) u(1) = −v(1) and u(2) = −v(2).

The theorem is a consequence of (34).

(37) Let us consider an element P of the absolute, an element R of the real
projective plane, and a non zero element u of E3

T. Suppose R ∈ tangent(P )
and R = the direction of u and u(3) = 0. Then R = PoleInfty(P ). The
theorem is a consequence of (34).

(38) Let us consider a non zero real number a, and an invertible square matrix
N over RF of dimension 3. Suppose N = symmetric3(a, a,−a, 0, 0, 0).
Then (the homography of N)◦(the absolute) = the absolute.
Proof: (The homography of N)◦(the absolute) ⊆ the absolute by [8, (8)].
The absolute ⊆ (the homography of N)◦(the absolute) by [11, (4), (3)], [7,
(89)]. �

(39) Let us consider a non zero element r1 of RF, and invertible square matri-
cesM ,O over RF of dimension 3. SupposeO = symmetric3(1, 1,−1, 0, 0, 0)
andM = r1·O. Then (the homography ofM)◦(the absolute) = the absolute.
Proof: r1 6= 0 by [14, (34)]. �

(40) Let us consider an element P of the absolute. Then tangent(P ) misses
the BK-model. The theorem is a consequence of (29), (23), and (30).

(41) Let us consider elements P , P3, P4 of the real projective plane, elements
P1, P2 of the absolute, and an element Q of the real projective plane.
Suppose P1 6= P2 and P3 = P1 and P4 = P2 and P ∈ the BK-model and
P , P3 and P4 are collinear and Q ∈ tangent(P1) and Q ∈ tangent(P2).
Then there exists an element R of the real projective plane such that

(i) R ∈ the absolute, and

(ii) P , Q and R are collinear.

The theorem is a consequence of (40), (7), (37), (28), and (26).

(42) Let us consider elements P , R, S of the real projective plane, and an ele-
ment Q of the absolute. Suppose P ∈ the BK-model and R ∈ tangent(Q)
and P , S and R are collinear and R 6= S. Then Q 6= S. The theorem is
a consequence of (29), (23), and (30).

3. Subgroup of K-Isometry

Let h be an element of EnsHomography3. We say that h is K-isometry if
and only if

(Def. 6) there exists an invertible square matrix N over RF of dimension 3 such
that h = the homography ofN and (the homography ofN)◦(the absolute) =
the absolute.
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Now we state the proposition:

(43) Let us consider an element h of EnsHomography3.
Suppose h = the homography of I3×3

RF . Then h is K-isometry.

The set of K-isometries yielding a non empty subset of EnsHomography3 is
defined by the term

(Def. 7) {h, where h is an element of EnsHomography3 : h is K-isometry}.

The subgroup ofK-isometries yielding a strict subgroup of GroupHomography3
is defined by

(Def. 8) the carrier of it = the set of K-isometries.

Now we state the propositions:

(44) Let us consider an element h of the set of K-isometries, and an invertible
square matrix N over RF of dimension 3. Suppose h = the homography
of N . Then (the homography of N)◦(the absolute) = the absolute.

(45) (i) the homography of I3×3
RF = 1GroupHomography3, and

(ii) the homography of I3×3
RF = 1α,

where α is the subgroup of K-isometries.

(46) Let us consider invertible square matrices N1, N2 over RF of dimension
3, and elements h1, h2 of the subgroup of K-isometries. Suppose h1 =
the homography of N1 and h2 = the homography of N2. Then

(i) h1 · h2 is an element of the subgroup of K-isometries, and

(ii) h1 · h2 = the homography of N1 ·N2.

(47) Let us consider an invertible square matrix N over RF of dimension 3,
and an element h of the subgroup of K-isometries.
Suppose h = the homography of N . Then

(i) h−1 = the homography of N`, and

(ii) the homography of N` is an element of the subgroup of K-isometries.

The theorem is a consequence of (45).

(48) Let us consider an element s of the projective space over E3
T, and elements

p, q, r of the absolute. Suppose p, q, r are mutually different and s ∈
tangent(p) ∩ tangent(q). Then there exists an invertible square matrix N
over RF of dimension 3 such that

(i) (the homography of N)◦(the absolute) = the absolute, and

(ii) (the homography of N)(Dir101) = p, and

(iii) (the homography of N)(Dirm101) = q, and

(iv) (the homography of N)(Dir011) = r, and
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(v) (the homography of N)(Dir010) = s.

Proof: Reconsider P1 = p, P2 = q, P3 = r, P4 = s as a point of
the real projective plane. P1, P2 and P3 are not collinear and P1, P2

and P4 are not collinear and P1, P3 and P4 are not collinear and P2, P3

and P4 are not collinear. Consider N being an invertible square matrix
over RF of dimension 3 such that (the homography of N)(Dir101) = P1

and (the homography of N)(Dirm101) = P2 and (the homography of
N)(Dir011) = P3 and (the homography of N)(Dir010) = P4. Consider n1,
n2, n3, n4, n5, n6, n7, n8, n9 being elements of RF such that N = 〈〈n1,

n2, n3〉, 〈n4, n5, n6〉, 〈n7, n8, n9〉〉. Reconsider b = −1 as an element of RF.
Reconsider a = 1 as an element of RF. Reconsider a = 1, b = −1
as a non zero element of RF. Reconsider N1 = 〈〈a, 0, 0〉, 〈0, a, 0〉, 〈0, 0,
b〉〉 as an invertible square matrix over RF of dimension 3. Reconsider
M = NT ·N1 ·N as an invertible square matrix over RF of dimension 3.
Consider v1, v2, v3, v4, v5, v6, v7, v8, v9 being elements of RF such that
M = 〈〈v1, v2, v3〉, 〈v4, v5, v6〉, 〈v7, v8, v9〉〉. Reconsider r1 = v1, r2 = v2,
r3 = v3, r4 = v5, r5 = v6, r6 = v9 as a real number. Consider Q being
a point of the projective space over E3

T such that Dir101 = Q and for
every element u of E3

T such that u is not zero and Q = the direction
of u holds qfconic(r1, r4, r6, 2 · r2, 2 · r3, 2 · r5, u) = 0. Consider Q being
a point of the projective space over E3

T such that Dirm101 = Q and for
every element u of E3

T such that u is not zero and Q = the direction
of u holds qfconic(r1, r4, r6, 2 · r2, 2 · r3, 2 · r5, u) = 0. Consider Q being
a point of the projective space over E3

T such that Dir011 = Q and for
every element u of E3

T such that u is not zero and Q = the direction of u
holds qfconic(r1, r4, r6, 2 · r2, 2 · r3, 2 · r5, u) = 0. r3 = 0 and r1 = −r6

and r2 = 0 and r5 = 0 and r1 = r4. r1 6= 0. (The homography of
M)◦(the absolute) = the absolute. �

(49) Let us consider elements p1, q1, r1, p2, q2, r2 of the absolute, and elements
s1, s2 of the real projective plane. Suppose p1, q1, r1 are mutually different
and p2, q2, r2 are mutually different and s1 ∈ tangent(p1) ∩ tangent(q1)
and s2 ∈ tangent(p2)∩ tangent(q2). Then there exists an invertible square
matrix N over RF of dimension 3 such that

(i) (the homography of N)◦(the absolute) = the absolute, and

(ii) (the homography of N)(p1) = p2, and

(iii) (the homography of N)(q1) = q2, and

(iv) (the homography of N)(r1) = r2, and

(v) (the homography of N)(s1) = s2.
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The theorem is a consequence of (48) and (47).

(50) Let us consider elements p1, q1, r1, p2, q2, r2 of the absolute. Suppose
p1, q1, r1 are mutually different and p2, q2, r2 are mutually different. Then
there exists an invertible square matrix N over RF of dimension 3 such
that

(i) (the homography of N)◦(the absolute) = the absolute, and

(ii) (the homography of N)(p1) = p2, and

(iii) (the homography of N)(q1) = q2, and

(iv) (the homography of N)(r1) = r2.

The theorem is a consequence of (33), (48), and (47).

(51) Let us consider a collinearity space C, and elements p, q, r, s of C. If
Line(p, q) = Line(r, s), then r, s and p are collinear.

(52) Let us consider a collinearity space C, and elements p, q of C. Then
Line(p, q) = Line(q, p).
Proof: Line(p, q) ⊆ Line(q, p). Line(q, p) ⊆ Line(p, q). �

(53) Let us consider an invertible square matrix N over RF of dimension 3,
and elements p, q, r, s of the projective space over E3

T.
Suppose Line((the homography of N)(p), (the homography of N)(q)) =
Line((the homography of N)(r), (the homography of N)(s)). Then

(i) p, q and r are collinear, and

(ii) p, q and s are collinear, and

(iii) r, s and p are collinear, and

(iv) r, s and q are collinear.

The theorem is a consequence of (51) and (52).

Let us consider an invertible square matrix N over RF of dimension 3 and
elements p, q, r, s, t, u, n1, n2, n3, n4 of the real projective plane. Now we state
the propositions:

(54) Suppose p 6= q and r 6= s and n1 6= n2 and n3 6= n4 and p, q and t are
collinear and r, s and t are collinear and n1 = (the homography of N)(p)
and n2 = (the homography of N)(q) and n3 = (the homography of N)(r)
and n4 = (the homography of N)(s) and n1, n2 and u are collinear and
n3, n4 and u are collinear. Then

(i) u = (the homography of N)(t), or

(ii) Line(n1, n2) = Line(n3, n4).
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(55) Suppose p 6= q and r 6= s and n1 6= n2 and n3 6= n4 and p, q and t

are collinear and r, s and t are collinear and n1 = (the homography of
N)(p) and n2 = (the homography of N)(q) and n3 = (the homography of
N)(r) and n4 = (the homography of N)(s) and n1, n2 and u are collinear
and n3, n4 and u are collinear and p, q and r are not collinear. Then
u = (the homography of N)(t). The theorem is a consequence of (54) and
(53).

(56) Let us consider elements p, q of the absolute, and elements a, b of the BK-
model. Then there exists an invertible square matrix N over RF of dimen-
sion 3 such that

(i) (the homography of N)◦(the absolute) = the absolute, and

(ii) (the homography of N)(a) = b, and

(iii) (the homography of N)(p) = q.

Proof: Consider p′ being an element of the absolute such that p 6= p′ and
p, a and p′ are collinear. Consider q′ being an element of the absolute such
that q 6= q′ and q, b and q′ are collinear. Consider t being an element of
the real projective plane such that tangent(p)∩tangent(p′) = {t}. Consider
u being an element of the real projective plane such that tangent(q) ∩
tangent(q′) = {u}. Reconsider a′ = a as an element of the real projective
plane. Consider R1 being an element of the real projective plane such that
R1 ∈ the absolute and a′, t and R1 are collinear. Reconsider b′ = b as
an element of the real projective plane. Consider R2 being an element of
the real projective plane such that R2 ∈ the absolute and b′, u and R2 are
collinear. p, p′, R1 are mutually different. Consider N being an invertible
square matrix over RF of dimension 3 such that (the homography of
N)◦(the absolute) = the absolute and (the homography of N)(p) = q and
(the homography of N)(p′) = q′ and (the homography of N)(R1) = R2

and (the homography of N)(t) = u. Reconsider p5 = p, p6 = p′, p7 = R1,
p8 = t, p9 = a, n1 = q, n2 = q′, n3 = R2, n4 = u, n5 = b as an element of
the real projective plane. n5 = (the homography of N)(p9). �

(57) Let us consider elements p, q, r, s of the absolute. Suppose p, q, r are
mutually different and q, p, s are mutually different. Then there exists
an invertible square matrix N over RF of dimension 3 such that

(i) (the homography of N)◦(the absolute) = the absolute, and

(ii) (the homography of N)(p) = q, and

(iii) (the homography of N)(q) = p, and

(iv) (the homography of N)(r) = s, and
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(v) for every element t of the real projective plane such that t ∈ tangent(p)∩
tangent(q) holds (the homography of N)(t) = t.

The theorem is a consequence of (33), (48), and (47).

Let us consider elements P , Q of the BK-model. Now we state the proposi-
tions:

(58) Suppose P 6= Q. Then there exist elements P1, P2, P3, P4 of the absolute
and there exists an element P5 of the projective space over E3

T such that
P1 6= P2 and P , Q and P1 are collinear and P , Q and P2 are collinear
and P , P5 and P3 are collinear and Q, P5 and P4 are collinear and P1,
P2, P3 are mutually different and P1, P2, P4 are mutually different and
P5 ∈ tangent(P1) ∩ tangent(P2). The theorem is a consequence of (20),
(32), (41), (30), (42), (29), (40), and (7).

(59) Suppose P 6= Q. Then there exists an invertible square matrix N over
RF of dimension 3 such that

(i) (the homography of N)◦(the absolute) = the absolute, and

(ii) (the homography of N)(P ) = Q, and

(iii) (the homography of N)(Q) = P , and

(iv) there exist elements P1, P2 of the absolute such that P1 6= P2 and P ,
Q and P1 are collinear and P ,Q and P2 are collinear and (the homogra-

phy of N)(P1) = P2 and (the homography of N)(P2) = P1.

Proof: Consider P1, P2, P3, P4 being elements of the absolute, P5 being
an element of the projective space over E3

T such that P1 6= P2 and P , Q and
P1 are collinear and P , Q and P2 are collinear and P , P5 and P3 are colli-
near and Q, P5 and P4 are collinear and P1, P2, P3 are mutually different
and P1, P2, P4 are mutually different and P5 ∈ tangent(P1)∩ tangent(P2).
Consider N1 being an invertible square matrix over RF of dimension
3 such that (the homography of N1)◦(the absolute) = the absolute and
(the homography of N1)(Dir101) = P1 and (the homography of N1)(Dirm
101) = P2 and (the homography ofN1)(Dir011) = P3 and (the homography
of N1)(Dir010) = P5. Consider N2 being an invertible square matrix over
RF of dimension 3 such that (the homography of N2)◦(the absolute) =
the absolute and (the homography ofN2)(Dir101) = P2 and (the homogra-
phy of N2)(Dirm101) = P1 and (the homography of N2)(Dir011) = P4

and (the homography of N2)(Dir010) = P5. Reconsider N = N2 · (N1
`)

as an invertible square matrix over RF of dimension 3. Reconsider h1 =
the homography of N1 as an element of EnsHomography3. Reconsider
h5 = h1 as an element of the subgroup of K-isometries. Reconsider h2 =
the homography of N2 as an element of EnsHomography3. Reconsider
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h6 = h2 as an element of the subgroup of K-isometries. Reconsider h3 =
the homography of N1

` as an element of EnsHomography3. h5
−1 = h3.

Reconsider h7 = h3 as an element of the subgroup of K-isometries. Re-
consider h4 = h6 · h7 as an element of the subgroup of K-isometries.
Consider h being an element of EnsHomography3 such that h4 = h and h
is K-isometry. (the homography of N)(P ) = Q and (the homography of
N)(Q) = P by [5, (102), (57)], [6, (15)]. �

4. Main Lemmas

Now we state the propositions:

(60) Let us consider elements P , Q of the BK-model. Then there exists an ele-
ment h of the subgroup of K-isometries and there exists an invertible squ-
are matrix N over RF of dimension 3 such that h = the homography of N
and (the homography of N)(P ) = Q and (the homography of N)(Q) = P .
The theorem is a consequence of (43) and (59).

(61) Let us consider elements P , Q, R, S, T , U of the BK-model. Suppo-
se there exist elements h1, h2 of the subgroup of K-isometries and the-
re exist invertible square matrices N1, N2 over RF of dimension 3 such
that h1 = the homography of N1 and h2 = the homography of N2 and
(the homography of N1)(P ) = R and (the homography of N1)(Q) = S and
(the homography of N2)(R) = T and (the homography of N2)(S) = U .
Then there exists an element h3 of the subgroup of K-isometries and the-
re exists an invertible square matrix N3 over RF of dimension 3 such that
h3 = the homography of N3 and (the homography of N3)(P ) = T and
(the homography of N3)(Q) = U . The theorem is a consequence of (46).

(62) Let us consider elements P , Q, R of the BK-model, an element h of
the subgroup of K-isometries, and an invertible square matrix N over RF

of dimension 3. Suppose h = the homography of N and (the homography
of N)(P ) = R and (the homography of N)(Q) = R. Then P = Q.
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