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Summary. The purpose of this article is to show Fubini’s theorem on
measure [16], [4], [7], [I5], [18]. Some theorems have the possibility of slight
generalization, but we have priority to avoid the complexity of the description.
First of all, for the product measure constructed in [14], we show some theorems.
Then we introduce the section which plays an important role in Fubini’s theorem,
and prove the relevant proposition. Finally we show Fubini’s theorem on measure.
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1. PRELIMINARIES

Now we state the propositions:

(1) Let us consider a disjoint valued finite sequence F', and natural numbers
n, m. If n <m, then |Jrng(F [n) misses F(m).

(2) Let us consider a finite sequence F', and natural numbers m, n. Suppose
m < n. Then len(F[m) < len(F'In).

(3) Let us consider a finite sequence F', and a natural number n. Then
Urng(FIn)UF(n+1) = Urng(F[(n+1)). The theorem is a consequence
of (2).

(4) Let us consider a disjoint valued finite sequence F', and a natural number
n. Then [J(F[n) misses F(n + 1).

(5) Let us consider a set P, and a finite sequence F. Suppose P is U-closed
and ) € P and for every natural number n such that n € dom F holds
F(n) € P. Then JF € P.
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2 NOBORU ENDOU

PROOF: Define P[natural number] = |Jrng(F'[$;) € P. For every natural
number k such that P[k] holds P[k + 1] by [2, (13)], [3, (59)], [19, (55)],
[3, (82)]. For every natural number k, P[k| from [2, Sch. 2]. O
Let A, X be sets. Observe that the functor X4 x yields a function from X
into R. Let X be a non empty set, S be a o-field of subsets of X, and F be
a finite sequence of elements of S. Let us observe that the functor |J F' yields
an element of S. Let F' be a sequence of S. Let us note that the functor |J F
yields an element of S. Let F be a finite sequence of elements of X R and x
be an element of X. The functor F'#x yielding a finite sequence of elements of
R is defined by

(Def. 1) dom it = dom F' and for every element n of N such that n € dom it holds
it(n) = F(n)(x).
Now we state the proposition:

(6) Let us consider a non empty set X, a non empty family S of subsets
of X, a finite sequence f of elements of S, and a finite sequence F of
elements of X ->R. Suppose dom f = dom F and f is disjoint valued and
for every natural number n such that n € dom F' holds F'(n) = X x-
Let us consider an element x of X. Then XU rx (@) =X (F#z).

2. PRODUCT MEASURE AND PRODUCT 0-MEASURE

Now we state the proposition:

(7) Let us consider non empty sets X;, Xo, a o-field S of subsets of X7,
and a o-field Sy of subsets of X2. Then o(DisUnion MeasRect(S7,52)) =
o(MeasRect(S1,52)).

Let X1, X2 be non empty sets, S1 be a o-field of subsets of X1, S3 be a o-field
of subsets of X9, M7 be a o-measure on S, and My be a o-measure on Sy. The
functor ProdMeas(M;, M>) yielding an induced measure of MeasRect(S1, S2)
and ProdpreMeas(M;, Ms) is defined by

(Def. 2) for every set E such that E € the field generated by MeasRect(S1, S2)
for every disjoint valued finite sequence F' of elements of MeasRect(S1, S2)
such that F = |J F holds it(E) = Y (ProdpreMeas(My, Ms) - F).
The functor Prod o -Meas(M;, M) yielding an induced o-measure of
MeasRect (57, S2) and ProdMeas(M7, Ms) is defined by the term

(Def. 3) o-Meas(the Caratheodory measure determined by
ProdMeas(Mj, M3))[o(MeasRect(S1, S2)).

Now we state the propositions:
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(8) Let us consider non empty sets X1, Xo, a o-field Sy of subsets of X1, a o-
field Sy of subsets of X5, a o-measure M7 on S1, and a o-measure My on
Sy. Then Prod o -Meas(Mj, Ms) is a o-measure on o(MeasRect(S1,52)).
The theorem is a consequence of (7).

(9) Let us consider non empty sets X1, Xo, a o-field Sy of subsets of X7,
a o-field Sy of subsets of X5, a set sequence Fj of Si, a set sequence
F5 of Sy, and a natural number n. Then Fj(n) x Fy(n) is an element of
o(MeasRect(S1, S2)). The theorem is a consequence of (7).

(10) Let us consider sets X7, Xs, a sequence F; of subsets of X7, a sequence
F5 of subsets of Xo, and a natural number n. Suppose F} is non descending
and F» is non descending. Then Fj(n) x Fa(n) C Fi(n+ 1) x Fy(n +1).

(11) Let us consider non empty sets X, Xo, a o-field S; of subsets of X7,
a o-field S5 of subsets of X5, a o-measure M; on S1, a o-measure Ms on S5,
an element A of 51, and an element B of S3. Then (ProdMeas(M;, Ms))(Ax
B) = Mi(A) - Ma(B).

(12) Let us consider non empty sets X1, Xo, a o-field Sy of subsets of X7,
a o-field Sy of subsets of X5, a o-measure M7 on Si, a o-measure Ms on
S9, a set sequence F; of S1, a set sequence F3 of Sa, and a natural number
n. Then (ProdMeas(Ml,Mg))(Fl(n) X FQ(TL)) = Ml(Fl(n)) . MQ(FQ(TL))
The theorem is a consequence of (11).

(13) Let us consider non empty sets X1, Xo, a o-field Sy of subsets of X7,
a o-field Sy of subsets of X5, a o-measure M; on Sp, a o-measure My on
S9, a finite sequence F} of elements of 57, a finite sequence F3 of elements
of S5, and a natural number n. Suppose n € dom F} and n € dom F5.
Then (ProdMeas(M;, M3))(Fi(n) x Fa(n)) = Mi(Fi(n)) - Ma(Fa(n)).

(14) Let us consider non empty sets X, Xo, a o-field S; of subsets of X, a o-
field Sy of subsets of X5, a o-measure M7 on Sp, a o-measure My on So,
and a subset E of X x X5. Then (the Caratheodory measure determined
by ProdMeas(Mi, Ms))(E) = inf Sve(ProdMeas(M;, Ms), E).

(15) Let us consider non empty sets X1, Xo, a o-field S; of subsets of Xj,
a o-field Sy of subsets of X5, a o-measure M7 on S, and a o-measure My
on Sy. Then o(MeasRect(S1,52)) C o-Field(the Caratheodory measure
determined by ProdMeas(M;, Ms)). The theorem is a consequence of (7).

(16) Let us consider non empty sets X7, Xo, a o-field Sy of subsets of X1, a o-
field S of subsets of Xs, a o-measure M; on Si, a o-measure M on So,
an element E of o(MeasRect(S1, S2)), an element A of S, and an element
B of Sy. Suppose E = Ax B. Then (Prod o -Meas(M1, Ms))(E) = M1(A)-
M>(B). The theorem is a consequence of (15) and (11).

(17) Let us consider non empty sets X1, Xo, a o-field S; of subsets of X7,
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a o-field Sy of subsets of X5, a o-measure M7 on S1, a o-measure My on
S9, a set sequence Fp of S1, a set sequence Fy of So, and a natural number
n. Then (Prod o -Meas(Mi, Ma))(F1(n) x Fa(n)) = M1 (Fi(n))-Ma(Fa(n)).
The theorem is a consequence of (9), (15), and (12).

(18) Let us consider non empty sets X, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of X5, a o-measure M; on S1, a o-measure My on
Sy, and elements E7, Fo of o(MeasRect(S1,S2)). Suppose Ep misses Fs.
Then (Prod o -Meas(My, Ms))(E1 U Ey) = (Prod o -Meas(My, Ms))(E1) +
(Prod o -Meas(My, Ms))(E2). The theorem is a consequence of (8).

(19) Let us consider sets X;, Xo, A, B, a sequence F) of subsets of X,
a sequence Fy of subsets of X5, and a sequence F' of subsets of X7 x Xo.
Suppose F} is non descending and lim F; = A and Fj is non descending
and lim F5 = B and for every natural number n, F(n) = Fi(n) x Fy(n).
Then lim F' = A x B. The theorem is a consequence of (10).

3. SECTIONS

Let X be a set, Y be a non empty set, E be a subset of X x Y, and x be
a set. The functor Xsection(E, z) yielding a subset of Y is defined by the term

(Def. 4) {y, where y is an element of Y : (z, y) € E}.

Let X be a non empty set, Y be a set, and y be a set.
The functor Ysection(F,y) yielding a subset of X is defined by the term

(Def. 5) {z, where z is an element of X : (z, y) € E}.
Now we state the propositions:

(20) Let us consider a set X, a non empty set Y, subsets Fj, Es of X XY,
and a set p. Suppose E; C Es. Then Xsection(E1,p) C Xsection(Es, p).

(21) Let us consider a non empty set X, a set Y, subsets Ej, Fy of X XY,
and a set p. Suppose F; C Es. Then Ysection(E1,p) C Ysection(Fs, p).

(22) Let us consider non empty sets X, Y, a subset A of X, a subset B of Y,
and a set p. Then

(i) if p € A, then Xsection(A x B,p) = B, and
(ii) if p ¢ A, then Xsection(A x B,p) =0, and
(iii) if p € B, then Ysection(A x B,p) = A, and
(iv) if p ¢ B, then Ysection(A x B,p) = (.

(23) Let us consider non empty sets X, Y, a subset E of X x Y, and a set p.
Then

(i) if p ¢ X, then Xsection(F,p) = (), and
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(ii) if p ¢ Y, then Ysection(F,p) = (.
(24) Let us consider non empty sets X, Y, and a set p. Then
(i) Xsection(Dxxy,p) =0, and
(i) Ysection(Dxxy,p) =0, and
(iii) if p € X, then Xsection(Q2xxy,p) =Y, and
(iv) if p € Y, then Ysection(Qxxy,p) = X.
The theorem is a consequence of (22).
(25) Let us consider non empty sets X, Y, a subset E of X x Y, and a set p.
Then
(i) if p € X, then Xsection(X x Y \ E,p) =Y \ Xsection(F, p), and
(ii) if p € Y, then Ysection(X x Y \ E,p) = X \ Ysection(F, p).
Let us consider non empty sets X, Y, subsets Fq, Fy of X X Y, and a set p.
(26) (i) Xsection(E; U Es,p) = Xsection(E, p) U Xsection(Es, p), and
(ii) Ysection(FEy U Ea,p) = Ysection(FE1,p) U Ysection(FEs, p).
(27) (i) Xsection(E; N E9,p) = Xsection(E1, p) N Xsection(FE2, p), and
(ii) Ysection(FEy N Ea,p) = Ysection(F1,p) N Ysection(Fs, p).
Now we state the propositions:

(28) Let us consider a set X, a non empty set Y, a finite sequence F' of ele-
ments of 25X %Y a finite sequence F of elements of 2¥, and a set p. Suppose
dom F' = dom Fj and for every natural number n such that n € dom Fj
holds Fy(n) = Xsection(F'(n), p). Then Xsection(|Jrng F,p) = Jrng Fy.

(29) Let us consider a non empty set X, a set Y, a finite sequence F' of ele-
ments of 2X %Y a finite sequence Fj of elements of 2%, and a set p. Suppose
dom F' = dom F3 and for every natural number n such that n € dom Fj3
holds F3(n) = Ysection(F'(n),p). Then Ysection(|Jrng F,p) = Jrng F3.

Let us consider a set X, a non empty set Y, a set p, a sequence F' of subsets
of X x Y, and a sequence Fj of subsets of Y. Now we state the propositions:

(30) If for every natural number n, Fy(n) = Xsection(F'(n), p),

then Xsection(|Jrng F,p) = Jrng Fy.
(31) If for every natural number n, Fy(n) = Xsection(F'(n),p),

then Xsection((\rng F,p) = (rng Fy.

Let us consider a non empty set X, a set Y, a set p, a sequence F' of subsets
of X x Y, and a sequence F3 of subsets of X. Now we state the propositions:

(32) If for every natural number n, F3(n) = Ysection(F'(n),p),

then Ysection(|Jrng F, p) = Jrng F3.



NOBORU ENDOU

(33) If for every natural number n, F3(n) = Ysection(F(n),p),
then Ysection((rng F,p) = (\rng Fs.

(34) Let us consider non empty sets X, Y, sets x, y, and a subset E of X X
Y. Then

(1) XExxy(%,Y) = XXsection(E,z),y (¥), and
(11> XE,XXY(xv y) = XYsection(E,y),X (aj)

(35) Let us consider non empty sets X, Y, subsets F1, Fy of X x Y, and a set
p. Suppose Fq misses Fy. Then

(i) Xsection(E1,p) misses Xsection(Fs,p), and
(ii) Ysection(F1,p) misses Ysection(Esg, p).

(36) Let us consider non empty sets X, Y, a disjoint valued finite sequence F

of elements of 2X*Y and a set p. Then

(i) there exists a disjoint valued finite sequence Fj of elements of 2%
such that dom F' = dom F}; and for every natural number n such that
n € dom Fy holds Fy(n) = Ysection(F(n),p), and

(ii) there exists a disjoint valued finite sequence F3 of elements of 2¥
such that dom F' = dom Fj and for every natural number n such that
n € dom F3 holds F3(n) = Xsection(F'(n),p).

PROOF: There exists a disjoint valued finite sequence F; of elements of
2X such that dom F' = dom F; and for every natural number n such that
n € dom Fy holds Fy(n) = Ysection(F'(n),p) by (35), [19, (29)]. There
exists a disjoint valued finite sequence Fj3 of elements of 2¥ such that
dom F' = dom Fj and for every natural number n such that n € dom Fj
holds F3(n) = Xsection(F'(n),p) by (35), [19, (29)]. O

(37) Let us consider non empty sets X, Y, a disjoint valued sequence F' of
subsets of X x Y, and a set p. Then

(i) there exists a disjoint valued sequence Fy of subsets of X such that
for every natural number n, Fy(n) = Ysection(F(n),p), and

(ii) there exists a disjoint valued sequence F3 of subsets of Y such that
for every natural number n, F3(n) = Xsection(F(n),p).

PROOF: There exists a disjoint valued sequence Fj of subsets of X such
that for every natural number n, Fy(n) = Ysection(F'(n), p). Define A(natu-
ral number) = Xsection(F'($1), p). Consider F3 being a sequence of subsets
of Y such that for every element n of N, F3(n) = A(n) from [I1, Sch. 4].
O

(38) Let us consider non empty sets X, Y, sets z, y, and subsets Ej, Es of
X x Y. Suppose E7 misses Es. Then



FUBINI’S THEOREM ON MEASURE 7

(1) XE1UE2,X><Y($7 y) = XXsection(El,z),Y(y) + XXsection(Ez,a:),Y(y)v and
(11) XE1UE2,X><Y(:U7 y) = XYsection(El,y),X (.%') + XYsection(Eg,y),X (33)
The theorem is a consequence of (35), (34), and (26).

(39) Let us consider a set X, a non empty set Y, a set x, a sequence E of
subsets of X x Y, and a sequence G of subsets of Y. Suppose E is non
descending and for every natural number n, G(n) = Xsection(E(n), ).
Then G is non descending. The theorem is a consequence of (20).

(40) Let us consider a non empty set X, a set Y, a set x, a sequence E of
subsets of X x Y, and a sequence G of subsets of X. Suppose F is non
descending and for every natural number n, G(n) = Ysection(E(n), x).
Then G is non descending. The theorem is a consequence of (21).

(41) Let us consider a set X, a non empty set Y, a set x, a sequence E of
subsets of X x Y, and a sequence G of subsets of Y. Suppose E is non
ascending and for every natural number n, G(n) = Xsection(E(n),x).
Then G is non ascending. The theorem is a consequence of (20).

(42) Let us consider a non empty set X, a set Y, a set x, a sequence E of
subsets of X x Y, and a sequence G of subsets of X. Suppose F is non
ascending and for every natural number n, G(n) = Ysection(E(n), ).
Then G is non ascending. The theorem is a consequence of (21).

(43) Let us consider a set X, a non empty set Y, a sequence E of subsets
of X x Y, and a set x. Suppose F is non descending. Then there exists
a sequence G of subsets of Y such that

(i) G is non descending, and
(ii) for every natural number n, G(n) = Xsection(E(n), ).

PROOF: Define F(natural number) = Xsection(E($;),z). Consider G be-
ing a function from N into 2¥ such that for every element n of N, G(n) =
F(n) from [II], Sch. 4]. For every natural number n, G(n) =
Xsection(E(n),z). O

(44) Let us consider a non empty set X, a set Y, a sequence E of subsets
of X xY, and a set . Suppose F is non descending. Then there exists
a sequence (G of subsets of X such that

(i) G is non descending, and
(i) for every natural number n, G(n) = Ysection(E(n), z).

PROOF: Define F(natural number) = Ysection(E($1),z). Consider G be-
ing a function from N into 2% such that for every element n of N, G(n) =
F(n) from [I1] Sch. 4]. For every natural number n, G(n) =
Ysection(E(n),x). O
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(45) Let us consider a set X, a non empty set Y, a sequence E of subsets
of X x Y, and a set x. Suppose F is non ascending. Then there exists
a sequence (G of subsets of Y such that

(i) G is non ascending, and
(ii) for every natural number n, G(n) = Xsection(E(n), ).

PROOF: Define F(natural number) = Xsection(E($1), ). Consider G be-
ing a function from N into 2¥" such that for every element n of N, G(n) =
F(n) from [II], Sch. 4]. For every natural number n, G(n) =
Xsection(E(n),z). O

(46) Let us consider a non empty set X, a set Y, a sequence E of subsets
of X x Y, and a set x. Suppose F is non ascending. Then there exists
a sequence G of subsets of X such that

(i) G is non ascending, and
(ii) for every natural number n, G(n) = Ysection(E(n), z).

PROOF: Define F(natural number) = Ysection(E($;), ). Consider G be-
ing a function from N into 2% such that for every element n of N, G(n) =
F(n) from [II], Sch. 4]. For every natural number n, G(n) =
Ysection(E(n),z). O

4. MEASURABLE SECTIONS

Let us consider non empty sets X1, Xo, a o-field Sy of subsets of X1, a o-field
Sy of subsets of Xy, an element E of o(MeasRect(S1,52)), and a set K. Now
we state the propositions:

(47) Suppose K = {C, where C is a subset of X; x Xy : for every set p,
Xsection(C, p) € S2}. Then

(i) the field generated by MeasRect(S1,S2) C K, and
(ii) K is a o-field of subsets of X1 x Xj.

PRrROOF: For every set x, Xsection(Dx, xx,,z) € S2 by (24), [5, (7)]. For
every subset C' of X7 x X5 such that C' € K holds C° € K by [17, (5),
(6)], (25), (23). O

(48) Suppose K = {C, where C is a subset of X; x X5 : for every set p,
Ysection(C, p) € Si}. Then

(i) the field generated by MeasRect(S,S2) C K, and
(ii) K is a o-field of subsets of X1 x Xj.
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PROOF: For every set y, Ysection(Dx, xx,,y) € S1 by (24), [5, (7)]. For
every subset C' of X; x X5 such that C' € K holds C° € K by [17, (5),
(6)], (25), (23). O

(49) Let us consider non empty sets X, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of X3, and an element E of o(MeasRect(S1, S2)).
Then

(i) for every set p, Xsection(E,p) € Sz, and
(i) for every set p, Ysection(E,p) € 5.
The theorem is a consequence of (47) and (48).

Let X1, X2 be non empty sets, S1 be a o-field of subsets of X7, Sy be a o-
field of subsets of Xa, E be an element of o(MeasRect(S1,S2)), and x be a set.
The functor MeasurableXsection(F, ) yielding an element of Sy is defined by
the term

(Def. 6) Xsection(E, x).

Let y be a set. The functor MeasurableYsection(E,y) yielding an element

of 57 is defined by the term

(Def. 7)  Ysection(E,y).
Now we state the propositions:

(50) Let us consider non empty sets X1, Xa, a o-field Sy of subsets of X1, a o-
field Sy of subsets of Xo, a finite sequence F of elements of o(MeasRect (51,
S2)), a finite sequence Fy of elements of Sa, and a set p. Suppose dom F' =
dom F; and for every natural number n such that n € dom F; holds
Fy(n) = MeasurableXsection(F'(n), p). Then MeasurableXsection(|J F, p) =
U F4. The theorem is a consequence of (28).

(51) Let us consider non empty sets X, Xo, a o-field S; of subsets of X, a o-
field S of subsets of Xo, a finite sequence F of elements of o(MeasRect (51,
S3)), a finite sequence F3 of elements of S7, and a set p. Suppose dom F' =
dom F3 and for every natural number n such that n € dom F3 holds
F5(n) = MeasurableYsection(F'(n), p). Then MeasurableYsection(|J F, p) =
U F3. The theorem is a consequence of (29).

(52) Let us consider non empty sets X, Xs, a o-field S; of subsets of X7,
a o-field Sy of subsets of X5, a o-measure My on S, an element A of 57,
an element B of Sy, and an element = of X;. Then M(B) - X4 x,(x) =
Jeurry (XaxB,x, x X, ) dMo.

PROOF: For every element y of Xo, (curry(XaxB,x, x X2, Z))(¥) = Xa,x, (x)-
XB,x,(y). O

(53) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,

a o-field Sy of subsets of X5, a o-measure My on S, an element F of
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o(MeasRect(S1, 52)), an element A of S1, an element B of Sy, and an ele-
ment z of X;. Suppose E = Ax B. Then My(MeasurableXsection(F,x)) =
Ms(B) - Xa,x, (x). The theorem is a consequence of (22).

(54) Let us consider non empty sets X, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of X5, a o-measure M7 on Sp, an element A of Sy,
an element B of Sy, and an element y of Xy. Then M;(A) - Xp x,(y) =
Jeurry’ (Xax B, x,x X, y) dM;.

PROOF: For every element x of X, (curry’(XaxB,x, x X2, ¥))(Z) = Xa x, (z)-
XB,XQ (y) O

(55) Let us consider non empty sets X1, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of X5, a o-measure M7 on Sp, an element E of
o(MeasRect(S1, 52)), an element A of 51, an element B of Sy, and an ele-
ment y of Xo. Suppose £ = Ax B. Then M;(MeasurableYsection(F,y)) =
M;(A) - XB,x,(y). The theorem is a consequence of (22).

5. FINITE SEQUENCE OF FUNCTIONS

Let X, Y be non empty sets, G be a non empty set of functions from X to
Y, F be a finite sequence of elements of G, and n be a natural number. Observe
that the functor F), yields an element of G. Let X be a set and F' be a finite
sequence of elements of RY. We say that F is (without +o00)-valued if and only
if
(Def. 8) for every natural number n such that n € dom F' holds F'(n) is without
+00.
We say that F' is (without —oo)-valued if and only if
(Def. 9) for every natural number n such that n € dom F' holds F(n) is without
—00.
Now we state the proposition:

(56) Let us consider a non empty set X. Then

i) (X —— 0) is a finite sequence of elements of @X and
(1) ( ) q ,

(ii) for every natural number n such that n € dom(X ~— 0) holds
(X +—— 0)(n) is without +o0, and

(iii) for every natural number n such that n € dom(X ~— 0) holds
(X — 0)(n) is without —oc.

Let X be a n)(}n empty set. One can verify that there exists a finite sequence
of elements of R which is (without 4o00)-valued and (without —oo)-valued.
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(57) Let us consider a non empty set X, a (without +00)-valued finite sequ-
ence F' of elements of @X, and a natural number n. If n € dom F', then
(Fo) ™' ({+o0}) = 0.

(58) Let us consider a non empty set X, a (without —oo)-valued finite sequ-
ence F' of elements of @X, and a natural number n. If n € dom F', then
(Fo) ™' ({—00}) = 0.

(59) Let us consider a non empty set X, and a finite sequence F of elements of
R”. Suppose F' is (without +o0)-valued or (without —oo)-valued. Let us

consider natural numbers n, m. If n, m € dom F', then dom(F,,+Fy,) = X.
The theorem is a consequence of (57) and (58).

Let X be a non empty set and F' be a finite sequence of elements of RY. We
say that F' is summable if and only if

(Def. 10) F'is (without 4o00)-valued or (without —oo)-valued.

Observe that there exists a finite sequence of elements of R™ which is sum-

mable.

Let F be a summable finite sequence of elements of R™. The functor

(> b _o F(a))ken yielding a finite sequence of elements of R is defined by
(Def. 11) len F' = lenit and F(1) = it(1) and for every natural number n such

that 1 <n <len F holds it(n + 1) = it, + Fp41.
One can check that every finite sequence of elements of R™ which is (without

+00)-valued is also summable and every finite sequence of elements of R which
is (without —oo)-valued is also summable.
Now we state the propositions:

(60) Let us consider a non empty set X, and a (without +o00)-valued finite

sequence F' of elements of R”. Then (> oo F(a))ken is (without +o00)-
valued.
PROOF: Define Plnatural number] = if $; € dom(}5_, F(a))xen, then
(> h—o F(a))ken($1) is without +o0o. For every natural number n such
that P[n] holds Pln + 1] by [19, (29)], [2, (14)], [19, (25)], [2, (13)]. For
every natural number n, P[n] from [2, Sch. 2]. O

(61) Let us consider a non empty set X, and a (without —oo)-valued finite

sequence F' of elements of R”™. Then (> oo_g F(a))ken is (without —oo)-
valued.
PROOF: Define P[natural number| = if $; € dom(}5_ F(«))xen, then
(> ob_o F(a))ken($1) is without —oo. For every natural number n such
that P[n] holds P[n + 1] by [19, (29)], [2, (14)], [19, (25)], [2, (13)]. For
every natural number n, P[n] from [2, Sch. 2]. O
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(62) Let us consider a non empty set X, a set A, an extended real e, and
a function f from X into R. Suppose for every element z of X, f(x) =
e-Xa x(x). Then

(i) if e = +oo, then f =X, x, and
(ii) if e = —oo, then f = —x4 x, and

(iii) if e # 400 and e # —oo, then there exists a real number r such that
r=ecand f=1r-X4x.

(63) Let us consider a non empty set X, a o-field S of subsets of X, a partial
function f from X to R, and an element A of S. Suppose f is measurable
on A and A C dom f. Then —f is measurable on A.

Let X be a non empty set and f be a without —oo partial function from X
to R. Observe that — f is without -+oo.

Let f be a without +oo partial function from X to R. One can check that
—f is without —oo.

Let f1, fo be without +oo partial functions from X to R. Let us note that
the functor f; + fo yields a without +oo partial function from X to R. Let fi,
f2 be without —oo partial functions from X to R. Note that the functor fi + fo
yields a without —oo partial function from X to R. Let f; be a without +oo
partial function from X to R and f» be a without —oo partial function from
X to R. One can verify that the functor f; — fo yields a without +oo partial
function from X to R. Let f; be a without —oo partial function from X to R
and f3 be a without +oo partial function from X to R. Observe that the functor
fi — fo yields a without —oo partial function from X to R. Now we state the
propositions:

(64) Let us consider a non empty set X, and partial functions f, g from X
to R. Then

(i) =(f+9)=—f+—g, and
(i) =(f —g)=—f+g, and
(ii) =(f—g) =9 —f, and
) —(=f+9)=f—g and
v) =(=f+g9) =f+-g
(65) Let us consider a non empty set X, a o-field S of subsets of X, without
+o00 partial functions f, g from X to R, and an element A of S. Suppose f

is measurable on A and ¢ is measurable on A and A C dom(f + ¢). Then
f + g is measurable on A. The theorem is a consequence of (63) and (64).

(iv

(66) Let us consider a non empty set X, a o-field S of subsets of X, an element
A of S, a without 400 partial function f from X to R, and a without —oo
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partial function g from X to R. Suppose f is measurable on A and g is
measurable on A and A C dom(f — g). Then f — g is measurable on A.
The theorem is a consequence of (63) and (64).

(67) Let us consider a non empty set X, a o-field S of subsets of X, an element
A of S, a without —oo partial function f from X to R, and a without +o0
partial function g from X to R. Suppose f is measurable on A and g is
measurable on A and A C dom(f — g). Then f — g is measurable on A.
The theorem is a consequence of (64), (63), and (65).

(68) Let us consider a non empty set X, a o-field S of subsets of X, an element
P of S, and a summable finite sequence F' of elements of R . Suppose for
every natural number n such that n € dom F' holds F, is measurable
on P. Let us consider a natural number n. Suppose n € dom F. Then

(> 60 F(a))ken)n is measurable on P. The theorem is a consequence of
(60), (65), and (61).

6. SOME PROPERTIES OF INTEGRAL

Now we state the propositions:

(69) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,
a o-field Sy of subsets of X5, a o-measure M; on Sp, a o-measure My on
Sy, an element E of o(MeasRect(S1,.52)), an element A of Sy, an element
B of Sy, an element x of X1, and an element y of Xs. Suppose E = A x
B. Then

(i) [eurry(XE x, x Xy, ) dMy = Ma(MeasurableXsection(E, x))-X 4, x, (),
and

(ii) [eurry'(XE x, xX,,Yy) dM; = My (MeasurableYsection(E, y))-Xg x, (y)-

The theorem is a consequence of (52), (53), (54), and (55).

(70) Let us consider non empty sets X, Xo, a o-field S; of subsets of X7,

a o-field Sz of subsets of Xs, and an element E of o(MeasRect(S1, 52)).
Suppose E € the field generated by MeasRect(S7,S2). Then there exists
a disjoint valued finite sequence f of elements of MeasRect(S1,S2) and
there exists a finite sequence A of elements of 5.
There exists a finite sequence B of elements of Ss such that len f = len A
and len f =len B and E = | f and for every natural number n such that
n € dom f holds m(f(n)) = A(n) and ma(f(n)) = B(n) and for every
natural number n and for every sets z, y such that n € dom f and z € X;
and y € X holds Xy(n) x;x x5 (%, ¥) = Xa(n),x, (T) - XB(n),x,(Y)-
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(71)

(72)

(73)
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PRrROOF: Consider F; being a subset of X1 x X5 such that £ = F; and there
exists a disjoint valued finite sequence f of elements of MeasRect(S1, S2)
such that F; = |J f. Consider f being a disjoint valued finite sequence
of elements of MeasRect(S1,S2) such that Ey = |J f. Define S[natural
number, object] = $5 = 71 (f($1)). For every natural number 4 such that
i € Seglen f there exists an element A; of S; such that S[i, A;] by [12]
(4)], @, (9)], [B, (7)]. Consider A being a finite sequence of elements of
S1 such that dom A = Seglen f and for every natural number ¢ such
that ¢ € Seglen f holds S[i, A()] from [3, Sch. 5]. Define 7 [natural
number, object] = $2 = m2(f($1)). For every natural number i such that
i € Seglen f there exists an element B; of Sy such that 7[i, By] by [12]
(4)], [, (9)], [B, (7)]. Consider B being a finite sequence of elements of
So such that dom B = Seglen f and for every natural number ¢ such that
i € Seglen f holds T[i, B(4)] from [3, Sch. 5]. For every natural number
n such that n € dom f holds 7 (f(n)) = A(n) and m(f(n)) = B(n).
Consider As being an element of Sy, By being an element of S5 such that
f(n) = A2 X BQ. O

Let us consider non empty sets X1, X2, a o-field S; of subsets of X7,
a o-field Sy of subsets of X9, a o-measure M; on Sp, a o-measure My on
Sa, an element E of o(MeasRect(S1, S2)), an element = of X7, an element
y of Xo, an element U of 57, and an element V' of S5. Then

(i) Mi(MeasurableYsection(E,y) NU) =
Jeurry’ (X gax x,), X, x X2 ¥) dM1, and
(ii) Ma(MeasurableXsection(E,z) N V) =
J eurry (X g (x, x vy, X1 x X0 ) dMa.
The theorem is a consequence of (34), (27), and (22).

Let us consider non empty sets X7, Xo, a o-field S7 of subsets of X7,
a o-field Sy of subsets of X5, a o-measure M; on S, a o-measure My
on Sa, an element E of o(MeasRect(S1,S52)), an element x of X, and
an element y of Xs. Then

(i) Mi(MeasurableYsection(E,y)) = [ curry’(Xg, x, x x,, y) dMi, and
(ii) Ma(MeasurableXsection(E, x)) = [ curry(Xg x, x X, ) dMa.
The theorem is a consequence of (71).

Let us consider non empty sets X;, Xo, a o-field S7 of subsets of X,
a o-field Sy of subsets of X, a o-measure Ms on So, a disjoint valued finite
sequence f of elements of MeasRect(S1, S2), an element x of X1, a natural
number n, an element Es of o(MeasRect(S7, 52)), an element A of S1, and
an element Bs of Sy. Suppose n € dom f and f(n) = E2 and Ey = Ag X
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Bs. Then [ curry(Xf(n) x, x x5, ) dM2 = Ma(MeasurableXsection(Ez, r)) -
X A2,X1 (x)

(74) Let us consider non empty sets X, Xo, a o-field S; of subsets of X, a o-
field Sy of subsets of X5, and an element F of o(MeasRect(S1,.52)). Sup-
pose E € the field generated by MeasRect(S1,S2) and E # (). Then there
exists a disjoint valued finite sequence f of elements of MeasRect(S1, S2)
and there exists a finite sequence A of elements of S; and there exists
a finite sequence B of elements of S5.

There exists a summable finite sequence X3 of elements of R such
that E = |Jf and len f € dom f and len f = len A and len f = len B
and len f = len X3 and for every natural number n such that n € dom f
holds f(n) = A(n) x B(n) and for every natural number n such that
n € dom X3 holds X3(n) = X¢(n) x,xx, and (36— X3(a))xen(len X3) =
XE,x, xx, and for every natural number n and for every sets x, y such that
n € dom X3 and x € X3 and y € X3 holds X3(n)(x,y) = Xam),x, (¥) -
XB(n), x> (Y)-

For every element = of Xy, curry(Xg x, x Xy, Z) =

curry(((3n—o X3(a))keN)ien x5, ) and for every element y of X,

curry’ (Xp,x, xxo, ) = curry’ (((Za—=o X3(a))xen)ien X3, Y)-

ProoF: Consider f being a disjoint valued finite sequence of elements of
MeasRect(S1, S2), A being a finite sequence of elements of S;, B being
a finite sequence of elements of Sy such that len f = len A and len f =
len B and £ = |Jf and for every natural number n such that n €
dom f holds m1(f(n)) = A(n) and ma(f(n)) = B(n) and for every na-
tural number n and for every sets x, y such that n € dom f and z € X;
and y € Xo holds Xy x,xx5(Z,¥) = Xam),x,(T) - XB(n),x,(y)- Define
F(set) = Xjg(s,),x,xx,- Consider X3 being a finite sequence such that
len X3 = len f and for every natural number n such that n € dom X3
holds X3(n) = F(n) from [3, Sch. 2]. Define P[natural number| = if
$1 € dom f, then (X5 _o X3(a))ken($1) = XUJ(F1$1),x1x X, FOT every na-
tural number k such that P[k] holds P[k + 1] by [9, (20)], [3, (39)], [13,
(25)], [2, (14)]. For every natural number n, P[n| from [2, Sch. 2]|. For
every natural number n such that n € dom f holds f(n) = A(n) x
B(n) by [12, (4)], [13, (90)], [1, (9)]. For every natural number n and
for every sets z, y such that n € dom X3 and x € X; and y € X»
holds X3(n)(%,y) = Xa(m),x, (T) - XB(n),x, (y). For every element x of Xj,
ewrty (X g, x; x X5, ) = curry (a0 X3(@)) weN)ien x5, 7). O

(75) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,
a o-field S5 of subsets of X5, and a finite sequence F' of elements of
MeasRect(S1, S2). Then |J F' € o(MeasRect(S1, 52)).
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PROOF: Define P[natural number] = if $; < len F', then Jrng(F[$1) €
o(MeasRect(S1, S2)). For every natural number k& such that P[k] holds
Plk+1] by [2, (11)], [19} (25)], [8, (11)], [3L (59)]. For every natural number
k, Plk] from [2 Sch. 2]. O

(76) Let us consider non empty sets X, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of X5, a o-measure M; on Si, a o-measure M
on Sa, and an element E of o(MeasRect(S1,52)). Suppose E € the field
generated by MeasRect(S1,52) and E # (.
Then there exists a disjoint valued finite sequence F' of elements of MeasRect
(S1,S52) and there exists a finite sequence A of elements of S; and there
exists a finite sequence B of elements of S5 and there exists a summable
finite sequence C' of elements of R¥*%2 and there exists a summable
finite sequence I of elements of R™" and there exists a summable finite
sequence J of elements of R™ such that F = UJF and len F' € dom F' and
len ' =1len A and len F = len B and len F' = len C' and len F' = len I and
len F' = len J and for every natural number n such that n € dom C' holds
C(n) = Xrm),x,xx, and ((Za—o C(a))ren)lenc = XB,X1x X, -
For every element x of X7 and for every natural number n such that n €
dom I holds I(n)(z) = [ curry(Cy,x)dMsy and for every natural number
n and for every element P of Sq such that n € dom I holds I,, is measurable
on P and for every element z of X1, [ curry(((35_y C(@))keN)ien s ) dMo =
((Xf_o I())ken)ien1(x) and for every element y of X5 and for every na-
tural number n such that n € dom J holds J(n)(y) = [ curry’(C,,, y) dM;
and for every natural number n and for every element P of S5 such that
n € domJ holds J, is measurable on P and for every element y of Xo,
[ ey (55 Cla)wertien s y) AM = (S J(@))e)ien s (4).
ProoF: Consider F' being a disjoint valued finite sequence of elements of
MeasRect(S1, S2), A being a finite sequence of elements of S;, B being
a finite sequence of elements of S;, C being a summable finite sequen-
ce of elements of R such that E = UF and len F € dom F' and
len ' =len A and len F' = len B and len F' = len C' and for every natural
number n such that n € dom F' holds F(n) = A(n) x B(n) and for every
natural number n such that n € dom C holds C(n) = Xp(,), x,xx, and
(>n—9C(@))ren(len C) = Xg x, x x, and for every natural number n and
for every sets x, y such that n € domC and x € X; and y € X5 holds
C(n)(7,y) = Xam),x,(*) - XBn),x,(y) and for every element z of Xj,
curry (X g, x, x Xo, ) = curry (3 a—o C(@))keN)ienc, ) and for every ele-
ment y of X, curry’(Xp, x, x x5, ¥) = cwrry’ (X0 C(@))ken)ien s ¥). De-
fine S[natural number, object] = there exists a function f from X7 into R
such that f = $5 and for every element x of X1, f(z) = [ curry(Cy,, x) dMa.



FUBINI’S THEOREM ON MEASURE

For every natural number n such that n € Seglen F' there exists an ob-
ject z such that S[n,z]. Consider I being a finite sequence such that
dom I = Seglen F' and for every natural number n such that n € Seglen I’
holds S[n, I(n)] from [3], Sch. 1]. For every element z of X; and for every na-
tural number n such that n € dom I holds I(n)(z) = [ curry(Cy,z)dMs
by [12, (4)]. Define 7 [natural number,object] = there exists a function
f from X, into R such that f = $5 and for every element = of X,
f(xz) = [curry’(Cs,,z) dM;. For every natural number n such that n €
Seglen F' there exists an object z such that 7 [n, z]. Consider J being a fi-
nite sequence such that dom J = Seglen F' and for every natural number
n such that n € Seglen F' holds 7T[n,J(n)] from [3| Sch. 1]. For every
element = of X9 and for every natural number n such that n € dom J
holds J(n)(x) = [ curry’(Cy,z)dM; by [12, (4)]. For every natural num-
ber n and for every element P of S; such that n € dom I holds I, is
measurable on P by [12, (4)], (69), (22). For every element = of X,
[ eurny (5o C0))eriencs #) My = (S5 () e ien 1(x) by [19,
(24), (25)], [2, (13)], [9) (20)]. For every natural number n and for every ele-
ment P of Sy such that n € dom J holds .J,, is measurable on P by [12], (4)],
(69), (22). For every element x of Xa, [curry’(((Xh_, C(a))keN)lenc, X)
dM; = ((XCa=0J(@))ren)iens () by [19; (24), (25)], [2 (13)], [9; (20)]. O
Let X7, X2 be non empty sets, S; be a o-field of subsets of Xy, So be a o-
field of subsets of X2, F' be a set sequence of o(MeasRect(S1,S52)), and n be
a natural number. One can verify that the functor F'(n) yields an element of
o(MeasRect(S1,52)). Let F' be a function from N x o(MeasRect(S1,S2)) into
o(MeasRect(S7,52)), n be an element of N, and E be an element of
o(MeasRect(S1, S2)). Let us observe that the functor F(n, E) yields an ele-
ment of o(MeasRect(S1,52)). Now we state the propositions:

(77) Let us consider non empty sets X1, Xo, a o-field Sy of subsets of X7,
a o-field Sy of subsets of X3, a g-measure M; on Si, a o-measure My
on Sy, an element E of o(MeasRect(S1,52)), and an element V of Ss.
Suppose E € the field generated by MeasRect(S7, S2). Then there exists
a function F from X; into R such that

(i) for every element x of X1, F(x) = My(MeasurableXsection(E,x) N
V), and

(ii) for every element P of Si, F' is measurable on P.

The theorem is a consequence of (22), (27), (24), (76), (71), and (68).

(78) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,
a o-field Sy of subsets of X5, a o-measure My on Si, a o-measure My
on Sy, an element F of o(MeasRect(S1,52)), and an element V of Sj.
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Suppose E € the field generated by MeasRect(S1, S2). Then there exists
a function F from X5 into R such that

(i) for every element x of Xo, F(x) = Mj(MeasurableYsection(E,x) N
V), and

(ii) for every element P of Sy, F' is measurable on P.

The theorem is a consequence of (22), (27), (24), (76), (71), and (68).

(79) Let us consider non empty sets X1, Xo, a o-field S} of subsets of Xj,
a o-field Sy of subsets of X5, a o-measure My on Ss, and an element E of
o(MeasRect(S1,52)). Suppose E € the field generated by MeasRect(S7, S2).
Let us consider an element B of Sz. Then E € {E, where E is an element
of o(MeasRect(S1,S2)) : there exists a function F from X into R such that

for every element x of X, F'(z) = Ms(MeasurableXsection(E, z)NB) and
for every element V' of Sy, F' is measurable on V'}. The theorem is a con-
sequence of (77).

(80) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,
a o-field Ss of subsets of X5, a o-measure M on S1, and an element E of
o(MeasRect(S1,52)). Suppose E € the field generated by MeasRect (S, S2).
Let us consider an element B of S;. Then E € {E, where E is an element
of o(MeasRect(S1,592)) : there exists a function F from X3 into R such that

for every element x of Xy, F'(z) = M;(MeasurableYsection(E, z)NB) and
for every element V' of Sy, F' is measurable on V'}. The theorem is a con-
sequence of (78).

(81) Let us consider non empty sets X1, Xo, a o-field Sy of subsets of X7,
a o-field Sy of subsets of X5, a o-measure Ms on S, and an element B
of Sy. Then the field generated by MeasRect(S1,S2) C {E, where E is
an element of o(MeasRect(S7,52)) : there exists a function F' from X;
into R such that for every element x of X1, F(x) =

Ms(MeasurableXsection(E, z) N B) and for every element V' of Sy, F is
measurable on V'}. The theorem is a consequence of (7) and (79).

(82) Let us consider non empty sets X1, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of X5, a o-measure M7 on S, and an element B
of S1. Then the field generated by MeasRect(S1,S2) C {E, where E is
an element of o(MeasRect(S7,52)) : there exists a function F' from X»
into R such that for every element y of Xo, F(y) =
M;(MeasurableYsection(E,y) N B) and for every element V of Sy, F' is
measurable on V'}. The theorem is a consequence of (7) and (80).
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7. o-FINITE MEASURE

Let X be a non empty set, S be a o-field of subsets of X, and M be a o-
measure on S. We say that M is o-finite if and only if

(Def. 12) there exists a set sequence E of S such that for every natural number n,
M(E(n)) < +ocand UE = X.
Now we state the propositions:

(83) Let us consider a non empty set X, a o-field S of subsets of X, and
a o-measure M on S. Then M is o-finite if and only if there exists a set
sequence F' of S such that F' is non descending and for every natural
number n, M(F(n)) < 400 and lim F' = X.

(84) Let us consider a set X, a semialgebra S of sets of X, a pre-measure P of
S, and an induced measure M of S and P. Then M = (the Caratheodory
measure determined by M)[(the field generated by S).

8. FUBINI’'S THEOREM ON MEASURE

Now we state the propositions:

(85) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,
a o-field Sy of subsets of X5, a o-measure My on S5, and an element
B of S3. Suppose Ma(B) < +oo. Then {E, where E is an element of
o(MeasRect(S1, S2)) : there exists a function F' from X; into R such that
for every element = of X1, F(z) = Ma(MeasurableXsection(E, z) N B) and
for every element V' of S1, F' is measurable on V'} is a monotone class of
X 1 X X2.

PRrROOF: Set Z = {E, where FE is an element of o(MeasRect(S1,S2)) :
there exists a function F from X; into R such that for every element x

of X1, F(z) = Ma(MeasurableXsection(E,z)NB) and for every element V
of S1, F' is measurable on V'}. For every sequence A; of subsets of X; X
X9 such that A; is monotone and rng A; C Z holds lim A; € Z by [10,
(3)), B, (35)], 21} (63)], [12, (45)]. O

(86) Let us consider non empty sets X1, Xo, a o-field Sy of subsets of X7,
a o-field Sy of subsets of X5, a o-measure M; on S7, and an element
B of S;. Suppose M;i(B) < +o00. Then {E, where E is an element of
o(MeasRect(S7, S2)) : there exists a function F from X5 into R such that
for every element y of Xo, F'(y) = M;(MeasurableYsection(E,y)N B) and
for every element V' of So, F' is measurable on V'} is a monotone class of
X1 X X2.
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PROOF: Set Z = {F, where E is an element of o(MeasRect(S1,S52)) :
there exists a function F from X5 into R such that for every element y
of Xo, F(y) = M;(MeasurableYsection(E,y)NB) and for every element V'
of Sy, F' is measurable on V'}. For every sequence A; of subsets of X; X
X, such that A; is monotone and rng A; C Z holds lim A; € Z by [10,
(3)], 5, (35)], 21} (63)], [12} (45)]. T

(87) Let us consider a non empty set X, a field F' of subsets of X, and
a sequence L of subsets of X. Suppose rng L is a monotone class of X and
F C rng L. Then

(i) o(F) = monotone-class(F'), and
(ii) o(F) C rng L.

(88) Let us consider a non empty set X, a field F' of subsets of X, and a family

K of subsets of X. Suppose K is a monotone class of X and F' C K. Then
(i) o(F) = monotone-class(F'), and
(i) o(F) C K.

(89) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,
a o-field Ss of subsets of X5, a o-measure My on So, and an element B of
Sa. Suppose My(B) < 4o00. Then o(MeasRect(S1,52)) C {E, where E is
an element of o(MeasRect(S1,52)) : there exists a function F' from X3
into R such that for every element x of Xy, F(x) =
Ms(MeasurableXsection(E, z) N B) and for every element V of Sy, F' is
measurable on V}. The theorem is a consequence of (85), (81), (7), and
(88).

(90) Let us consider non empty sets X, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of X5, a o-measure M7 on Sq, and an element B of
S1. Suppose M;(B) < 4o00. Then o(MeasRect(S1, S2)) C {E, where E is
an element of o(MeasRect(S1,52)) : there exists a function F' from Xy
into R such that for every element y of Xs, F(y) =
M;(MeasurableYsection(E,y) N B) and for every element V' of Sy, F' is
measurable on V'}. The theorem is a consequence of (86), (82), (7), and
(88).

(91) Let us consider non empty sets X1, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of X5, a o-measure My on So, and an element E of
o(MeasRect(S1, 52)). Suppose Ms is o-finite. Then there exists a function
F from X into R such that

(i) for every element x of X, F(x) = My(MeasurableXsection(FE, z)),
and

(ii) for every element V of Si, F' is measurable on V.
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PrOOF: Consider B being a set sequence of Sy such that B is non de-
scending and for every natural number n, My(B(n)) < +oo and lim B =
Xs. Define P[natural number, object] = there exists a function f; from
X1 into R such that $o = f; and for every element x of X1, fi(z) =
M (MeasurableXsection(E, z) N B($1)) and for every element V of Si, fi
is measurable on V. For every element n of N, there exists an element f of
X1-5R such that P[n, f] by (89), [12, (45)]. Consider f being a function
from N into X;-5R such that for every element n of N, P[n, f(n)] from
[T1, Sch. 3]. For every natural number n, f(n) is a function from X; into R
and for every element x of Xy, f(n)(z) = My(MeasurableXsection(F, z)N
B(n)) and for every element V' of Sy, f(n) is measurable on V. For every
natural numbers n, m, dom(f(n)) = dom(f(m)). For every element = of
X; such that x € X; holds f#ux is convergent by [5, (11), (31)], [20, (7),
(37)]. Reconsider F = lim f as a function from X; into R. For every ele-
ment x of X1, F(z) = Ma(MeasurableXsection(E, x)) by [21, (80)], [22,
(92)], (49), B, (11)]. O

(92) Let us consider non empty sets X1, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of X5, a o-measure M; on S7, and an element E of
o(MeasRect(S1, S2)). Suppose M is o-finite. Then there exists a function
F from X5 into R such that

(i) for every element y of Xo, F(y) = Mj(MeasurableYsection(E,vy)),
and

(ii) for every element V of Sy, F' is measurable on V.

PRrOOF: Consider B being a set sequence of S; such that B is non de-
scending and for every natural number n, M;(B(n)) < 4+o0c and lim B =
X1. Define P[natural number, object] = there exists a function f; from
X5 into R such that $ = f; and for every element y of X, fi(y) =
M;(MeasurableYsection(E, y) N B($1)) and for every element V' of Sa, fi
is measurable on V. For every element n of N, there exists an element f of
X5-5R such that P[n, f] by (90), [12, (45)]. Consider f being a function
from N into X2—>R such that for every element n of N, P[n, f(n)] from [11]
Sch. 3]. For every natural number n, f(n) is a function from X5 into R and
for every element y of Xo, f(n)(y) = M;(MeasurableYsection(E, y)NB(n))
and for every element V of Sy, f(n) is measurable on V. For every natural
numbers n, m, dom(f(n)) = dom(f(m)). For every element y of Xo such
that y € Xo holds f#y is convergent by [0, (11), (31)], [20, (7), (37)].
Reconsider F' = lim f as a function from X, into R. For every element
y of Xo, F(y) = M;(MeasurableYsection(£,y)) by [21], (80)], [22, (92)],
(49), B, (11)]. O
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Let X1, X2 be non empty sets, S1 be a o-field of subsets of Xy, So be
a o-field of subsets of X5, Ms be a o-measure on So, and E be an element of
o(MeasRect (S, S2)). Assume My is o-finite. The functor Yvol(E, Ms) yielding
a non-negative function from X; into R is defined by

(Def. 13) for every element = of X, it(x) = Ma(MeasurableXsection(E, z)) and
for every element V' of Sy, it is measurable on V.

Let M; be a o-measure on Sy. Assume M is o-finite. The functor Xvol(E, M)
yielding a non-negative function from X» into R is defined by

(Def. 14) for every element y of Xy, it(y) = M;(MeasurableYsection(E,y)) and
for every element V' of So, it is measurable on V.

Now we state the propositions:

(93) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,
a o-field Sy of subsets of X5, a o-measure Ms on Sy, and elements F, Fo
of o(MeasRect(S1,52)). Suppose My is o-finite and E; misses Es. Then
YVOI(El U EQ, MQ) = YVOI(El, Mg) + YVO](EQ, MQ)

PROOF: For every element z of X; such that x € dom Yvol(E; U Ea, M)
holds (Yvol(E1UEs, Ms))(z) = (Yvol(E1, Ma2)+Yvol(Es, Ms))(x) by (26),
(35), [B, (30)]. O

(94) Let us consider non empty sets X1, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of X5, a o-measure M7 on S, and elements Eq, Fo
of o(MeasRect(S1,S2)). Suppose M; is o-finite and F; misses Ep. Then
XVOl(El U Es, Ml) = XVOI(El, Ml) + XVOI(EQ, Ml).

PROOF: For every element x of X3 such that z € dom Xvol(E; U Ey, M)
holds (Xvol(E1UEs, My))(z) = (Xvol(E1, M1)+Xvol(Es, My))(x) by (26),
(35), [5, (30)]. O
Let us consider non empty sets X1, X, a o-field S; of subsets of X, a o-
field Sy of subsets of Xo, a o-measure M; on Si, a o-measure My on Sy, and
elements E7, Fy of o(MeasRect(S1,52)). Now we state the propositions:

(95) Suppose Mj is o-finite and Fj misses Fs. Then [ Yvol(E1UEy, Ms) dM; =
J Yvol(Ey, My)dM; + [ Yvol(Ea, M) dM;. The theorem is a consequence
of (93).
(96) Suppose M is o-finite and Fy misses Fy. Then [ Xvol(E1UEy, M) dMy =
J Xvol(E1, My) dMy+ [ Xvol(E2, My) dMs. The theorem is a consequence
of (94).
Let us consider non empty sets X1, Xo, a o-field S of subsets of X1, a o-field
Sy of subsets of X, a o-measure M7 on S1, a o-measure My on Sy, an element
E of o(MeasRect(S1,.52)), an element A of Sy, and an element B of Ss. Now
we state the propositions:
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(97) Suppose E = A x B and My is o-finite. Then
(i) if M2(B) = +oo0, then Yvol(E, M2) =X, x,, and

(ii) if My(B) # +o0, then there exists a real number r such that r =
M (B) and Yvol(E, M) =r-Xa x,.

The theorem is a consequence of (53).
(98) Suppose E = A x B and M, is o-finite. Then

(i) if M1(A) = +o0, then Xvol(E, M1) = X5 x,, and

(i) if Mi(A) # o0, then there exists a real number r such that r =
M;(A) and Xvol(E, M) =71 -XpB x,-

The theorem is a consequence of (55).

(99) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, an element A of S, and a real number r. If » > 0, then
Jr-XaxdM =r-M(A).

Let us consider non empty sets X1, Xo, a o-field S1 of subsets of Xi, a o-
field S5 of subsets of X5, a o-measure My on Sp, a o-measure Ms on Sy, a finite
sequence F' of elements of o(MeasRect(S1, S2)), and a natural number n. Now
we state the propositions:

(100) Suppose M, is o-finite and F is a finite sequence of elements of MeasRect
(S1,S52). Then (Prodo-Meas(M;y, M2))(F(n)) = [Yvol(F(n), M) dM,;.
The theorem is a consequence of (16), (97), and (99).
(101) Suppose M; is o-finite and F is a finite sequence of elements of MeasRect
(S1,52). Then (Prodo-Meas(My, M2))(F(n)) = [ Xvol(F(n), M;)dMos.
The theorem is a consequence of (16), (98), and (99).
Let us consider non empty sets X, X9, a o-field S7 of subsets of X, a o-field
Sy of subsets of X5, a o-measure M; on Si, a o-measure My on So, a disjoint
valued finite sequence F' of elements of o(MeasRect(S7,952)), and a natural
number n. Now we state the propositions:

(102) Suppose M, is o-finite and F is a finite sequence of elements of MeasRect
(Sl, SQ) Then (PI‘Od U—Meas(Ml, Mg))(u F) = fYVOl(U F, MQ) dMl.
PROOF: Define P[natural number] = (Prod o -Meas(My, M))(U(F[$1)) =
JYvol(U(F[$1), M2) dM;. P[0]. For every natural number k such that
P[k] holds P[k + 1] by [2, (13)], [3, (59)], [19, (55)], [3, (82)]. For every
natural number k, P[k] from [2, Sch. 2]. O

(103) Suppose M; is o-finite and F is a finite sequence of elements of MeasRect
(Sl, SQ) Then (PI‘Od U—Meas(Ml, MQ))(U F) == f XVOI(U F, Ml) dMQ
PROOF: Define P[natural number] = (Prod o -Meas(Mi, Ma))(U(F[$1)) =
J Xvol(U(F'[$1), M1) dMs. P[0]. For every natural number k such that
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P[k] holds P[k + 1] by [2, (13)], 3, (59)], [19, (55)], [3, (82)]. For every
natural number k, P[k] from [2, Sch. 2]. O

Let us consider non empty sets X1, Xo, a o-field S of subsets of X1, a o-field

Sy of subsets of X5, a o-measure M7 on S1, a o-measure My on Sy, an element

E of o(MeasRect(S1,.52)), an element V' of o(MeasRect(S1, 52)), an element A

of S1, and an element B of S5. Now we state the propositions:

(104) Suppose E € the field generated by MeasRect(S1,S2) and My is o-
finite. Then suppose V' = A x B. Then E € {E, where F is an element of
o(MeasRect(S1,52)) : [ Yvol(E NV, My)dM; = (Prod o -Meas(M;, Ms))
(ENYV)}. The theorem is a consequence of (102).

(105) Suppose E € the field generated by MeasRect(S1,S2) and M; is o-
finite. Then suppose V.= A x B. Then E € {E, where E is an element of
o(MeasRect(S1,52)) : [ Xvol(E NV, M;)dM;y = (Prod o -Meas(M;, Ma))
(ENV)}. The theorem is a consequence of (103).

Let us consider non empty sets X1, Xo, a o-field S of subsets of X1, a o-field

So of subsets of X5, a o-measure M; on S1, a o-measure M> on So, an element

V of o(MeasRect(S1,52)), an element A of S1, and an element B of Sy. Now

we state the propositions:

(106) Suppose Mo is o-finite and V' = A x B. Then the field generated by
MeasRect(S1, 52) C {E, where E is an element of o(MeasRect(S7,52)) :
JYvol(ENV, Ms)dM; = (Prod o -Meas(Mi, M2))(ENV)}. The theorem
is a consequence of (7) and (104).

(107) Suppose M; is o-finite and V' = A x B. Then the field generated by
MeasRect(S1, 52) C {E, where FE is an element of o(MeasRect(S1,52)) :
J Xvol(ENV, M;)dM; = (Prod o -Meas(M;, M2))(ENV)}. The theorem
is a consequence of (7) and (105).

(108) Let us consider non empty sets X, Xs, a o-field S; of subsets of X7,
a o-field Sy of subsets of X5, a o-measure My on So, elements E, V
of o(MeasRect(S1,52)), a set sequence P of o(MeasRect(S,S2)), and
an element z of X;. Suppose P is non descending and lim P = E. Then
there exists a sequence K of subsets of Sy such that

(i) K is non descending, and

(ii) for every natural number n, K(n) = MeasurableXsection(P(n),x) N
MeasurableXsection(V, x), and

(iii) lim K = MeasurableXsection(FE, x) N MeasurableXsection(V, z).

The theorem is a consequence of (43), (49), and (30).

(109) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,
a o-field Sy of subsets of X5, a o-measure M; on Si, elements E, V
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of o(MeasRect(S1,52)), a set sequence P of o(MeasRect(S,S2)), and
an element y of Xs. Suppose P is non descending and lim P = E. Then
there exists a sequence K of subsets of S7 such that

(i) K is non descending, and

(ii) for every natural number n, K(n) = MeasurableYsection(P(n),y) N
MeasurableYsection(V, y), and

(iii) lim K = MeasurableYsection(E, y) N MeasurableYsection(V, y).

The theorem is a consequence of (44), (49), and (32).

(110) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,
a o-field Sy of subsets of X5, a o-measure Ms on S5, elements E, V
of o(MeasRect(S1,52)), a set sequence P of o(MeasRect(Si,S2)), and
an element = of X7. Suppose P is non ascending and lim P = E. Then
there exists a sequence K of subsets of S5 such that

(i) K is non ascending, and

(ii) for every natural number n, K(n) = MeasurableXsection(P(n),z) N
MeasurableXsection(V, x), and

(iii) lim K = MeasurableXsection(E, z) N MeasurableXsection(V, x).

The theorem is a consequence of (45), (49), and (31).

(111) Let us consider non empty sets X1, Xo, a o-field S} of subsets of X7,
a o-field Sy of subsets of X5, a o-measure M; on Sp, elements E, V
of o(MeasRect(51,52)), a set sequence P of o(MeasRect(Si,S52)), and
an element y of Xs. Suppose P is non ascending and lim P = E. Then
there exists a sequence K of subsets of S1 such that

(i) K is non ascending, and

(ii) for every natural number n, K(n) = MeasurableYsection(P(n),y) N
MeasurableYsection(V, y), and

(iii) lim K = MeasurableYsection(FE, y) N MeasurableYsection(V, y).

The theorem is a consequence of (46), (49), and (33).

Let us consider non empty sets X, Xo, a o-field S7 of subsets of X1, a o-field
Sy of subsets of X5, a o-measure M7 on S1, a o-measure My on Sy, an element
V of o(MeasRect(S1,52)), an element A of Si, and an element B of S;. Now
we state the propositions:
(112) Suppose M is o-finite and V' = Ax B and (Prod o -Meas(M;, M2))(V) <
+oo and My (B) < 4o0. Then {E, where F is an element of o(MeasRect (51,
S2)) : [ Yvol(ENV, Ms)dM; = (Prod o -Meas(Mi, M2))(ENV)} is a mo-
notone class of X7 x Xs.
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PROOF: Set Z = {F, where E is an element of o(MeasRect(S1,S52)) :
JYvol(ENV, M) dM; = (Prod o-Meas(Mi, Ms))(ENV)}. For every se-
quence A; of subsets of X7 x X5 such that A; is monotone and rng A; C Z
holds lim A; € Z by [10} (3)], [3, (35)], [21}, (63)], [12, (45)]. O

(113) Suppose M is o-finite and V' = Ax B and (Prod o -Meas(M;, M2))(V) <
+oo and M;(A) < 4+00. Then {E, where E is an element of o (MeasRect (51,
S9)) : [Xvol(ENV, M;)dMsy = (Prod o -Meas(M;, M3))(ENV)} is a mo-
notone class of X7 x Xo.
PRrROOF: Set Z = {E, where FE is an element of o(MeasRect(S1,S2)) :
J Xvol(ENV, M;)dM;y = (Prod o -Meas(M;, M2))(ENV)}. For every se-
quence A; of subsets of X7 x X5 such that Ay is monotone and rng A1 C Z
holds lim A; € Z by [10} (3)], [B, (35)], [21}, (63)], [12, (45)]. O

(114) Suppose M; is o-finite and V' = Ax B and (Prod o -Meas(M;, M2))(V) <
+oo and My(B) < 4o00. Then o(MeasRect(S1,52)) C {E, where F is
an element of o(MeasRect(S1,52)) : [ Yvol(ENV, My)dM; =
(Prod o -Meas(M7, M3))(ENV)}. The theorem is a consequence of (112),
(106), (7), and (88).

(115) Suppose M is o-finite and V' = Ax B and (Prod o -Meas(M;, M2))(V) <
+o0o and M;(A) < +4oo. Then o(MeasRect(S1,52)) C {FE, where FE is
an element of o(MeasRect(S1,52)) : [ Xvol(E NV, M;)dMy =
(Prod o -Meas(M;, M3))(ENV)}. The theorem is a consequence of (113),
(107), (7), and (88).

(116) Let us consider sets X, Y, a sequence A of subsets of X, a sequence
B of subsets of Y, and a sequence C' of subsets of X x Y. Suppose A is
non descending and B is non descending and for every natural number n,

C(n) = A(n) x B(n). Then

(i) C is non descending and convergent, and

(i) UJC=UAxUB.
PROOF: For every natural numbers n, m such that n < m holds C(n) C
C(m) by [13}, (96)]. O

(117) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,

a o-field Sy of subsets of X5, a o-measure M7 on Si, a o-measure M5 on
S, and an element E of o(MeasRect(S7,52)). Suppose M; is o-finite and
My is o-finite. Then [Yvol(E, M) dM; = (Prod o -Meas(M;, Ms))(E).
ProOF: Consider A being a set sequence of S7 such that A is non de-
scending and for every natural number n, M;(A(n)) < +oo and lim A =

X;. Consider B being a set sequence of Sy such that B is non descen-
ding and for every natural number n, My(B(n)) < 400 and lim B =
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Xs. Define C(element of N) = A($;) x B($1). Consider C being a func-
tion from N into 2%X1*X2 such that for every element n of N, C(n) =
C(n) from [II, Sch. 4]. For every natural number n, C(n) = A(n) x
B(n). For every natural number n, C(n) € o(MeasRect(S1,S52)). For
every natural numbers n, m such that n < m holds C(n) C C(m) by
[13, (96)]. For every natural number n, (Prod o -Meas(M;, M2))(C(n)) <
+oo by (16), [6, (51)]. Set C1 = E N C. For every object n such that
n € N holds Ci(n) € o(MeasRect(S1,S2)). For every natural number n,
JYvol(E N C(n), Ma)dM; = (Prodo-Meas(M1, M2))(E N C(n)). Defi-
ne Plelement of N,object] = $2 = Yvol(E N C(8$1), Mz). For every ele-
ment n of N, there exists an element f of X;—>R such that P[n, f] by
[12, (45)]. Consider F being a function from N into X;—>R such that
for every element n of N, P[n, F(n)] from [I1, Sch. 3]. For every na-
tural number n, F(n) = Yvol(E N C(n), M>). Reconsider X3 = X; as
an element of S7. For every natural number n and for every element x
of Xy, (F#x)(n) = (Yvol(ENC(n), Ms2))(x). For every natural numbers
n, m, dom(F(n)) = dom(F(m)). For every natural number n, F(n) is
measurable on Xj. For every natural numbers n, m such that n < m
for every element x of X; such that x € X3 holds F(n)(x) < F(m)(z)
by (20), [, (31)]. For every element x of X; such that =z € X3 holds
F#x is convergent by [20, (7), (37)]. Consider I being a sequence of
extended reals such that for every natural number n, I(n) = [ F(n)dM;
and I is convergent and [lim FF'dM; = lim[. For every element z of
X1 such that z € domlim F' holds (lim F')(z) = (Yvol(E, M2))(x) by
(116), (108), (27), [10, (13)]. Set J = E N C. For every object n such
that n € N holds J(n) € o(MeasRect(S1,52)). Prod o -Meas(Mj, Ms) is
a o-measure on o(MeasRect(S1,52)). For every element n of N, I(n) =
(Prod o -Meas(My, Ms).J)(n) by [10, (13)]. O

(118) FUBINI'S THEOREM:

Let us consider non empty sets X1, Xo, a o-field Sy of subsets of X1, a o-
field Sy of subsets of X5, a o-measure My on Sp, a o-measure Mo on So,
and an element E of o(MeasRect(S1,52)). Suppose M is o-finite and My
is o-finite. Then [ Xvol(E, M;)dMs = (Prod o -Meas(M;, Ms))(E).

PRrOOF: Consider A being a set sequence of S; such that A is non de-
scending and for every natural number n, M;(A(n)) < +oo and lim A =
X;. Consider B being a set sequence of Sy such that B is non descen-
ding and for every natural number n, My(B(n)) < 400 and lim B =
Xs. Define C(element of N) = A($1) x B($1). Consider C being a func-
tion from N into 2%1*X2 such that for every element n of N, C(n) =
C(n) from [II, Sch. 4]. For every natural number n, C(n) = A(n) x
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B(n). For every natural number n, C(n) € o(MeasRect(S1,S2)). For
every natural numbers n, m such that n < m holds C(n) C C(m) by
[13, (96)]. For every natural number n, (Prod o -Meas(M7, M2))(C(n)) <
+oo by (16), [6, (51)]. Set C1 = E N C. For every object n such that
n € N holds C;(n) € o(MeasRect(S1,52)). For every natural number n,
JXvol(E N C(n), My)dMs = (Prodo-Meas(Mi, M2))(E N C(n)). Defi-
ne Plelement of N,object] = $2 = Xvol(E N C(8$1), M;). For every ele-
ment n of N, there exists an element f of Xy->R such that P[n, f] by
[12, (45)]. Consider F being a function from N into X;—>R such that
for every element n of N, P[n, F(n)] from [11, Sch. 3]. For every na-
tural number n, F(n) = Xvol(E N C(n), M1). Reconsider X3 = X as
an element of S;. For every natural number n and for every element =z
of Xy, (F#zx)(n) = (Xvol(ENC(n),M;))(x). For every natural numbers
n, m, dom(F(n)) = dom(F(m)). For every natural number n, F(n) is
measurable on X3. For every natural numbers n, m such that n < m
for every element x of X5 such that x € X3 holds F(n)(x) < F(m)(z)
by (21), [5, (31)]. For every element = of X5 such that x € X3 holds
F#x is convergent by [20, (7), (37)]. Consider I being a sequence of
extended reals such that for every natural number n, I(n) = [ F(n)dM;
and I is convergent and [lim F'dMy; = lim . For every element z of
Xy such that z € domlim F holds (lim F)(z) = (Xvol(E, M))(z) by
(116), (109), (27), [10, (13)]. Set J = E N C. For every object n such
that n € N holds J(n) € o(MeasRect(S,52)). Prod o -Meas(M;, M>) is
a o-measure on o(MeasRect(S1,52)). For every element n of N, I(n) =
(Prod o -Meas(My, Ms).J)(n) by [10, (13)]. O
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