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Fubini’s Theorem on Measure
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Summary. The purpose of this article is to show Fubini’s theorem on
measure [16], [4], [7], [15], [18]. Some theorems have the possibility of slight
generalization, but we have priority to avoid the complexity of the description.
First of all, for the product measure constructed in [14], we show some theorems.
Then we introduce the section which plays an important role in Fubini’s theorem,
and prove the relevant proposition. Finally we show Fubini’s theorem on measure.
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1. Preliminaries

Now we state the propositions:

(1) Let us consider a disjoint valued finite sequence F , and natural numbers
n, m. If n < m, then

⋃
rng(F �n) misses F (m).

(2) Let us consider a finite sequence F , and natural numbers m, n. Suppose
m ¬ n. Then len(F �m) ¬ len(F �n).

(3) Let us consider a finite sequence F , and a natural number n. Then⋃
rng(F �n)∪F (n+ 1) =

⋃
rng(F �(n+ 1)). The theorem is a consequence

of (2).

(4) Let us consider a disjoint valued finite sequence F , and a natural number
n. Then

⋃
(F �n) misses F (n+ 1).

(5) Let us consider a set P , and a finite sequence F . Suppose P is ∪-closed
and ∅ ∈ P and for every natural number n such that n ∈ domF holds
F (n) ∈ P . Then

⋃
F ∈ P .
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Proof: Define P[natural number] ≡
⋃

rng(F �$1) ∈ P . For every natural
number k such that P[k] holds P[k + 1] by [2, (13)], [3, (59)], [19, (55)],
[3, (82)]. For every natural number k, P[k] from [2, Sch. 2]. �

Let A, X be sets. Observe that the functor χA,X yields a function from X

into R. Let X be a non empty set, S be a σ-field of subsets of X, and F be
a finite sequence of elements of S. Let us observe that the functor

⋃
F yields

an element of S. Let F be a sequence of S. Let us note that the functor
⋃
F

yields an element of S. Let F be a finite sequence of elements of X→̇R and x

be an element of X. The functor F#x yielding a finite sequence of elements of
R is defined by

(Def. 1) dom it = domF and for every element n of N such that n ∈ dom it holds
it(n) = F (n)(x).

Now we state the proposition:

(6) Let us consider a non empty set X, a non empty family S of subsets
of X, a finite sequence f of elements of S, and a finite sequence F of
elements of X→̇R. Suppose dom f = domF and f is disjoint valued and
for every natural number n such that n ∈ domF holds F (n) = χ

f(n),X .
Let us consider an element x of X. Then χ⋃

f,X(x) =
∑

(F#x).

2. Product Measure and Product σ-measure

Now we state the proposition:

(7) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
and a σ-field S2 of subsets of X2. Then σ(DisUnion MeasRect(S1, S2)) =
σ(MeasRect(S1, S2)).

Let X1, X2 be non empty sets, S1 be a σ-field of subsets of X1, S2 be a σ-field
of subsets of X2, M1 be a σ-measure on S1, and M2 be a σ-measure on S2. The
functor ProdMeas(M1,M2) yielding an induced measure of MeasRect(S1, S2)
and ProdpreMeas(M1,M2) is defined by

(Def. 2) for every set E such that E ∈ the field generated by MeasRect(S1, S2)
for every disjoint valued finite sequence F of elements of MeasRect(S1, S2)
such that E =

⋃
F holds it(E) =

∑
(ProdpreMeas(M1,M2) · F ).

The functor Prodσ -Meas(M1,M2) yielding an induced σ-measure of
MeasRect(S1, S2) and ProdMeas(M1,M2) is defined by the term

(Def. 3) σ-Meas(the Caratheodory measure determined by
ProdMeas(M1,M2))�σ(MeasRect(S1, S2)).

Now we state the propositions:
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(8) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-
field S2 of subsets of X2, a σ-measure M1 on S1, and a σ-measure M2 on
S2. Then Prodσ -Meas(M1,M2) is a σ-measure on σ(MeasRect(S1, S2)).
The theorem is a consequence of (7).

(9) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a set sequence F1 of S1, a set sequence
F2 of S2, and a natural number n. Then F1(n) × F2(n) is an element of
σ(MeasRect(S1, S2)). The theorem is a consequence of (7).

(10) Let us consider sets X1, X2, a sequence F1 of subsets of X1, a sequence
F2 of subsets of X2, and a natural number n. Suppose F1 is non descending
and F2 is non descending. Then F1(n)× F2(n) ⊆ F1(n+ 1)× F2(n+ 1).

(11) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on S2,
an elementA of S1, and an elementB of S2. Then (ProdMeas(M1,M2))(A×
B) = M1(A) ·M2(B).

(12) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on
S2, a set sequence F1 of S1, a set sequence F2 of S2, and a natural number
n. Then (ProdMeas(M1,M2))(F1(n) × F2(n)) = M1(F1(n)) ·M2(F2(n)).
The theorem is a consequence of (11).

(13) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on
S2, a finite sequence F1 of elements of S1, a finite sequence F2 of elements
of S2, and a natural number n. Suppose n ∈ domF1 and n ∈ domF2.
Then (ProdMeas(M1,M2))(F1(n)× F2(n)) = M1(F1(n)) ·M2(F2(n)).

(14) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-
field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on S2,
and a subset E of X1×X2. Then (the Caratheodory measure determined
by ProdMeas(M1,M2))(E) = inf Svc(ProdMeas(M1,M2), E).

(15) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, and a σ-measure M2
on S2. Then σ(MeasRect(S1, S2)) ⊆ σ-Field(the Caratheodory measure
determined by ProdMeas(M1,M2)). The theorem is a consequence of (7).

(16) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-
field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on S2,
an element E of σ(MeasRect(S1, S2)), an element A of S1, and an element
B of S2. Suppose E = A×B. Then (Prodσ -Meas(M1,M2))(E) = M1(A) ·
M2(B). The theorem is a consequence of (15) and (11).

(17) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
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a σ-field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on
S2, a set sequence F1 of S1, a set sequence F2 of S2, and a natural number
n. Then (Prodσ -Meas(M1,M2))(F1(n)×F2(n)) = M1(F1(n))·M2(F2(n)).
The theorem is a consequence of (9), (15), and (12).

(18) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on
S2, and elements E1, E2 of σ(MeasRect(S1, S2)). Suppose E1 misses E2.
Then (Prodσ -Meas(M1,M2))(E1 ∪E2) = (Prodσ -Meas(M1,M2))(E1) +
(Prodσ -Meas(M1,M2))(E2). The theorem is a consequence of (8).

(19) Let us consider sets X1, X2, A, B, a sequence F1 of subsets of X1,
a sequence F2 of subsets of X2, and a sequence F of subsets of X1 ×X2.
Suppose F1 is non descending and limF1 = A and F2 is non descending
and limF2 = B and for every natural number n, F (n) = F1(n) × F2(n).
Then limF = A×B. The theorem is a consequence of (10).

3. Sections

Let X be a set, Y be a non empty set, E be a subset of X × Y, and x be
a set. The functor Xsection(E, x) yielding a subset of Y is defined by the term

(Def. 4) {y, where y is an element of Y : 〈〈x, y〉〉 ∈ E}.

Let X be a non empty set, Y be a set, and y be a set.
The functor Ysection(E, y) yielding a subset of X is defined by the term

(Def. 5) {x, where x is an element of X : 〈〈x, y〉〉 ∈ E}.

Now we state the propositions:

(20) Let us consider a set X, a non empty set Y, subsets E1, E2 of X × Y,
and a set p. Suppose E1 ⊆ E2. Then Xsection(E1, p) ⊆ Xsection(E2, p).

(21) Let us consider a non empty set X, a set Y, subsets E1, E2 of X × Y,
and a set p. Suppose E1 ⊆ E2. Then Ysection(E1, p) ⊆ Ysection(E2, p).

(22) Let us consider non empty sets X, Y, a subset A of X, a subset B of Y,
and a set p. Then

(i) if p ∈ A, then Xsection(A×B, p) = B, and

(ii) if p /∈ A, then Xsection(A×B, p) = ∅, and

(iii) if p ∈ B, then Ysection(A×B, p) = A, and

(iv) if p /∈ B, then Ysection(A×B, p) = ∅.
(23) Let us consider non empty sets X, Y, a subset E of X × Y, and a set p.

Then

(i) if p /∈ X, then Xsection(E, p) = ∅, and
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(ii) if p /∈ Y, then Ysection(E, p) = ∅.
(24) Let us consider non empty sets X, Y, and a set p. Then

(i) Xsection(∅X×Y , p) = ∅, and

(ii) Ysection(∅X×Y , p) = ∅, and

(iii) if p ∈ X, then Xsection(ΩX×Y , p) = Y, and

(iv) if p ∈ Y, then Ysection(ΩX×Y , p) = X.

The theorem is a consequence of (22).

(25) Let us consider non empty sets X, Y, a subset E of X × Y, and a set p.
Then

(i) if p ∈ X, then Xsection(X × Y \ E, p) = Y \Xsection(E, p), and

(ii) if p ∈ Y, then Ysection(X × Y \ E, p) = X \Ysection(E, p).

Let us consider non empty sets X, Y, subsets E1, E2 of X × Y, and a set p.

(26) (i) Xsection(E1 ∪ E2, p) = Xsection(E1, p) ∪Xsection(E2, p), and

(ii) Ysection(E1 ∪ E2, p) = Ysection(E1, p) ∪Ysection(E2, p).

(27) (i) Xsection(E1 ∩ E2, p) = Xsection(E1, p) ∩Xsection(E2, p), and

(ii) Ysection(E1 ∩ E2, p) = Ysection(E1, p) ∩Ysection(E2, p).

Now we state the propositions:

(28) Let us consider a set X, a non empty set Y, a finite sequence F of ele-
ments of 2X×Y , a finite sequence F4 of elements of 2Y , and a set p. Suppose
domF = domF4 and for every natural number n such that n ∈ domF4
holds F4(n) = Xsection(F (n), p). Then Xsection(

⋃
rngF, p) =

⋃
rngF4.

(29) Let us consider a non empty set X, a set Y, a finite sequence F of ele-
ments of 2X×Y , a finite sequence F3 of elements of 2X , and a set p. Suppose
domF = domF3 and for every natural number n such that n ∈ domF3
holds F3(n) = Ysection(F (n), p). Then Ysection(

⋃
rngF, p) =

⋃
rngF3.

Let us consider a set X, a non empty set Y, a set p, a sequence F of subsets
of X × Y, and a sequence F4 of subsets of Y. Now we state the propositions:

(30) If for every natural number n, F4(n) = Xsection(F (n), p),
then Xsection(

⋃
rngF, p) =

⋃
rngF4.

(31) If for every natural number n, F4(n) = Xsection(F (n), p),
then Xsection(

⋂
rngF, p) =

⋂
rngF4.

Let us consider a non empty set X, a set Y, a set p, a sequence F of subsets
of X × Y, and a sequence F3 of subsets of X. Now we state the propositions:

(32) If for every natural number n, F3(n) = Ysection(F (n), p),
then Ysection(

⋃
rngF, p) =

⋃
rngF3.
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(33) If for every natural number n, F3(n) = Ysection(F (n), p),
then Ysection(

⋂
rngF, p) =

⋂
rngF3.

(34) Let us consider non empty sets X, Y, sets x, y, and a subset E of X ×
Y. Then

(i) χE,X×Y (x, y) = χXsection(E,x),Y (y), and

(ii) χE,X×Y (x, y) = χYsection(E,y),X(x).

(35) Let us consider non empty sets X, Y, subsets E1, E2 of X×Y, and a set
p. Suppose E1 misses E2. Then

(i) Xsection(E1, p) misses Xsection(E2, p), and

(ii) Ysection(E1, p) misses Ysection(E2, p).

(36) Let us consider non empty sets X, Y, a disjoint valued finite sequence F
of elements of 2X×Y , and a set p. Then

(i) there exists a disjoint valued finite sequence F4 of elements of 2X

such that domF = domF4 and for every natural number n such that
n ∈ domF4 holds F4(n) = Ysection(F (n), p), and

(ii) there exists a disjoint valued finite sequence F3 of elements of 2Y

such that domF = domF3 and for every natural number n such that
n ∈ domF3 holds F3(n) = Xsection(F (n), p).

Proof: There exists a disjoint valued finite sequence F4 of elements of
2X such that domF = domF4 and for every natural number n such that
n ∈ domF4 holds F4(n) = Ysection(F (n), p) by (35), [19, (29)]. There
exists a disjoint valued finite sequence F3 of elements of 2Y such that
domF = domF3 and for every natural number n such that n ∈ domF3
holds F3(n) = Xsection(F (n), p) by (35), [19, (29)]. �

(37) Let us consider non empty sets X, Y, a disjoint valued sequence F of
subsets of X × Y, and a set p. Then

(i) there exists a disjoint valued sequence F4 of subsets of X such that
for every natural number n, F4(n) = Ysection(F (n), p), and

(ii) there exists a disjoint valued sequence F3 of subsets of Y such that
for every natural number n, F3(n) = Xsection(F (n), p).

Proof: There exists a disjoint valued sequence F4 of subsets of X such
that for every natural number n, F4(n) = Ysection(F (n), p). DefineA(natu-
ral number) = Xsection(F ($1), p). Consider F3 being a sequence of subsets
of Y such that for every element n of N, F3(n) = A(n) from [11, Sch. 4].
�

(38) Let us consider non empty sets X, Y, sets x, y, and subsets E1, E2 of
X × Y. Suppose E1 misses E2. Then
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(i) χE1∪E2,X×Y (x, y) = χXsection(E1,x),Y (y) + χXsection(E2,x),Y (y), and

(ii) χE1∪E2,X×Y (x, y) = χYsection(E1,y),X(x) + χYsection(E2,y),X(x).

The theorem is a consequence of (35), (34), and (26).

(39) Let us consider a set X, a non empty set Y, a set x, a sequence E of
subsets of X × Y, and a sequence G of subsets of Y. Suppose E is non
descending and for every natural number n, G(n) = Xsection(E(n), x).
Then G is non descending. The theorem is a consequence of (20).

(40) Let us consider a non empty set X, a set Y, a set x, a sequence E of
subsets of X × Y, and a sequence G of subsets of X. Suppose E is non
descending and for every natural number n, G(n) = Ysection(E(n), x).
Then G is non descending. The theorem is a consequence of (21).

(41) Let us consider a set X, a non empty set Y, a set x, a sequence E of
subsets of X × Y, and a sequence G of subsets of Y. Suppose E is non
ascending and for every natural number n, G(n) = Xsection(E(n), x).
Then G is non ascending. The theorem is a consequence of (20).

(42) Let us consider a non empty set X, a set Y, a set x, a sequence E of
subsets of X × Y, and a sequence G of subsets of X. Suppose E is non
ascending and for every natural number n, G(n) = Ysection(E(n), x).
Then G is non ascending. The theorem is a consequence of (21).

(43) Let us consider a set X, a non empty set Y, a sequence E of subsets
of X × Y, and a set x. Suppose E is non descending. Then there exists
a sequence G of subsets of Y such that

(i) G is non descending, and

(ii) for every natural number n, G(n) = Xsection(E(n), x).

Proof: Define F(natural number) = Xsection(E($1), x). Consider G be-
ing a function from N into 2Y such that for every element n of N, G(n) =
F(n) from [11, Sch. 4]. For every natural number n, G(n) =
Xsection(E(n), x). �

(44) Let us consider a non empty set X, a set Y, a sequence E of subsets
of X × Y, and a set x. Suppose E is non descending. Then there exists
a sequence G of subsets of X such that

(i) G is non descending, and

(ii) for every natural number n, G(n) = Ysection(E(n), x).

Proof: Define F(natural number) = Ysection(E($1), x). Consider G be-
ing a function from N into 2X such that for every element n of N, G(n) =
F(n) from [11, Sch. 4]. For every natural number n, G(n) =
Ysection(E(n), x). �
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(45) Let us consider a set X, a non empty set Y, a sequence E of subsets
of X × Y, and a set x. Suppose E is non ascending. Then there exists
a sequence G of subsets of Y such that

(i) G is non ascending, and

(ii) for every natural number n, G(n) = Xsection(E(n), x).

Proof: Define F(natural number) = Xsection(E($1), x). Consider G be-
ing a function from N into 2Y such that for every element n of N, G(n) =
F(n) from [11, Sch. 4]. For every natural number n, G(n) =
Xsection(E(n), x). �

(46) Let us consider a non empty set X, a set Y, a sequence E of subsets
of X × Y, and a set x. Suppose E is non ascending. Then there exists
a sequence G of subsets of X such that

(i) G is non ascending, and

(ii) for every natural number n, G(n) = Ysection(E(n), x).

Proof: Define F(natural number) = Ysection(E($1), x). Consider G be-
ing a function from N into 2X such that for every element n of N, G(n) =
F(n) from [11, Sch. 4]. For every natural number n, G(n) =
Ysection(E(n), x). �

4. Measurable Sections

Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-field
S2 of subsets of X2, an element E of σ(MeasRect(S1, S2)), and a set K. Now
we state the propositions:

(47) Suppose K = {C, where C is a subset of X1 ×X2 : for every set p,
Xsection(C, p) ∈ S2}. Then

(i) the field generated by MeasRect(S1, S2) ⊆ K, and

(ii) K is a σ-field of subsets of X1 ×X2.

Proof: For every set x, Xsection(∅X1×X2 , x) ∈ S2 by (24), [5, (7)]. For
every subset C of X1 × X2 such that C ∈ K holds Cc ∈ K by [17, (5),
(6)], (25), (23). �

(48) Suppose K = {C, where C is a subset of X1 ×X2 : for every set p,
Ysection(C, p) ∈ S1}. Then

(i) the field generated by MeasRect(S1, S2) ⊆ K, and

(ii) K is a σ-field of subsets of X1 ×X2.
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Proof: For every set y, Ysection(∅X1×X2 , y) ∈ S1 by (24), [5, (7)]. For
every subset C of X1 × X2 such that C ∈ K holds Cc ∈ K by [17, (5),
(6)], (25), (23). �

(49) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, and an element E of σ(MeasRect(S1, S2)).
Then

(i) for every set p, Xsection(E, p) ∈ S2, and

(ii) for every set p, Ysection(E, p) ∈ S1.
The theorem is a consequence of (47) and (48).

Let X1, X2 be non empty sets, S1 be a σ-field of subsets of X1, S2 be a σ-
field of subsets of X2, E be an element of σ(MeasRect(S1, S2)), and x be a set.
The functor MeasurableXsection(E, x) yielding an element of S2 is defined by
the term

(Def. 6) Xsection(E, x).

Let y be a set. The functor MeasurableYsection(E, y) yielding an element
of S1 is defined by the term

(Def. 7) Ysection(E, y).

Now we state the propositions:

(50) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-
field S2 of subsets of X2, a finite sequence F of elements of σ(MeasRect(S1,
S2)), a finite sequence F4 of elements of S2, and a set p. Suppose domF =
domF4 and for every natural number n such that n ∈ domF4 holds
F4(n) = MeasurableXsection(F (n), p). Then MeasurableXsection(

⋃
F, p) =⋃

F4. The theorem is a consequence of (28).

(51) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-
field S2 of subsets of X2, a finite sequence F of elements of σ(MeasRect(S1,
S2)), a finite sequence F3 of elements of S1, and a set p. Suppose domF =
domF3 and for every natural number n such that n ∈ domF3 holds
F3(n) = MeasurableYsection(F (n), p). Then MeasurableYsection(

⋃
F, p) =⋃

F3. The theorem is a consequence of (29).

(52) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M2 on S2, an element A of S1,
an element B of S2, and an element x of X1. Then M2(B) · χA,X1(x) =∫

curry(χA×B,X1×X2 , x) dM2.
Proof: For every element y ofX2, (curry(χA×B,X1×X2 , x))(y) = χA,X1(x)·
χB,X2(y). �

(53) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M2 on S2, an element E of
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σ(MeasRect(S1, S2)), an element A of S1, an element B of S2, and an ele-
ment x of X1. Suppose E = A×B. Then M2(MeasurableXsection(E, x)) =
M2(B) · χA,X1(x). The theorem is a consequence of (22).

(54) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, an element A of S1,
an element B of S2, and an element y of X2. Then M1(A) · χB,X2(y) =∫

curry′(χA×B,X1×X2 , y) dM1.
Proof: For every element x ofX1, (curry′(χA×B,X1×X2 , y))(x) = χA,X1(x)·
χB,X2(y). �

(55) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, an element E of
σ(MeasRect(S1, S2)), an element A of S1, an element B of S2, and an ele-
ment y of X2. Suppose E = A×B. Then M1(MeasurableYsection(E, y)) =
M1(A) · χB,X2(y). The theorem is a consequence of (22).

5. Finite Sequence of Functions

Let X, Y be non empty sets, G be a non empty set of functions from X to
Y, F be a finite sequence of elements of G, and n be a natural number. Observe
that the functor Fn yields an element of G. Let X be a set and F be a finite
sequence of elements of RX

. We say that F is (without +∞)-valued if and only
if

(Def. 8) for every natural number n such that n ∈ domF holds F (n) is without
+∞.

We say that F is (without −∞)-valued if and only if

(Def. 9) for every natural number n such that n ∈ domF holds F (n) is without
−∞.

Now we state the proposition:

(56) Let us consider a non empty set X. Then

(i) 〈X 7−→ 0〉 is a finite sequence of elements of RX
, and

(ii) for every natural number n such that n ∈ dom〈X 7−→ 0〉 holds
〈X 7−→ 0〉(n) is without +∞, and

(iii) for every natural number n such that n ∈ dom〈X 7−→ 0〉 holds
〈X 7−→ 0〉(n) is without −∞.

Let X be a non empty set. One can verify that there exists a finite sequence
of elements of RX

which is (without +∞)-valued and (without −∞)-valued.
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(57) Let us consider a non empty set X, a (without +∞)-valued finite sequ-
ence F of elements of RX

, and a natural number n. If n ∈ domF , then
(Fn)−1({+∞}) = ∅.

(58) Let us consider a non empty set X, a (without −∞)-valued finite sequ-
ence F of elements of RX

, and a natural number n. If n ∈ domF , then
(Fn)−1({−∞}) = ∅.

(59) Let us consider a non empty set X, and a finite sequence F of elements of
RX

. Suppose F is (without +∞)-valued or (without −∞)-valued. Let us
consider natural numbers n, m. If n, m ∈ domF , then dom(Fn+Fm) = X.
The theorem is a consequence of (57) and (58).

Let X be a non empty set and F be a finite sequence of elements of RX
. We

say that F is summable if and only if

(Def. 10) F is (without +∞)-valued or (without −∞)-valued.

Observe that there exists a finite sequence of elements of RX
which is sum-

mable.
Let F be a summable finite sequence of elements of RX

. The functor
(
∑κ
α=0 F (α))κ∈N yielding a finite sequence of elements of RX

is defined by

(Def. 11) lenF = len it and F (1) = it(1) and for every natural number n such
that 1 ¬ n < lenF holds it(n+ 1) = itn + Fn+1.

One can check that every finite sequence of elements of RX
which is (without

+∞)-valued is also summable and every finite sequence of elements of RX
which

is (without −∞)-valued is also summable.
Now we state the propositions:

(60) Let us consider a non empty set X, and a (without +∞)-valued finite
sequence F of elements of RX

. Then (
∑κ
α=0 F (α))κ∈N is (without +∞)-

valued.
Proof: Define P[natural number] ≡ if $1 ∈ dom(

∑κ
α=0 F (α))κ∈N, then

(
∑κ
α=0 F (α))κ∈N($1) is without +∞. For every natural number n such

that P[n] holds P[n + 1] by [19, (29)], [2, (14)], [19, (25)], [2, (13)]. For
every natural number n, P[n] from [2, Sch. 2]. �

(61) Let us consider a non empty set X, and a (without −∞)-valued finite
sequence F of elements of RX

. Then (
∑κ
α=0 F (α))κ∈N is (without −∞)-

valued.
Proof: Define P[natural number] ≡ if $1 ∈ dom(

∑κ
α=0 F (α))κ∈N, then

(
∑κ
α=0 F (α))κ∈N($1) is without −∞. For every natural number n such

that P[n] holds P[n + 1] by [19, (29)], [2, (14)], [19, (25)], [2, (13)]. For
every natural number n, P[n] from [2, Sch. 2]. �
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(62) Let us consider a non empty set X, a set A, an extended real e, and
a function f from X into R. Suppose for every element x of X, f(x) =
e · χA,X(x). Then

(i) if e = +∞, then f = χA,X , and

(ii) if e = −∞, then f = −χA,X , and

(iii) if e 6= +∞ and e 6= −∞, then there exists a real number r such that
r = e and f = r · χA,X .

(63) Let us consider a non empty set X, a σ-field S of subsets of X, a partial
function f from X to R, and an element A of S. Suppose f is measurable
on A and A ⊆ dom f . Then −f is measurable on A.

Let X be a non empty set and f be a without −∞ partial function from X

to R. Observe that −f is without +∞.
Let f be a without +∞ partial function from X to R. One can check that

−f is without −∞.
Let f1, f2 be without +∞ partial functions from X to R. Let us note that

the functor f1 + f2 yields a without +∞ partial function from X to R. Let f1,
f2 be without −∞ partial functions from X to R. Note that the functor f1+ f2
yields a without −∞ partial function from X to R. Let f1 be a without +∞
partial function from X to R and f2 be a without −∞ partial function from
X to R. One can verify that the functor f1 − f2 yields a without +∞ partial
function from X to R. Let f1 be a without −∞ partial function from X to R
and f2 be a without +∞ partial function from X to R. Observe that the functor
f1 − f2 yields a without −∞ partial function from X to R. Now we state the
propositions:

(64) Let us consider a non empty set X, and partial functions f , g from X

to R. Then

(i) −(f + g) = −f +−g, and

(ii) −(f − g) = −f + g, and

(iii) −(f − g) = g − f , and

(iv) −(−f + g) = f − g, and

(v) −(−f + g) = f +−g.

(65) Let us consider a non empty set X, a σ-field S of subsets of X, without
+∞ partial functions f , g from X to R, and an element A of S. Suppose f
is measurable on A and g is measurable on A and A ⊆ dom(f + g). Then
f + g is measurable on A. The theorem is a consequence of (63) and (64).

(66) Let us consider a non empty set X, a σ-field S of subsets of X, an element
A of S, a without +∞ partial function f from X to R, and a without −∞
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partial function g from X to R. Suppose f is measurable on A and g is
measurable on A and A ⊆ dom(f − g). Then f − g is measurable on A.
The theorem is a consequence of (63) and (64).

(67) Let us consider a non empty set X, a σ-field S of subsets of X, an element
A of S, a without −∞ partial function f from X to R, and a without +∞
partial function g from X to R. Suppose f is measurable on A and g is
measurable on A and A ⊆ dom(f − g). Then f − g is measurable on A.
The theorem is a consequence of (64), (63), and (65).

(68) Let us consider a non empty set X, a σ-field S of subsets of X, an element
P of S, and a summable finite sequence F of elements of RX

. Suppose for
every natural number n such that n ∈ domF holds Fn is measurable
on P . Let us consider a natural number n. Suppose n ∈ domF . Then
((
∑κ
α=0 F (α))κ∈N)n is measurable on P . The theorem is a consequence of

(60), (65), and (61).

6. Some Properties of Integral

Now we state the propositions:

(69) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on
S2, an element E of σ(MeasRect(S1, S2)), an element A of S1, an element
B of S2, an element x of X1, and an element y of X2. Suppose E = A ×
B. Then

(i)
∫

curry(χE,X1×X2 , x) dM2 = M2(MeasurableXsection(E, x))·χA,X1(x),
and

(ii)
∫

curry′(χE,X1×X2 , y) dM1 = M1(MeasurableYsection(E, y))·χB,X2(y).

The theorem is a consequence of (52), (53), (54), and (55).

(70) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, and an element E of σ(MeasRect(S1, S2)).
Suppose E ∈ the field generated by MeasRect(S1, S2). Then there exists
a disjoint valued finite sequence f of elements of MeasRect(S1, S2) and
there exists a finite sequence A of elements of S1.
There exists a finite sequence B of elements of S2 such that len f = lenA
and len f = lenB and E =

⋃
f and for every natural number n such that

n ∈ dom f holds π1(f(n)) = A(n) and π2(f(n)) = B(n) and for every
natural number n and for every sets x, y such that n ∈ dom f and x ∈ X1
and y ∈ X2 holds χf(n),X1×X2(x, y) = χ

A(n),X1(x) · χB(n),X2(y).
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Proof: Consider E1 being a subset of X1×X2 such that E = E1 and there
exists a disjoint valued finite sequence f of elements of MeasRect(S1, S2)
such that E1 =

⋃
f . Consider f being a disjoint valued finite sequence

of elements of MeasRect(S1, S2) such that E1 =
⋃
f . Define S[natural

number, object] ≡ $2 = π1(f($1)). For every natural number i such that
i ∈ Seg len f there exists an element A1 of S1 such that S[i, A1] by [12,
(4)], [1, (9)], [5, (7)]. Consider A being a finite sequence of elements of
S1 such that domA = Seg len f and for every natural number i such
that i ∈ Seg len f holds S[i, A(i)] from [3, Sch. 5]. Define T [natural
number, object] ≡ $2 = π2(f($1)). For every natural number i such that
i ∈ Seg len f there exists an element B1 of S2 such that T [i, B1] by [12,
(4)], [1, (9)], [5, (7)]. Consider B being a finite sequence of elements of
S2 such that domB = Seg len f and for every natural number i such that
i ∈ Seg len f holds T [i, B(i)] from [3, Sch. 5]. For every natural number
n such that n ∈ dom f holds π1(f(n)) = A(n) and π2(f(n)) = B(n).
Consider A2 being an element of S1, B2 being an element of S2 such that
f(n) = A2 ×B2. �

(71) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on
S2, an element E of σ(MeasRect(S1, S2)), an element x of X1, an element
y of X2, an element U of S1, and an element V of S2. Then

(i) M1(MeasurableYsection(E, y) ∩ U) =∫
curry′(χE∩(U×X2),X1×X2 , y) dM1, and

(ii) M2(MeasurableXsection(E, x) ∩ V ) =∫
curry(χE∩(X1×V ),X1×X2 , x) dM2.

The theorem is a consequence of (34), (27), and (22).

(72) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2
on S2, an element E of σ(MeasRect(S1, S2)), an element x of X1, and
an element y of X2. Then

(i) M1(MeasurableYsection(E, y)) =
∫

curry′(χE,X1×X2 , y) dM1, and

(ii) M2(MeasurableXsection(E, x)) =
∫

curry(χE,X1×X2 , x) dM2.

The theorem is a consequence of (71).

(73) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M2 on S2, a disjoint valued finite
sequence f of elements of MeasRect(S1, S2), an element x of X1, a natural
number n, an element E2 of σ(MeasRect(S1, S2)), an element A2 of S1, and
an element B2 of S2. Suppose n ∈ dom f and f(n) = E2 and E2 = A2 ×
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B2. Then
∫

curry(χf(n),X1×X2 , x) dM2 = M2(MeasurableXsection(E2, x)) ·
χA2,X1(x).

(74) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-
field S2 of subsets of X2, and an element E of σ(MeasRect(S1, S2)). Sup-
pose E ∈ the field generated by MeasRect(S1, S2) and E 6= ∅. Then there
exists a disjoint valued finite sequence f of elements of MeasRect(S1, S2)
and there exists a finite sequence A of elements of S1 and there exists
a finite sequence B of elements of S2.
There exists a summable finite sequence X3 of elements of RX1×X2 such
that E =

⋃
f and len f ∈ dom f and len f = lenA and len f = lenB

and len f = lenX3 and for every natural number n such that n ∈ dom f

holds f(n) = A(n) × B(n) and for every natural number n such that
n ∈ domX3 holds X3(n) = χ

f(n),X1×X2 and (
∑κ
α=0X3(α))κ∈N(lenX3) =

χE,X1×X2 and for every natural number n and for every sets x, y such that
n ∈ domX3 and x ∈ X1 and y ∈ X2 holds X3(n)(x, y) = χ

A(n),X1(x) ·
χ
B(n),X2(y).

For every element x of X1, curry(χE,X1×X2 , x) =
curry(((

∑κ
α=0X3(α))κ∈N)lenX3 , x) and for every element y of X2,

curry′(χE,X1×X2 , y) = curry′(((
∑κ
α=0X3(α))κ∈N)lenX3 , y).

Proof: Consider f being a disjoint valued finite sequence of elements of
MeasRect(S1, S2), A being a finite sequence of elements of S1, B being
a finite sequence of elements of S2 such that len f = lenA and len f =
lenB and E =

⋃
f and for every natural number n such that n ∈

dom f holds π1(f(n)) = A(n) and π2(f(n)) = B(n) and for every na-
tural number n and for every sets x, y such that n ∈ dom f and x ∈ X1
and y ∈ X2 holds χf(n),X1×X2(x, y) = χ

A(n),X1(x) · χB(n),X2(y). Define
F(set) = χ

f($1),X1×X2 . Consider X3 being a finite sequence such that
lenX3 = len f and for every natural number n such that n ∈ domX3
holds X3(n) = F(n) from [3, Sch. 2]. Define P[natural number] ≡ if
$1 ∈ dom f , then (

∑κ
α=0X3(α))κ∈N($1) = χ⋃

(f�$1),X1×X2 . For every na-
tural number k such that P[k] holds P[k + 1] by [9, (20)], [3, (39)], [13,
(25)], [2, (14)]. For every natural number n, P[n] from [2, Sch. 2]. For
every natural number n such that n ∈ dom f holds f(n) = A(n) ×
B(n) by [12, (4)], [13, (90)], [1, (9)]. For every natural number n and
for every sets x, y such that n ∈ domX3 and x ∈ X1 and y ∈ X2
holds X3(n)(x, y) = χ

A(n),X1(x) · χB(n),X2(y). For every element x of X1,
curry(χE,X1×X2 , x) = curry(((

∑κ
α=0X3(α))κ∈N)lenX3 , x). �

(75) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, and a finite sequence F of elements of
MeasRect(S1, S2). Then

⋃
F ∈ σ(MeasRect(S1, S2)).
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Proof: Define P[natural number] ≡ if $1 ¬ lenF , then
⋃

rng(F �$1) ∈
σ(MeasRect(S1, S2)). For every natural number k such that P[k] holds
P[k+1] by [2, (11)], [19, (25)], [8, (11)], [3, (59)]. For every natural number
k, P[k] from [2, Sch. 2]. �

(76) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2
on S2, and an element E of σ(MeasRect(S1, S2)). Suppose E ∈ the field
generated by MeasRect(S1, S2) and E 6= ∅.
Then there exists a disjoint valued finite sequence F of elements of MeasRect
(S1, S2) and there exists a finite sequence A of elements of S1 and there
exists a finite sequence B of elements of S2 and there exists a summable
finite sequence C of elements of RX1×X2 and there exists a summable
finite sequence I of elements of RX1 and there exists a summable finite
sequence J of elements of RX2 such that E =

⋃
F and lenF ∈ domF and

lenF = lenA and lenF = lenB and lenF = lenC and lenF = len I and
lenF = len J and for every natural number n such that n ∈ domC holds
C(n) = χ

F (n),X1×X2 and ((
∑κ
α=0C(α))κ∈N)lenC = χE,X1×X2 .

For every element x of X1 and for every natural number n such that n ∈
dom I holds I(n)(x) =

∫
curry(Cn, x) dM2 and for every natural number

n and for every element P of S1 such that n ∈ dom I holds In is measurable
on P and for every element x ofX1,

∫
curry(((

∑κ
α=0C(α))κ∈N)lenC , x) dM2 =

((
∑κ
α=0 I(α))κ∈N)len I(x) and for every element y of X2 and for every na-

tural number n such that n ∈ dom J holds J(n)(y) =
∫

curry′(Cn, y) dM1
and for every natural number n and for every element P of S2 such that
n ∈ dom J holds Jn is measurable on P and for every element y of X2,∫

curry′(((
∑κ
α=0C(α))κ∈N)lenC , y) dM1 = ((

∑κ
α=0 J(α))κ∈N)len J(y).

Proof: Consider F being a disjoint valued finite sequence of elements of
MeasRect(S1, S2), A being a finite sequence of elements of S1, B being
a finite sequence of elements of S2, C being a summable finite sequen-
ce of elements of RX1×X2 such that E =

⋃
F and lenF ∈ domF and

lenF = lenA and lenF = lenB and lenF = lenC and for every natural
number n such that n ∈ domF holds F (n) = A(n)× B(n) and for every
natural number n such that n ∈ domC holds C(n) = χ

F (n),X1×X2 and
(
∑κ
α=0C(α))κ∈N(lenC) = χE,X1×X2 and for every natural number n and

for every sets x, y such that n ∈ domC and x ∈ X1 and y ∈ X2 holds
C(n)(x, y) = χ

A(n),X1(x) · χB(n),X2(y) and for every element x of X1,
curry(χE,X1×X2 , x) = curry(((

∑κ
α=0C(α))κ∈N)lenC , x) and for every ele-

ment y of X2, curry′(χE,X1×X2 , y) = curry′(((
∑κ
α=0C(α))κ∈N)lenC , y). De-

fine S[natural number, object] ≡ there exists a function f from X1 into R
such that f = $2 and for every element x ofX1, f(x) =

∫
curry(C$1 , x) dM2.
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For every natural number n such that n ∈ Seg lenF there exists an ob-
ject z such that S[n, z]. Consider I being a finite sequence such that
dom I = Seg lenF and for every natural number n such that n ∈ Seg lenF
holds S[n, I(n)] from [3, Sch. 1]. For every element x ofX1 and for every na-
tural number n such that n ∈ dom I holds I(n)(x) =

∫
curry(Cn, x) dM2

by [12, (4)]. Define T [natural number, object] ≡ there exists a function
f from X2 into R such that f = $2 and for every element x of X2,
f(x) =

∫
curry′(C$1 , x) dM1. For every natural number n such that n ∈

Seg lenF there exists an object z such that T [n, z]. Consider J being a fi-
nite sequence such that dom J = Seg lenF and for every natural number
n such that n ∈ Seg lenF holds T [n, J(n)] from [3, Sch. 1]. For every
element x of X2 and for every natural number n such that n ∈ dom J

holds J(n)(x) =
∫

curry′(Cn, x) dM1 by [12, (4)]. For every natural num-
ber n and for every element P of S1 such that n ∈ dom I holds In is
measurable on P by [12, (4)], (69), (22). For every element x of X1,∫

curry(((
∑κ
α=0C(α))κ∈N)lenC , x) dM2 = ((

∑κ
α=0 I(α))κ∈N)len I(x) by [19,

(24), (25)], [2, (13)], [9, (20)]. For every natural number n and for every ele-
ment P of S2 such that n ∈ dom J holds Jn is measurable on P by [12, (4)],
(69), (22). For every element x of X2,

∫
curry′(((

∑κ
α=0C(α))κ∈N)lenC , x)

dM1 = ((
∑κ
α=0 J(α))κ∈N)len J(x) by [19, (24), (25)], [2, (13)], [9, (20)]. �

Let X1, X2 be non empty sets, S1 be a σ-field of subsets of X1, S2 be a σ-
field of subsets of X2, F be a set sequence of σ(MeasRect(S1, S2)), and n be
a natural number. One can verify that the functor F (n) yields an element of
σ(MeasRect(S1, S2)). Let F be a function from N × σ(MeasRect(S1, S2)) into
σ(MeasRect(S1, S2)), n be an element of N, and E be an element of

σ(MeasRect(S1, S2)). Let us observe that the functor F (n,E) yields an ele-
ment of σ(MeasRect(S1, S2)). Now we state the propositions:

(77) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2
on S2, an element E of σ(MeasRect(S1, S2)), and an element V of S2.
Suppose E ∈ the field generated by MeasRect(S1, S2). Then there exists
a function F from X1 into R such that

(i) for every element x of X1, F (x) = M2(MeasurableXsection(E, x) ∩
V ), and

(ii) for every element P of S1, F is measurable on P .

The theorem is a consequence of (22), (27), (24), (76), (71), and (68).

(78) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2
on S2, an element E of σ(MeasRect(S1, S2)), and an element V of S1.
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Suppose E ∈ the field generated by MeasRect(S1, S2). Then there exists
a function F from X2 into R such that

(i) for every element x of X2, F (x) = M1(MeasurableYsection(E, x) ∩
V ), and

(ii) for every element P of S2, F is measurable on P .

The theorem is a consequence of (22), (27), (24), (76), (71), and (68).

(79) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M2 on S2, and an element E of
σ(MeasRect(S1, S2)). Suppose E ∈ the field generated by MeasRect(S1, S2).
Let us consider an element B of S2. Then E ∈ {E, where E is an element
of σ(MeasRect(S1, S2)) : there exists a function F fromX1 into R such that
for every element x ofX1, F (x) = M2(MeasurableXsection(E, x)∩B) and
for every element V of S1, F is measurable on V }. The theorem is a con-

sequence of (77).

(80) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, and an element E of
σ(MeasRect(S1, S2)). Suppose E ∈ the field generated by MeasRect(S1, S2).
Let us consider an element B of S1. Then E ∈ {E, where E is an element
of σ(MeasRect(S1, S2)) : there exists a function F fromX2 into R such that
for every element x ofX2, F (x) = M1(MeasurableYsection(E, x)∩B) and
for every element V of S2, F is measurable on V }. The theorem is a con-

sequence of (78).

(81) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M2 on S2, and an element B
of S2. Then the field generated by MeasRect(S1, S2) ⊆ {E, where E is
an element of σ(MeasRect(S1, S2)) : there exists a function F from X1
into R such that for every element x of X1, F (x) =

M2(MeasurableXsection(E, x) ∩ B) and for every element V of S1, F is
measurable on V }. The theorem is a consequence of (7) and (79).

(82) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, and an element B
of S1. Then the field generated by MeasRect(S1, S2) ⊆ {E, where E is
an element of σ(MeasRect(S1, S2)) : there exists a function F from X2
into R such that for every element y of X2, F (y) =

M1(MeasurableYsection(E, y) ∩ B) and for every element V of S2, F is
measurable on V }. The theorem is a consequence of (7) and (80).
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7. σ-finite Measure

Let X be a non empty set, S be a σ-field of subsets of X, and M be a σ-
measure on S. We say that M is σ-finite if and only if

(Def. 12) there exists a set sequence E of S such that for every natural number n,
M(E(n)) < +∞ and

⋃
E = X.

Now we state the propositions:

(83) Let us consider a non empty set X, a σ-field S of subsets of X, and
a σ-measure M on S. Then M is σ-finite if and only if there exists a set
sequence F of S such that F is non descending and for every natural
number n, M(F (n)) < +∞ and limF = X.

(84) Let us consider a set X, a semialgebra S of sets of X, a pre-measure P of
S, and an induced measure M of S and P . Then M = (the Caratheodory
measure determined by M)�(the field generated by S).

8. Fubini’s Theorem on Measure

Now we state the propositions:

(85) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M2 on S2, and an element
B of S2. Suppose M2(B) < +∞. Then {E, where E is an element of
σ(MeasRect(S1, S2)) : there exists a function F from X1 into R such that
for every element x of X1, F (x) = M2(MeasurableXsection(E, x)∩B) and
for every element V of S1, F is measurable on V } is a monotone class of
X1 ×X2.
Proof: Set Z = {E, where E is an element of σ(MeasRect(S1, S2)) :
there exists a function F from X1 into R such that for every element x

ofX1, F (x) = M2(MeasurableXsection(E, x)∩B) and for every element V
of S1, F is measurable on V }. For every sequence A1 of subsets of X1 ×
X2 such that A1 is monotone and rngA1 ⊆ Z holds limA1 ∈ Z by [10,
(3)], [5, (35)], [21, (63)], [12, (45)]. �

(86) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, and an element
B of S1. Suppose M1(B) < +∞. Then {E, where E is an element of
σ(MeasRect(S1, S2)) : there exists a function F from X2 into R such that
for every element y of X2, F (y) = M1(MeasurableYsection(E, y)∩B) and
for every element V of S2, F is measurable on V } is a monotone class of
X1 ×X2.
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Proof: Set Z = {E, where E is an element of σ(MeasRect(S1, S2)) :
there exists a function F from X2 into R such that for every element y

ofX2, F (y) = M1(MeasurableYsection(E, y)∩B) and for every element V
of S2, F is measurable on V }. For every sequence A1 of subsets of X1 ×
X2 such that A1 is monotone and rngA1 ⊆ Z holds limA1 ∈ Z by [10,
(3)], [5, (35)], [21, (63)], [12, (45)]. �

(87) Let us consider a non empty set X, a field F of subsets of X, and
a sequence L of subsets of X. Suppose rngL is a monotone class of X and
F ⊆ rngL. Then

(i) σ(F ) = monotone-class(F ), and

(ii) σ(F ) ⊆ rngL.

(88) Let us consider a non empty set X, a field F of subsets of X, and a family
K of subsets of X. Suppose K is a monotone class of X and F ⊆ K. Then

(i) σ(F ) = monotone-class(F ), and

(ii) σ(F ) ⊆ K.

(89) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M2 on S2, and an element B of
S2. Suppose M2(B) < +∞. Then σ(MeasRect(S1, S2)) ⊆ {E, where E is
an element of σ(MeasRect(S1, S2)) : there exists a function F from X1
into R such that for every element x of X1, F (x) =
M2(MeasurableXsection(E, x) ∩ B) and for every element V of S1, F is
measurable on V }. The theorem is a consequence of (85), (81), (7), and
(88).

(90) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, and an element B of
S1. Suppose M1(B) < +∞. Then σ(MeasRect(S1, S2)) ⊆ {E, where E is
an element of σ(MeasRect(S1, S2)) : there exists a function F from X2
into R such that for every element y of X2, F (y) =
M1(MeasurableYsection(E, y) ∩ B) and for every element V of S2, F is
measurable on V }. The theorem is a consequence of (86), (82), (7), and
(88).

(91) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M2 on S2, and an element E of
σ(MeasRect(S1, S2)). Suppose M2 is σ-finite. Then there exists a function
F from X1 into R such that

(i) for every element x of X1, F (x) = M2(MeasurableXsection(E, x)),
and

(ii) for every element V of S1, F is measurable on V .
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Proof: Consider B being a set sequence of S2 such that B is non de-
scending and for every natural number n, M2(B(n)) < +∞ and limB =
X2. Define P[natural number, object] ≡ there exists a function f1 from
X1 into R such that $2 = f1 and for every element x of X1, f1(x) =
M2(MeasurableXsection(E, x) ∩B($1)) and for every element V of S1, f1
is measurable on V . For every element n of N, there exists an element f of
X1→̇R such that P[n, f ] by (89), [12, (45)]. Consider f being a function
from N into X1→̇R such that for every element n of N, P[n, f(n)] from
[11, Sch. 3]. For every natural number n, f(n) is a function from X1 into R
and for every element x of X1, f(n)(x) = M2(MeasurableXsection(E, x)∩
B(n)) and for every element V of S1, f(n) is measurable on V . For every
natural numbers n, m, dom(f(n)) = dom(f(m)). For every element x of
X1 such that x ∈ X1 holds f#x is convergent by [5, (11), (31)], [20, (7),
(37)]. Reconsider F = lim f as a function from X1 into R. For every ele-
ment x of X1, F (x) = M2(MeasurableXsection(E, x)) by [21, (80)], [22,
(92)], (49), [5, (11)]. �

(92) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, and an element E of
σ(MeasRect(S1, S2)). Suppose M1 is σ-finite. Then there exists a function
F from X2 into R such that

(i) for every element y of X2, F (y) = M1(MeasurableYsection(E, y)),
and

(ii) for every element V of S2, F is measurable on V .

Proof: Consider B being a set sequence of S1 such that B is non de-
scending and for every natural number n, M1(B(n)) < +∞ and limB =
X1. Define P[natural number, object] ≡ there exists a function f1 from
X2 into R such that $2 = f1 and for every element y of X2, f1(y) =
M1(MeasurableYsection(E, y) ∩B($1)) and for every element V of S2, f1
is measurable on V . For every element n of N, there exists an element f of
X2→̇R such that P[n, f ] by (90), [12, (45)]. Consider f being a function
from N into X2→̇R such that for every element n of N, P[n, f(n)] from [11,
Sch. 3]. For every natural number n, f(n) is a function from X2 into R and
for every element y ofX2, f(n)(y) = M1(MeasurableYsection(E, y)∩B(n))
and for every element V of S2, f(n) is measurable on V . For every natural
numbers n, m, dom(f(n)) = dom(f(m)). For every element y of X2 such
that y ∈ X2 holds f#y is convergent by [5, (11), (31)], [20, (7), (37)].
Reconsider F = lim f as a function from X2 into R. For every element
y of X2, F (y) = M1(MeasurableYsection(E, y)) by [21, (80)], [22, (92)],
(49), [5, (11)]. �
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Let X1, X2 be non empty sets, S1 be a σ-field of subsets of X1, S2 be
a σ-field of subsets of X2, M2 be a σ-measure on S2, and E be an element of
σ(MeasRect(S1, S2)). Assume M2 is σ-finite. The functor Yvol(E,M2) yielding
a non-negative function from X1 into R is defined by

(Def. 13) for every element x of X1, it(x) = M2(MeasurableXsection(E, x)) and
for every element V of S1, it is measurable on V .

LetM1 be a σ-measure on S1. AssumeM1 is σ-finite. The functor Xvol(E,M1)
yielding a non-negative function from X2 into R is defined by

(Def. 14) for every element y of X2, it(y) = M1(MeasurableYsection(E, y)) and
for every element V of S2, it is measurable on V .

Now we state the propositions:

(93) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M2 on S2, and elements E1, E2
of σ(MeasRect(S1, S2)). Suppose M2 is σ-finite and E1 misses E2. Then
Yvol(E1 ∪ E2,M2) = Yvol(E1,M2) + Yvol(E2,M2).
Proof: For every element x of X1 such that x ∈ dom Yvol(E1 ∪ E2,M2)
holds (Yvol(E1∪E2,M2))(x) = (Yvol(E1,M2)+Yvol(E2,M2))(x) by (26),
(35), [5, (30)]. �

(94) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, and elements E1, E2
of σ(MeasRect(S1, S2)). Suppose M1 is σ-finite and E1 misses E2. Then
Xvol(E1 ∪ E2,M1) = Xvol(E1,M1) + Xvol(E2,M1).
Proof: For every element x of X2 such that x ∈ dom Xvol(E1 ∪ E2,M1)
holds (Xvol(E1∪E2,M1))(x) = (Xvol(E1,M1)+Xvol(E2,M1))(x) by (26),
(35), [5, (30)]. �

Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-
field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on S2, and
elements E1, E2 of σ(MeasRect(S1, S2)). Now we state the propositions:

(95) SupposeM2 is σ-finite and E1 misses E2. Then
∫

Yvol(E1∪E2,M2) dM1 =∫
Yvol(E1,M2) dM1+

∫
Yvol(E2,M2) dM1. The theorem is a consequence

of (93).

(96) SupposeM1 is σ-finite and E1 misses E2. Then
∫

Xvol(E1∪E2,M1) dM2 =∫
Xvol(E1,M1) dM2+

∫
Xvol(E2,M1) dM2. The theorem is a consequence

of (94).

Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-field
S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on S2, an element
E of σ(MeasRect(S1, S2)), an element A of S1, and an element B of S2. Now
we state the propositions:
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(97) Suppose E = A×B and M2 is σ-finite. Then

(i) if M2(B) = +∞, then Yvol(E,M2) = χA,X1 , and

(ii) if M2(B) 6= +∞, then there exists a real number r such that r =
M2(B) and Yvol(E,M2) = r · χA,X1 .

The theorem is a consequence of (53).

(98) Suppose E = A×B and M1 is σ-finite. Then

(i) if M1(A) = +∞, then Xvol(E,M1) = χB,X2 , and

(ii) if M1(A) 6= +∞, then there exists a real number r such that r =
M1(A) and Xvol(E,M1) = r · χB,X2 .

The theorem is a consequence of (55).

(99) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, an element A of S, and a real number r. If r ­ 0, then∫
r · χA,X dM = r ·M(A).

Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-
field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on S2, a finite
sequence F of elements of σ(MeasRect(S1, S2)), and a natural number n. Now
we state the propositions:

(100) Suppose M2 is σ-finite and F is a finite sequence of elements of MeasRect
(S1, S2). Then (Prodσ -Meas(M1,M2))(F (n)) =

∫
Yvol(F (n),M2) dM1.

The theorem is a consequence of (16), (97), and (99).

(101) Suppose M1 is σ-finite and F is a finite sequence of elements of MeasRect
(S1, S2). Then (Prodσ -Meas(M1,M2))(F (n)) =

∫
Xvol(F (n),M1) dM2.

The theorem is a consequence of (16), (98), and (99).

Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-field
S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on S2, a disjoint
valued finite sequence F of elements of σ(MeasRect(S1, S2)), and a natural
number n. Now we state the propositions:

(102) Suppose M2 is σ-finite and F is a finite sequence of elements of MeasRect
(S1, S2). Then (Prodσ -Meas(M1,M2))(

⋃
F ) =

∫
Yvol(

⋃
F,M2) dM1.

Proof: Define P[natural number] ≡ (Prodσ -Meas(M1,M2))(
⋃

(F �$1)) =∫
Yvol(

⋃
(F �$1),M2) dM1. P[0]. For every natural number k such that

P[k] holds P[k + 1] by [2, (13)], [3, (59)], [19, (55)], [3, (82)]. For every
natural number k, P[k] from [2, Sch. 2]. �

(103) Suppose M1 is σ-finite and F is a finite sequence of elements of MeasRect
(S1, S2). Then (Prodσ -Meas(M1,M2))(

⋃
F ) =

∫
Xvol(

⋃
F,M1) dM2.

Proof: Define P[natural number] ≡ (Prodσ -Meas(M1,M2))(
⋃

(F �$1)) =∫
Xvol(

⋃
(F �$1),M1) dM2. P[0]. For every natural number k such that
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P[k] holds P[k + 1] by [2, (13)], [3, (59)], [19, (55)], [3, (82)]. For every
natural number k, P[k] from [2, Sch. 2]. �

Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-field
S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on S2, an element
E of σ(MeasRect(S1, S2)), an element V of σ(MeasRect(S1, S2)), an element A
of S1, and an element B of S2. Now we state the propositions:

(104) Suppose E ∈ the field generated by MeasRect(S1, S2) and M2 is σ-
finite. Then suppose V = A×B. Then E ∈ {E, where E is an element of
σ(MeasRect(S1, S2)) :

∫
Yvol(E ∩ V,M2) dM1 = (Prodσ -Meas(M1,M2))

(E ∩ V )}. The theorem is a consequence of (102).

(105) Suppose E ∈ the field generated by MeasRect(S1, S2) and M1 is σ-
finite. Then suppose V = A×B. Then E ∈ {E, where E is an element of
σ(MeasRect(S1, S2)) :

∫
Xvol(E ∩ V,M1) dM2 = (Prodσ -Meas(M1,M2))

(E ∩ V )}. The theorem is a consequence of (103).

Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-field
S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on S2, an element
V of σ(MeasRect(S1, S2)), an element A of S1, and an element B of S2. Now
we state the propositions:

(106) Suppose M2 is σ-finite and V = A × B. Then the field generated by
MeasRect(S1, S2) ⊆ {E, where E is an element of σ(MeasRect(S1, S2)) :∫

Yvol(E ∩ V,M2) dM1 = (Prodσ -Meas(M1,M2))(E ∩ V )}. The theorem
is a consequence of (7) and (104).

(107) Suppose M1 is σ-finite and V = A × B. Then the field generated by
MeasRect(S1, S2) ⊆ {E, where E is an element of σ(MeasRect(S1, S2)) :∫

Xvol(E ∩ V,M1) dM2 = (Prodσ -Meas(M1,M2))(E ∩ V )}. The theorem
is a consequence of (7) and (105).

(108) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M2 on S2, elements E, V
of σ(MeasRect(S1, S2)), a set sequence P of σ(MeasRect(S1, S2)), and
an element x of X1. Suppose P is non descending and limP = E. Then
there exists a sequence K of subsets of S2 such that

(i) K is non descending, and

(ii) for every natural number n, K(n) = MeasurableXsection(P (n), x) ∩
MeasurableXsection(V, x), and

(iii) limK = MeasurableXsection(E, x) ∩MeasurableXsection(V, x).

The theorem is a consequence of (43), (49), and (30).

(109) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, elements E, V
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of σ(MeasRect(S1, S2)), a set sequence P of σ(MeasRect(S1, S2)), and
an element y of X2. Suppose P is non descending and limP = E. Then
there exists a sequence K of subsets of S1 such that

(i) K is non descending, and

(ii) for every natural number n, K(n) = MeasurableYsection(P (n), y) ∩
MeasurableYsection(V, y), and

(iii) limK = MeasurableYsection(E, y) ∩MeasurableYsection(V, y).

The theorem is a consequence of (44), (49), and (32).

(110) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M2 on S2, elements E, V
of σ(MeasRect(S1, S2)), a set sequence P of σ(MeasRect(S1, S2)), and
an element x of X1. Suppose P is non ascending and limP = E. Then
there exists a sequence K of subsets of S2 such that

(i) K is non ascending, and

(ii) for every natural number n, K(n) = MeasurableXsection(P (n), x) ∩
MeasurableXsection(V, x), and

(iii) limK = MeasurableXsection(E, x) ∩MeasurableXsection(V, x).

The theorem is a consequence of (45), (49), and (31).

(111) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, elements E, V
of σ(MeasRect(S1, S2)), a set sequence P of σ(MeasRect(S1, S2)), and
an element y of X2. Suppose P is non ascending and limP = E. Then
there exists a sequence K of subsets of S1 such that

(i) K is non ascending, and

(ii) for every natural number n, K(n) = MeasurableYsection(P (n), y) ∩
MeasurableYsection(V, y), and

(iii) limK = MeasurableYsection(E, y) ∩MeasurableYsection(V, y).

The theorem is a consequence of (46), (49), and (33).

Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-field
S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on S2, an element
V of σ(MeasRect(S1, S2)), an element A of S1, and an element B of S2. Now
we state the propositions:

(112) SupposeM2 is σ-finite and V = A×B and (Prodσ -Meas(M1,M2))(V ) <
+∞ andM2(B) < +∞. Then {E, where E is an element of σ(MeasRect(S1,
S2)) :

∫
Yvol(E ∩V,M2) dM1 = (Prodσ -Meas(M1,M2))(E ∩V )} is a mo-

notone class of X1 ×X2.
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Proof: Set Z = {E, where E is an element of σ(MeasRect(S1, S2)) :∫
Yvol(E ∩ V,M2) dM1 = (Prodσ -Meas(M1,M2))(E ∩ V )}. For every se-

quence A1 of subsets of X1×X2 such that A1 is monotone and rngA1 ⊆ Z
holds limA1 ∈ Z by [10, (3)], [5, (35)], [21, (63)], [12, (45)]. �

(113) SupposeM1 is σ-finite and V = A×B and (Prodσ -Meas(M1,M2))(V ) <
+∞ andM1(A) < +∞. Then {E, where E is an element of σ(MeasRect(S1,
S2)) :

∫
Xvol(E ∩V,M1) dM2 = (Prodσ -Meas(M1,M2))(E ∩V )} is a mo-

notone class of X1 ×X2.
Proof: Set Z = {E, where E is an element of σ(MeasRect(S1, S2)) :∫

Xvol(E ∩ V,M1) dM2 = (Prodσ -Meas(M1,M2))(E ∩ V )}. For every se-
quence A1 of subsets of X1×X2 such that A1 is monotone and rngA1 ⊆ Z
holds limA1 ∈ Z by [10, (3)], [5, (35)], [21, (63)], [12, (45)]. �

(114) SupposeM2 is σ-finite and V = A×B and (Prodσ -Meas(M1,M2))(V ) <
+∞ and M2(B) < +∞. Then σ(MeasRect(S1, S2)) ⊆ {E, where E is
an element of σ(MeasRect(S1, S2)) :

∫
Yvol(E ∩ V,M2) dM1 =

(Prodσ -Meas(M1,M2))(E ∩ V )}. The theorem is a consequence of (112),
(106), (7), and (88).

(115) SupposeM1 is σ-finite and V = A×B and (Prodσ -Meas(M1,M2))(V ) <
+∞ and M1(A) < +∞. Then σ(MeasRect(S1, S2)) ⊆ {E, where E is
an element of σ(MeasRect(S1, S2)) :

∫
Xvol(E ∩ V,M1) dM2 =

(Prodσ -Meas(M1,M2))(E ∩ V )}. The theorem is a consequence of (113),
(107), (7), and (88).

(116) Let us consider sets X, Y, a sequence A of subsets of X, a sequence
B of subsets of Y, and a sequence C of subsets of X × Y. Suppose A is
non descending and B is non descending and for every natural number n,
C(n) = A(n)×B(n). Then

(i) C is non descending and convergent, and

(ii)
⋃
C =

⋃
A×
⋃
B.

Proof: For every natural numbers n, m such that n ¬ m holds C(n) ⊆
C(m) by [13, (96)]. �

(117) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on
S2, and an element E of σ(MeasRect(S1, S2)). Suppose M1 is σ-finite and
M2 is σ-finite. Then

∫
Yvol(E,M2) dM1 = (Prodσ -Meas(M1,M2))(E).

Proof: Consider A being a set sequence of S1 such that A is non de-
scending and for every natural number n, M1(A(n)) < +∞ and limA =
X1. Consider B being a set sequence of S2 such that B is non descen-
ding and for every natural number n, M2(B(n)) < +∞ and limB =
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X2. Define C(element of N) = A($1) × B($1). Consider C being a func-
tion from N into 2X1×X2 such that for every element n of N, C(n) =
C(n) from [11, Sch. 4]. For every natural number n, C(n) = A(n) ×
B(n). For every natural number n, C(n) ∈ σ(MeasRect(S1, S2)). For
every natural numbers n, m such that n ¬ m holds C(n) ⊆ C(m) by
[13, (96)]. For every natural number n, (Prodσ -Meas(M1,M2))(C(n)) <
+∞ by (16), [6, (51)]. Set C1 = E ∩ C. For every object n such that
n ∈ N holds C1(n) ∈ σ(MeasRect(S1, S2)). For every natural number n,∫

Yvol(E ∩ C(n),M2) dM1 = (Prodσ -Meas(M1,M2))(E ∩ C(n)). Defi-
ne P[element of N, object] ≡ $2 = Yvol(E ∩ C($1),M2). For every ele-
ment n of N, there exists an element f of X1→̇R such that P[n, f ] by
[12, (45)]. Consider F being a function from N into X1→̇R such that
for every element n of N, P[n, F (n)] from [11, Sch. 3]. For every na-
tural number n, F (n) = Yvol(E ∩ C(n),M2). Reconsider X3 = X1 as
an element of S1. For every natural number n and for every element x
of X1, (F#x)(n) = (Yvol(E ∩ C(n),M2))(x). For every natural numbers
n, m, dom(F (n)) = dom(F (m)). For every natural number n, F (n) is
measurable on X3. For every natural numbers n, m such that n ¬ m

for every element x of X1 such that x ∈ X3 holds F (n)(x) ¬ F (m)(x)
by (20), [5, (31)]. For every element x of X1 such that x ∈ X3 holds
F#x is convergent by [20, (7), (37)]. Consider I being a sequence of
extended reals such that for every natural number n, I(n) =

∫
F (n) dM1

and I is convergent and
∫

limF dM1 = lim I. For every element x of
X1 such that x ∈ dom limF holds (limF )(x) = (Yvol(E,M2))(x) by
(116), (108), (27), [10, (13)]. Set J = E ∩ C. For every object n such
that n ∈ N holds J(n) ∈ σ(MeasRect(S1, S2)). Prodσ -Meas(M1,M2) is
a σ-measure on σ(MeasRect(S1, S2)). For every element n of N, I(n) =
(Prodσ -Meas(M1,M2)∗J)(n) by [10, (13)]. �

(118) Fubini’s theorem:
Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-
field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on S2,
and an element E of σ(MeasRect(S1, S2)). Suppose M1 is σ-finite and M2
is σ-finite. Then

∫
Xvol(E,M1) dM2 = (Prodσ -Meas(M1,M2))(E).

Proof: Consider A being a set sequence of S1 such that A is non de-
scending and for every natural number n, M1(A(n)) < +∞ and limA =
X1. Consider B being a set sequence of S2 such that B is non descen-
ding and for every natural number n, M2(B(n)) < +∞ and limB =
X2. Define C(element of N) = A($1) × B($1). Consider C being a func-
tion from N into 2X1×X2 such that for every element n of N, C(n) =
C(n) from [11, Sch. 4]. For every natural number n, C(n) = A(n) ×
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B(n). For every natural number n, C(n) ∈ σ(MeasRect(S1, S2)). For
every natural numbers n, m such that n ¬ m holds C(n) ⊆ C(m) by
[13, (96)]. For every natural number n, (Prodσ -Meas(M1,M2))(C(n)) <
+∞ by (16), [6, (51)]. Set C1 = E ∩ C. For every object n such that
n ∈ N holds C1(n) ∈ σ(MeasRect(S1, S2)). For every natural number n,∫

Xvol(E ∩ C(n),M1) dM2 = (Prodσ -Meas(M1,M2))(E ∩ C(n)). Defi-
ne P[element of N, object] ≡ $2 = Xvol(E ∩ C($1),M1). For every ele-
ment n of N, there exists an element f of X2→̇R such that P[n, f ] by
[12, (45)]. Consider F being a function from N into X2→̇R such that
for every element n of N, P[n, F (n)] from [11, Sch. 3]. For every na-
tural number n, F (n) = Xvol(E ∩ C(n),M1). Reconsider X3 = X2 as
an element of S2. For every natural number n and for every element x
of X2, (F#x)(n) = (Xvol(E ∩ C(n),M1))(x). For every natural numbers
n, m, dom(F (n)) = dom(F (m)). For every natural number n, F (n) is
measurable on X3. For every natural numbers n, m such that n ¬ m

for every element x of X2 such that x ∈ X3 holds F (n)(x) ¬ F (m)(x)
by (21), [5, (31)]. For every element x of X2 such that x ∈ X3 holds
F#x is convergent by [20, (7), (37)]. Consider I being a sequence of
extended reals such that for every natural number n, I(n) =

∫
F (n) dM2

and I is convergent and
∫

limF dM2 = lim I. For every element x of
X2 such that x ∈ dom limF holds (limF )(x) = (Xvol(E,M1))(x) by
(116), (109), (27), [10, (13)]. Set J = E ∩ C. For every object n such
that n ∈ N holds J(n) ∈ σ(MeasRect(S1, S2)). Prodσ -Meas(M1,M2) is
a σ-measure on σ(MeasRect(S1, S2)). For every element n of N, I(n) =
(Prodσ -Meas(M1,M2)∗J)(n) by [10, (13)]. �
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