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Summary. The article defines Liouville numbers, originally introduced by
Joseph Liouville in 1844 [17] as an example of an object which can be approxi-
mated “quite closely” by a sequence of rational numbers. A real number x is a
Liouville number iff for every positive integer n, there exist integers p and q such
that q > 1 and

0 <

∣∣∣∣x− p

q

∣∣∣∣ < 1
qn
.

It is easy to show that all Liouville numbers are irrational. Liouville constant,
which is also defined formally, is the first transcendental (not algebraic) number.
It is defined in Section 6 quite generally as the sum

∞∑
k=1

ak
bk!

for a finite sequence {ak}k∈N and b ∈ N. Based on this definition, we also intro-
duced the so-called Liouville number as

L =
∞∑
k=1

10−k! = 0.110001000000000000000001 . . . ,

substituting in the definition of L(ak, b) the constant sequence of 1’s and b = 10.
Another important examples of transcendental numbers are e and π [7], [13],
[6]. At the end, we show that the construction of an arbitrary Lioville con-
stant satisfies the properties of a Liouville number [12], [1]. We show additio-
nally, that the set of all Liouville numbers is infinite, opening the next item
from Abad and Abad’s list of “Top 100 Theorems”. We show also some pre-
liminary constructions linking real sequences and finite sequences, where sum-
ming formulas are involved. In the Mizar [14] proof, we follow closely https:
//en.wikipedia.org/wiki/Liouville_number. The aim is to show that all Lio-
uville numbers are transcendental.
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1. Preliminaries

Now we state the proposition:

(1) Let us consider natural numbers x, y. If x > 1 and y > 1, then x · y ­
x+ y.

Let us consider a natural number n. Now we state the propositions:

(2) n ¬ n!.

(3) n · n! = (n+ 1)!− n!.

(4) If n ­ 1, then 2 ¬ (n+ 1)!.

Let us consider natural numbers n, i. Now we state the propositions:

(5) If n ­ 1 and i ­ 1, then (n+ i)! ­ n! + i.

(6) If n ­ 2 and i ­ 1, then (n+ i)! > n! + i. The theorem is a consequence
of (1).

(7) Let us consider a natural number b. If b > 1, then |1b | < 1.

(8) Let us consider an integer d. Then there exists a non zero natural number
n such that 2n−1 > d.

Let a be an integer and b be a natural number. Note that ab is integer.

2. Sequences

Now we state the propositions:

(9) Let us consider sequences s1, s2 of real numbers. Suppose for every na-
tural number n, 0 ¬ s1(n) ¬ s2(n) and there exists a natural number n
such that 1 ¬ n and s1(n) < s2(n) and s2 is summable. Then

(i) s1 is summable, and

(ii)
∑
s1 <

∑
s2.

(10) Let us consider a sequence f of real numbers. Suppose there exists a na-
tural number n such that for every natural number k such that k ­ n

holds f(k) = 0. Then f is summable.
Proof: Set p = (

∑κ
α=0 f(α))κ∈N. Reconsider p2 = p(n) as a real number.

Set r = {p2}n∈N. For every natural number k such that k ­ n holds
p(k) = r(k) by [15, (57)], [3, (12)]. �
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(11) Let us consider a natural number b. If b > 1, then
∑

((1b )
κ)κ∈N = b

b−1 .
The theorem is a consequence of (7).

Let n be a natural number. Let us observe that {n}n∈N is N-valued.

Let r be a positive natural number. Note that {r}n∈N is positive yielding
and there exists a sequence of real numbers which is N-valued and Z-valued.

Now we state the propositions:

(12) Let us consider a sequence F of real numbers, a natural number n, and
a real number a. Suppose for every natural number k, F (k) = a. Then
(
∑κ
α=0 F (α))κ∈N(n) = a · (n+ 1).

Proof: Define P[natural number] ≡ (
∑κ
α=0 F (α))κ∈N($1) = a · ($1 + 1).

For every natural number i such that P[i] holds P[i+1]. For every natural
number i, P[i] from [3, Sch. 2]. �

(13) Let us consider a natural number n, and a real number a. Then (
∑κ
α=0

({a}n∈N)(α))κ∈N(n) = a · (n+ 1). The theorem is a consequence of (12).

Let f be a Z-valued sequence of real numbers. Note that (
∑κ
α=0 f(α))κ∈N is

Z-valued.

Let f be an N-valued sequence of real numbers. Observe that (
∑κ
α=0 f(α))κ∈N

is N-valued.

Now we state the propositions:

(14) Let us consider a sequence f of real numbers. Suppose there exists a na-
tural number n such that for every natural number k such that k ­ n

holds f(k) = 0. Then there exists a natural number n such that for
every natural number k such that k ­ n holds (

∑κ
α=0 f(α))κ∈N(k) =

(
∑κ
α=0 f(α))κ∈N(n).

Proof: Set p = (
∑κ
α=0 f(α))κ∈N. Reconsider p2 = p(n) as a real number.

Set r = {p2}n∈N. For every natural number k such that k ­ n holds
p(k) = r(k) by [15, (57)], [3, (12)]. �

(15) Let us consider a Z-valued sequence f of real numbers. Suppose there
exists a natural number n such that for every natural number k such that
k ­ n holds f(k) = 0. Then

∑
f is an integer.

Proof: Set p = (
∑κ
α=0 f(α))κ∈N. Reconsider p2 = p(n) as a real number.

Set r = {p2}n∈N. For every natural number k such that k ­ n holds
p(k) = r(k) by [15, (57)], [3, (12)]. �

Let f be a non-negative yielding sequence of real numbers and n be a natural
number.

One can verify that f ↑ n is non-negative yielding.
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3. Transformations between Real Functions and Finite Sequences

Let f be a sequence of real numbers and X be a subset of N. The functor
f |X yielding a sequence of real numbers is defined by the term

(Def. 1) (N 7−→ 0)+·f�X.

Note that f�X is N-defined.
Let n be a natural number. Let us note that f |Seg n is summable.
Let f be a Z-valued sequence of real numbers. One can verify that f |Seg n

is Z-valued.
Now we state the proposition:

(16) Let us consider a sequence f of real numbers. Then f |Seg 0 = {0}n∈N.
Proof: Set f3 = f | Seg 0. Set g = {0}n∈N. For every element x of N,
f3(x) = g(x) by [10, (11)]. �

Let f be a sequence of real numbers and n be a natural number. The functor
FinSeq(f, n) yielding a finite sequence of elements of R is defined by the term

(Def. 2) f� Seg n.

Now we state the proposition:

(17) Let us consider a sequence f of real numbers, and natural numbers k,
n. If k ∈ Seg n, then (f | Seg n)(k) = f(k).

Let us consider a sequence f of real numbers and a natural number n. Now
we state the propositions:

(18) If f(0) = 0, then
∑

FinSeq(f, n) =
∑

(f | Seg n).
Proof: Set f1 = f | Seg n. Set g = FinSeq(f, n). Reconsider f0 = f(0) as
an element of R. Set h = 〈f0〉 a g. For every natural number k such that
k < n+ 1 holds f1(k) = h(k+ 1) by [3, (13), (14)], [22, (25)], [8, (49)]. For
every natural number k such that k ­ n+ 1 holds f1(k) = 0 by [3, (16)],
[4, (1)], [24, (57)], [10, (11)]. �

(19) dom FinSeq(f, n) = Segn.

(20) Let us consider a sequence f of real numbers, and a natural number i.
Then FinSeq(f, i) a 〈f(i+ 1)〉 = FinSeq(f, i+ 1).
Proof: Set f1 = FinSeq(f, i). Set g = 〈f(i+ 1)〉. Set h = FinSeq(f, i+ 1).
dom f1 = Seg i. For every natural number k such that k ∈ dom(f1 a g)
holds (f1 a g)(k) = h(k) by [3, (13)], [4, (5), (25)], (19). �

Let us consider a sequence f of real numbers and a natural number n. Now
we state the propositions:

(21) If f(0) = 0, then
∑

FinSeq(f, n) = (
∑κ
α=0 f(α))κ∈N(n).

Proof: Define P[natural number] ≡
∑

FinSeq(f, $1) = (
∑κ
α=0 f(α))κ∈N
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($1). For every natural number i such that P[i] holds P[i+ 1] by (20), [23,
(4)]. For every natural number n, P[n] from [3, Sch. 2]. �

(22) If f(0) = 0, then
∑

(f | Seg n) = (
∑κ
α=0 f(α))κ∈N(n). The theorem is

a consequence of (21) and (18).

(23) Let us consider a Z-valued sequence f of real numbers, and a natural
number n. If f(0) = 0, then

∑
(f |Seg n) is an integer. The theorem is

a consequence of (22).

(24) Let us consider a sequence f of real numbers, and a natural number n.
Suppose f is summable and f(0) = 0. Then

∑
f =

∑
FinSeq(f, n)+

∑
(f ↑

(n+ 1)). The theorem is a consequence of (21).

One can check that there exists a sequence of real numbers which is positive
yielding and N-valued.

4. Sequences not Vanishing at Infinity

Let f be a sequence of real numbers. We say that f is eventually non-zero
if and only if

(Def. 3) for every natural number n, there exists a natural number N such that
n ¬ N and f(N) 6= 0.

Observe that every sequence of real numbers which is eventually nonzero is
also eventually non-zero and idseq(idN) is eventually nonzero and there exists
a sequence of real numbers which is eventually non-zero.

Now we state the proposition:

(25) Let us consider an eventually non-zero sequence f of real numbers, and
a natural number n. Then f ↑ n is eventually non-zero.

Let f be an eventually non-zero sequence of real numbers and n be a natural
number. Note that f ↑n is eventually non-zero as a sequence of real numbers and
every sequence of real numbers which is non-zero and constant is also eventually
non-zero.

Let b be a natural number. The functor pfact(b) yielding a sequence of real
numbers is defined by

(Def. 4) for every natural number i, it(i) = 1
bi!

.

Now we state the propositions:

(26) Let us consider natural numbers b, i. Suppose b ­ 1. Then (pfact(b))(i) ¬
((1b )

κ)κ∈N(i).

(27) Let us consider a natural number b. Suppose b > 1. Then

(i) pfact(b) is summable, and
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(ii)
∑

pfact(b) ¬ b
b−1 .

The theorem is a consequence of (26) and (11).

Let b be a non trivial natural number. Observe that pfact(b) is summable
and there exists a sequence of real numbers which is non-negative yielding.

Now we state the proposition:

(28) Let us consider natural numbers n, b. Suppose b > 1 and n ­ 1. Then∑
((b− 1) · (pfact(b) ↑ (n+ 1))) < 1

(bn!)n .

Proof: pfact(b)↑ (n+1) is summable. Set s1 = pfact(b)↑ (n+1). Set s2 =
((1b )

κ)κ∈N ↑ (n+ 1)!. For every natural number k, 0 ¬ s1(k) ¬ s2(k) by [3,
(13)], [19, (7)], [3, (16)], [5, (8)]. There exists a natural number k such that
1 ¬ k and s1(k) < s2(k) by [19, (7)], [20, (39)].

∑
s1 <

∑
s2. Reconsider

b3 = b(n+1)! as a natural number. ((1b )
κ)κ∈N ↑ (n+ 1)! = ( 1b3 ) · ((

1
b )
κ)κ∈N by

[16, (8)], [19, (7)], [9, (63)]. �

5. Liouville Numbers

Let x be a real number. We say that x is Liouville if and only if

(Def. 5) for every natural number n, there exists an integer p and there exists
a natural number q such that q > 1 and 0 < |x− p

q | <
1
qn .

Now we state the proposition:

(29) Let us consider a real number r. Then r is Liouville if and only if for
every non zero natural number n, there exists an integer p and there exists
a natural number q such that 1 < q and 0 < |r − p

q | <
1
qn .

Let a be a sequence of real numbers and b be a natural number. The functor
LiouvilleSeq(a, b) yielding a sequence of real numbers is defined by

(Def. 6) it(0) = 0 and for every non zero natural number k, it(k) = a(k)
bk!

.

One can check that every real number which is Liouville is also irrational.

6. Liouville Constant

Let a be a sequence of real numbers and b be a natural number. The functor
LiouvilleConst(a, b) yielding a real number is defined by the term

(Def. 7)
∑

LiouvilleSeq(a, b).

The functor BLiouvilleSeq(b) yielding a sequence of real numbers is defined
by

(Def. 8) for every natural number n, it(n) = bn!.
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Let us note that BLiouvilleSeq(b) is N-valued.
Let a be a sequence of real numbers. The functor ALiouvilleSeq(a, b) yielding

a sequence of real numbers is defined by

(Def. 9) for every natural number n, it(n) =
(BLiouvilleSeq(b))(n) ·

∑
(LiouvilleSeq(a, b)|Seg n).

Now we state the propositions:

(30) Let us consider an N-valued sequence a of real numbers, and natural
numbers b, n, k. Suppose b > 0 and k ¬ n. Then (LiouvilleSeq(a, b))(k) ·
(BLiouvilleSeq(b))(n) is an integer.

(31) Let us consider an N-valued sequence a of real numbers, and natural
numbers b, n. If b > 0, then (ALiouvilleSeq(a, b))(n) is an integer.
Proof: Set L = LiouvilleSeq(a, b). Set B = BLiouvilleSeq(b). Set f3 =
B(n) · (L|Seg n). rng f3 ⊆ Z by [4, (1)], [24, (62)], [10, (13)], [8, (49)]. Set
m = n+ 1. For every natural number k such that k ­ m holds f3(k) = 0
by [3, (13)], [4, (1)], [24, (57)], [10, (11)]. �

Let a be an N-valued sequence of real numbers and b be a non zero natural
number. Let us observe that ALiouvilleSeq(a, b) is Z-valued.

Now we state the propositions:

(32) Let us consider non zero natural numbers n, b.
If b > 1, then (BLiouvilleSeq(b))(n) > 1.

(33) Let us consider an N-valued sequence a of real numbers, and a non zero
natural number b. Suppose b ­ 2 and rng a ⊆ b. Then LiouvilleSeq(a, b) is
summable.
Proof: Set f = LiouvilleSeq(a, b). For every natural number i, b−1

bi!
=

((b − 1) · pfact(b))(i). For every natural number i, f(i) ­ 0 and f(i) ¬
((b− 1) · pfact(b))(i) by [21, (3)], [16, (12)], [3, (51), (44), (13)]. pfact(b) is
summable. �

(34) Let us consider a sequence a of real numbers, a non zero natural number
n, and a non zero natural number b. Suppose b > 1.
Then (ALiouvilleSeq(a,b))(n)(BLiouvilleSeq(b))(n) =

∑
FinSeq(LiouvilleSeq(a, b), n). The theorem

is a consequence of (32) and (18).

(35) Let us consider an N-valued sequence a of real numbers, a non trivial
natural number b, and a natural number n. Then (LiouvilleSeq(a, b))(n) ­
0.

(36) Let us consider a positive yielding, N-valued sequence a of real numbers,
a non trivial natural number b, and a non zero natural number n. Then
(LiouvilleSeq(a, b))(n) > 0.
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Let a be an N-valued sequence of real numbers and b be a non trivial natural
number. One can check that LiouvilleSeq(a, b) is non-negative yielding.

Now we state the propositions:

(37) Let us consider an N-valued sequence a of real numbers, and natural
numbers b, c. Suppose b ­ 2 and c ­ 1 and rng a ⊆ c and c ¬ b. Let
us consider a natural number i. Then (LiouvilleSeq(a, b))(i) ¬ ((c − 1) ·
pfact(b))(i).

(38) Let us consider an N-valued sequence a of real numbers, and natural
numbers b, c. Suppose b ­ 2 and c ­ 1 and rng a ⊆ c and c ¬ b. Then∑

LiouvilleSeq(a, b) ¬
∑

((c− 1) ·pfact(b)). The theorem is a consequence
of (27), (35), and (37).

(39) Let us consider an N-valued sequence a of real numbers, and natural
numbers b, c, n. Suppose b ­ 2 and c ­ 1 and rng a ⊆ c and c ¬ b. Then∑

(LiouvilleSeq(a, b) ↑ (n+ 1)) ¬
∑

((c− 1) · (pfact(b) ↑ (n+ 1))).
Proof: Set g = (c−1) · (pfact(b)↑ (n+1)). pfact(b)↑ (n+1) is summable.
Set f = LiouvilleSeq(a, b) ↑ (n+ 1). For every natural number i, 0 ¬ f(i)
by [8, (3)]. For every natural number i, f(i) ¬ g(i) by [15, (9)], (37). �

(40) Let us consider an N-valued sequence a of real numbers, a non trivial
natural number b, and a natural number n. Suppose a is eventually non-
zero and rng a ⊆ b. Then

∑
(LiouvilleSeq(a, b) ↑ (n+ 1)) > 0.

Proof: Set L = LiouvilleSeq(a, b) ↑ (n + 1). For every natural number i,
0 ¬ L(i). There exists a natural number i such that i ∈ domL and 0 < L(i)
by [21, (5)]. Consider k being a natural number such that k ∈ domL and
L(k) > 0. LiouvilleSeq(a, b) is summable. �

(41) Let us consider an N-valued sequence a of real numbers, and a non
trivial natural number b. Suppose rng a ⊆ b and a is eventually non-
zero. Let us consider a non zero natural number n. Then there exists
an integer p and there exists a natural number q such that q > 1 and
0 < |LiouvilleConst(a, b)− p

q | <
1
qn . The theorem is a consequence of (32),

(33), (40), (24), (34), (39), and (28).

The functor LiouvilleConst yielding a real number is defined by the term

(Def. 10) LiouvilleConst({1}n∈N, 10).

Now we state the proposition:

(42) Let us consider an N-valued sequence a of real numbers, and a non trivial
natural number b. Suppose rng a ⊆ b and a is eventually non-zero. Then
LiouvilleConst(a, b) is Liouville. The theorem is a consequence of (41) and
(29).

One can check that LiouvilleConst is Liouville and there exists a real number
which is Liouville.
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A Liouville number is a Liouville real number. Now we state the propositions:

(43) Let us consider non zero natural numbers m, n.
Then (LiouvilleSeq({1}n∈N,m))(n) = m−n!.

(44) Let us consider a natural numberm. If 1 < m, then LiouvilleSeq({1}n∈N,m)
is negligible.
Proof: There exists a function f from N into R such that for every natural
number x, f(x) = 1

2x . Consider f being a function from N into R such that
for every natural number x, f(x) = 1

2x . Set g = LiouvilleSeq({1}n∈N,m).
For every natural number x, |g(x)| ¬ |f(x)| by [18, (5), (4)]. �

(45) 1
10 < LiouvilleConst ¬ 109 −

1
10 .

Proof: Set a = {1}n∈N. Set b = 10. Reconsider n = 1 as a non zero natural
number. Set f = LiouvilleSeq(a, b). Set p1 = pfact(b). f is summable. For
every natural number n, 0 ¬ f(n). f(1) = 10−1. Set s1 = f ↑ 2. Set
s2 = p1 ↑ 2.

∑
p1 = (

∑κ
α=0 p1(α))κ∈N(1) +

∑
(p1 ↑ (1 + 1)).

∑
p1 ¬ b

b−1 . s2
is summable. For every natural number n, 0 ¬ s1(n) ¬ s2(n) by (37), [11,
(7)], [2, (50)], (35). �

(46) Let us consider a Liouville number n1, and an integer z. Then z + n1 is
Liouville. The theorem is a consequence of (29).

Let n1 be a Liouville number and z be an integer. One can verify that n1+z

is Liouville.
The set of all Liouville numbers yielding a subset of R is defined by the term

(Def. 11) the set of all n1 where n1 is a Liouville number.

Note that the set of all Liouville numbers is infinite.
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