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Group of Homography in Real Projective
Plane
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Summary. Using the Mizar system [2], we formalized that homographies
of the projective real plane (as defined in [5]), form a group.

Then, we prove that, using the notations of Borsuk and Szmielew in [3]

“Consider in space RP2 points P1, P2, P3, P4 of which three points are
not collinear and points Q1, Q2, Q3, Q4 each three points of which are
also not collinear. There exists one homography h of space RP2 such
that h(Pi) = Qi for i = 1, 2, 3, 4.”

(Existence Statement 52 and Existence Statement 53) [3]. Or, using notations of
Richter [11]

“Let [a], [b], [c], [d] in RP2 be four points of which no three are
collinear and let [a′],[b′],[c′],[d′] in RP2 be another four points of which
no three are collinear, then there exists a 3× 3 matrix M such that
[Ma] = [a′], [Mb] = [b′], [Mc] = [c′], and [Md] = [d′]”

Makarios has formalized the same results in Isabelle/Isar (the collineations form
a group, lemma statement52-existence and lemma statement 53-existence) and
published it in Archive of Formal Proofs1 [10], [9].
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1. Preliminaries

From now on i, n denote natural numbers, r denotes a real number, r1
denotes an element of RF, a, b, c denote non zero elements of RF, u, v denote
elements of E3T, p1 denotes a finite sequence of elements of R1, p3, u4 denote finite
sequences of elements of RF, N denotes a square matrix over RF of dimension
3, K denotes a field, and k denotes an element of K.

Now we state the propositions:

(1) I3×3RF = 〈〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉〉.
(2) r1 ·N = r1 · I3×3RF ·N .

(3) If r 6= 0 and u is not zero, then r · u is not zero.
Proof: r · u 6= 0E3T by [4, (52), (49)]. �

Let us consider elements a11, a12, a13, a21, a22, a23, a31, a32, a33 of RF and
a square matrix A over RF of dimension 3. Now we state the propositions:

(4) Suppose A = 〈〈a11, a12, a13〉, 〈a21, a22, a23〉, 〈a31, a32, a33〉〉. Then

(i) Line(A, 1) = 〈a11, a12, a13〉, and

(ii) Line(A, 2) = 〈a21, a22, a23〉, and

(iii) Line(A, 3) = 〈a31, a32, a33〉.

(5) Suppose A = 〈〈a11, a12, a13〉, 〈a21, a22, a23〉, 〈a31, a32, a33〉〉. Then

(i) A�,1 = 〈a11, a21, a31〉, and

(ii) A�,2 = 〈a12, a22, a32〉, and

(iii) A�,3 = 〈a13, a23, a33〉.

The theorem is a consequence of (4).

(6) Let us consider elements a11, a12, a13, a21, a22, a23, a31, a32, a33, b11,
b12, b13, b21, b22, b23, b31, b32, b33 of RF, and square matrices A, B over RF
of dimension 3. Suppose A = 〈〈a11, a12, a13〉, 〈a21, a22, a23〉, 〈a31, a32, a33〉〉
and B = 〈〈b11, b12, b13〉, 〈b21, b22, b23〉, 〈b31, b32, b33〉〉. Then A · B = 〈〈a11 ·
b11+a12 ·b21+a13 ·b31, a11 ·b12+a12 ·b22+a13 ·b32, a11 ·b13+a12 ·b23+a13 ·b33〉,
〈a21 · b11 + a22 · b21 + a23 · b31, a21 · b12 + a22 · b22 + a23 · b32, a21 · b13 + a22 ·
b23 + a23 · b33〉, 〈a31 · b11 + a32 · b21 + a33 · b31, a31 · b12 + a32 · b22 + a33 · b32,
a31 · b13 + a32 · b23 + a33 · b33〉〉. The theorem is a consequence of (4) and
(5).

(7) Let us consider elements a11, a12, a13, a21, a22, a23, a31, a32, a33, b1, b2,
b3 of RF, a matrix A over RF of dimension 3×3, and a matrix B over RF of
dimension 3×1. Suppose A = 〈〈a11, a12, a13〉, 〈a21, a22, a23〉, 〈a31, a32, a33〉〉
and B = 〈〈b1〉, 〈b2〉, 〈b3〉〉. Then A · B = 〈〈a11 · b1 + a12 · b2 + a13 · b3〉,
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〈a21 · b1 + a22 · b2 + a23 · b3〉, 〈a31 · b1 + a32 · b2 + a33 · b3〉〉. The theorem is
a consequence of (4).

(8) Let us consider non zero elements a, b, c of RF, and square matrices M1,
M2 over RF of dimension 3. Suppose M1 = 〈〈a, 0, 0〉, 〈0, b, 0〉, 〈0, 0, c〉〉 and
M2 = 〈〈 1a , 0, 0〉, 〈0,

1
b , 0〉, 〈0, 0,

1
c 〉〉. Then

(i) M1 ·M2 = I3×3RF , and

(ii) M2 ·M1 = I3×3RF .

The theorem is a consequence of (1).

(9) Let us consider non zero elements a, b, c of RF. Then 〈〈a, 0, 0〉, 〈0, b,
0〉, 〈0, 0, c〉〉 is an invertible square matrix over RF of dimension 3. The
theorem is a consequence of (8).

(10) (i) [1, 0, 0] is not zero, and

(ii) [0, 1, 0] is not zero, and

(iii) [0, 0, 1] is not zero, and

(iv) [1, 1, 1] is not zero.

(11) (i) [1, 0, 0] 6= 0E3T , and

(ii) [0, 1, 0] 6= 0E3T , and

(iii) [0, 0, 1] 6= 0E3T , and

(iv) [1, 1, 1] 6= 0E3T .
Proof: [1, 0, 0] 6= [0, 0, 0] by [7, (2)]. [0, 1, 0] 6= [0, 0, 0] by [7, (2)]. [0, 0,
1] 6= [0, 0, 0] by [7, (2)]. [1, 1, 1] 6= [0, 0, 0] by [7, (2)]. �

(12) (i) e1 6= 0E3T , and

(ii) e2 6= 0E3T , and

(iii) e3 6= 0E3T .
Proof: [1, 0, 0] 6= [0, 0, 0] by [7, (2)]. [0, 1, 0] 6= [0, 0, 0] by [7, (2)]. [0, 0,
1] 6= [0, 0, 0] by [7, (2)]. �

Let n be a natural number. Note that In×nRF is invertible.
LetM be an invertible square matrix over RF of dimension n. One can verify

that M` is invertible.
Let K be a field and N1, N2 be invertible square matrices over K of dimen-

sion n. One can check that N1 ·N2 is invertible.
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2. Group of Homography

From now on N , N1, N2 denote invertible square matrices over RF of di-
mension 3 and P , P1, P2, P3 denote points of the projective space over E3T.

Now we state the propositions:

(13) (The homography of N1)((the homography of N2)(P )) =
(the homography of N1 ·N2)(P ).
Proof: Consider u12, v12 being elements of E3T, u8 being a finite sequ-
ence of elements of RF, p12 being a finite sequence of elements of R1
such that P = the direction of u12 and u12 is not zero and u12 = u8
and p12 = N1 · N2 · u8 and v12 = M2F(p12) and v12 is not zero and
(the homography of N1 · N2)(P ) = the direction of v12. Consider u2, v2
being elements of E3T, u6 being a finite sequence of elements of RF, p2 being
a finite sequence of elements of R1 such that P = the direction of u2 and
u2 is not zero and u2 = u6 and p2 = N2 ·u6 and v2 = M2F(p2) and v2 is not
zero and (the homography of N2)(P ) = the direction of v2. Consider u1, v1
being elements of E3T, u7 being a finite sequence of elements of RF, p1 being
a finite sequence of elements of R1 such that (the homography of N2)(P ) =
the direction of u1 and u1 is not zero and u1 = u7 and p1 = N1·u7 and v1 =
M2F(p1) and v1 is not zero and (the homography ofN1)((the homography
of N2)(P )) = the direction of v1. Consider a being a real number such that
a 6= 0 and u2 = a · u12. Consider b being a real number such that b 6= 0
and u1 = b · v2. v1 = 〈(N1 · 〈u7〉T)1,1, (N1 · 〈u7〉T)2,1, (N1 · 〈u7〉T)3,1〉 by [1,
(1), (40)]. v2 = 〈(N2 · 〈u6〉T)1,1, (N2 · 〈u6〉T)2,1, (N2 · 〈u6〉T)3,1〉 by [1, (1),
(40)]. v12 = 〈(N1 ·N2 · 〈u8〉T)1,1, (N1 ·N2 · 〈u8〉T)2,1, (N1 ·N2 · 〈u8〉T)3,1〉 by
[1, (1), (40)]. Reconsider v6 = v2 as a finite sequence of elements of RF.
Reconsider i4 = 1

b as a real number. v6 = i4 · u1 by [4, (49), (52)]. Re-
consider l11 = Line(N2, 1)(1), l12 = Line(N2, 1)(2), l13 = Line(N2, 1)(3),
l21 = Line(N2, 2)(1), l22 = Line(N2, 2)(2), l23 = Line(N2, 2)(3), l31 =
Line(N2, 3)(1), l32 = Line(N2, 3)(2), l33 = Line(N2, 3)(3) as an element of
RF. N2�,1 = 〈l11, l21, l31〉 and N2�,2 = 〈l12, l22, l32〉 and N2�,3 = 〈l13, l23,
l33〉 by [1, (1), (45)]. The direction of v1 = the direction of v12 by [5, (7)],
[1, (45)], [5, (93)], [7, (8)]. �

(14) (The homography of I3×3RF )(P ) = P .

(15) (i) (the homography of N)((the homography of N`)(P )) = P , and

(ii) (the homography of N`)((the homography of N)(P )) = P .
The theorem is a consequence of (13) and (14).

(16) If (the homography of N)(P1) = (the homography of N)(P2), then P1 =
P2. The theorem is a consequence of (15).
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(17) Let us consider a non zero element a of RF. Suppose a · I3×3RF = N . Then
(the homography of N)(P ) = P .

The functor EnsHomography3 yielding a set is defined by the term

(Def. 1) the set of all the homography of N where N is an invertible square
matrix over RF of dimension 3.

One can check that EnsHomography3 is non empty.
Let h1, h2 be elements of EnsHomography3. The functor h1 ◦ h2 yielding

an element of EnsHomography3 is defined by

(Def. 2) there exist invertible square matrices N1, N2 over RF of dimension 3
such that h1 = the homography of N1 and h2 = the homography of N2
and it = the homography of N1 ·N2.

Now we state the propositions:

(18) Let us consider elements h1, h2 of EnsHomography3. Suppose h1 =
the homography of N1 and h2 = the homography of N2. Then the
homography of N1 ·N2 = h1 ◦ h2. The theorem is a consequence of (13).

(19) Let us consider elements x, y, z of EnsHomography3. Then (x ◦ y) ◦ z =
x ◦ (y ◦ z). The theorem is a consequence of (18).

The functor BinOpHomography3 yielding a binary operation on
EnsHomography3 is defined by

(Def. 3) for every elements h1, h2 of EnsHomography3, it(h1, h2) = h1 ◦ h2.
The functor GroupHomography3 yielding a strict multiplicative magma is

defined by the term

(Def. 4) 〈EnsHomography3,BinOpHomography3〉.
Note that GroupHomography3 is non empty, associative, and group-like.
Now we state the propositions:

(20) 1GroupHomography3 = the homography of I3×3RF .

(21) Let us consider elements h, g of GroupHomography3, and invertible squ-
are matricesN ,N10 over RF of dimension 3. Suppose h = the homography
of N and g = the homography of N10 and N10 = N`. Then g = h−1. The
theorem is a consequence of (20).

3. Main Results

The functors: Dir100, Dir010, Dir001, and Dir111 yielding points of the pro-
jective space over E3T are defined by terms

(Def. 5) the direction of [1, 0, 0],

(Def. 6) the direction of [0, 1, 0],
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(Def. 7) the direction of [0, 0, 1],

(Def. 8) the direction of [1, 1, 1],

respectively. Now we state the proposition:

(22) (i) Dir100 6= Dir010, and

(ii) Dir100 6= Dir001, and

(iii) Dir100 6= Dir111, and

(iv) Dir010 6= Dir001, and

(v) Dir010 6= Dir111, and

(vi) Dir001 6= Dir111.

Let a be a non zero element of RF. Let us consider N . Note that a · N is
invertible as a square matrix over RF of dimension 3.

(23) Let us consider a non zero element a of RF. Then (the homography of
a · N1)(P ) = (the homography of N1)(P ). The theorem is a consequence
of (2), (13), and (17).

(24) Suppose P1, P2 and P3 are not collinear. Then there exists an invertible
square matrix N over RF of dimension 3 such that

(i) (the homography of N)(P1) = Dir100, and

(ii) (the homography of N)(P2) = Dir010, and

(iii) (the homography of N)(P3) = Dir001.

Proof: Consider u1 being an element of E3T such that u1 is not zero and
P1 = the direction of u1. Consider u2 being an element of E3T such that
u2 is not zero and P2 = the direction of u2. Consider u3 being an ele-
ment of E3T such that u3 is not zero and P3 = the direction of u3. Re-
consider p3 = u1, q1 = u2, r2 = u3 as a finite sequence of elements
of RF. Consider N being a square matrix over RF of dimension 3 such
that N is invertible and N · p3 = F2M(e1) and N · q1 = F2M(e2) and
N · r2 = F2M(e3). (The homography of N)(P1) = Dir100 by [8, (22), (1)],
[6, (22)], [5, (75)]. (The homography of N)(P2) = Dir010 by [8, (22), (1)],
[6, (22)], [5, (75)]. (The homography of N)(P3) = Dir001 by [8, (22), (1)],
[6, (22)], [5, (75)]. �

(25) Let us consider non zero elements a, b, c of RF. Suppose N = 〈〈a, 0, 0〉,
〈0, b, 0〉, 〈0, 0, c〉〉. Then

(i) (the homography of N)(Dir100) = Dir100, and

(ii) (the homography of N)(Dir010) = Dir010, and

(iii) (the homography of N)(Dir001) = Dir001.
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Proof: (The homography of N)(Dir100) = Dir100 by (12), [8, (22), (1)],
[7, (8), (2)]. (The homography of N)(Dir010) = Dir010 by (12), [8, (22),
(1)], [7, (8), (2)]. (The homography of N)(Dir001) = Dir001 by (12), [8,
(22), (1)], [7, (8), (2)]. �

Let us consider a point P of the projective space over E3T.

(26) There exist elements a, b, c of RF such that

(i) P = the direction of [a, b, c], and

(ii) a 6= 0 or b 6= 0 or c 6= 0.

(27) Suppose Dir100, Dir010 and P are not collinear and Dir100, Dir001 and
P are not collinear and Dir010, Dir001 and P are not collinear. Then there
exist non zero elements a, b, c of RF such that P = the direction of [a, b,
c]. The theorem is a consequence of (26).

(28) Let us consider non zero elements a, b, c, i1, i2, i3 of RF, a point P of
the projective space over E3T, and an invertible square matrix N over RF of
dimension 3. Suppose P = the direction of [a, b, c] and i1 = 1

a and i2 = 1
b

and i3 = 1
c and N = 〈〈i1, 0, 0〉, 〈0, i2, 0〉, 〈0, 0, i3〉〉. Then (the homography

of N)(P ) = the direction of [1, 1, 1].
Proof: Consider u, v being elements of E3T, u4 being a finite sequence
of elements of RF, p being a finite sequence of elements of R1 such that
P = the direction of u and u is not zero and u = u4 and p = N ·u4 and v =
M2F(p) and v is not zero and (the homography of N)(P ) = the direction
of v. [a, b, c] is not zero by [7, (4)], [1, (78)]. Consider d being a real number
such that d 6= 0 and u = d·[a, b, c]. Reconsider d1 = d·a, d2 = d·b, d3 = d·c
as an element of RF. v = [i1 · d1, i2 · d2, i3 · d3] by [1, (45)]. �

(29) Let us consider a point P of the projective space over E3T. Suppose
Dir100, Dir010 and P are not collinear and Dir100, Dir001 and P are
not collinear and Dir010, Dir001 and P are not collinear. Then there exist
non zero elements a, b, c of RF such that for every invertible square matrix
N over RF of dimension 3 such that N = 〈〈a, 0, 0〉, 〈0, b, 0〉, 〈0, 0, c〉〉 holds
(the homography of N)(P ) = Dir111. The theorem is a consequence of
(27) and (28).

(30) Let us consider points P1, P2, P3, P4 of the projective space over E3T.
Suppose P1, P2 and P3 are not collinear and P1, P2 and P4 are not collinear
and P1, P3 and P4 are not collinear and P2, P3 and P4 are not collinear.
Then there exists an invertible square matrix N over RF of dimension 3
such that

(i) (the homography of N)(P1) = Dir100, and

(ii) (the homography of N)(P2) = Dir010, and
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(iii) (the homography of N)(P3) = Dir001, and

(iv) (the homography of N)(P4) = Dir111.

The theorem is a consequence of (24), (29), (9), (25), and (13).

(31) Let us consider points P1, P2, P3, P4, Q1, Q2, Q3, Q4 of the projective
space over E3T. Suppose P1, P2 and P3 are not collinear and P1, P2 and P4
are not collinear and P1, P3 and P4 are not collinear and P2, P3 and P4
are not collinear and Q1, Q2 and Q3 are not collinear and Q1, Q2 and Q4
are not collinear and Q1, Q3 and Q4 are not collinear and Q2, Q3 and Q4
are not collinear. Then there exists an invertible square matrix N over RF
of dimension 3 such that

(i) (the homography of N)(P1) = Q1, and

(ii) (the homography of N)(P2) = Q2, and

(iii) (the homography of N)(P3) = Q3, and

(iv) (the homography of N)(P4) = Q4.

The theorem is a consequence of (30), (15), and (13).
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