

Fubini's Theorem on Measure

Noboru Endou National Institute of Technology, Gifu College 2236-2 Kamimakuwa, Motosu, Gifu, Japan

Summary. The purpose of this article is to show Fubini's theorem on measure [16], [4], [7], [15], [18]. Some theorems have the possibility of slight generalization, but we have priority to avoid the complexity of the description. First of all, for the product measure constructed in [14], we show some theorems. Then we introduce the section which plays an important role in Fubini's theorem, and prove the relevant proposition. Finally we show Fubini's theorem on measure.

MSC: 28A35 03B35

Keywords: Fubini's theorem; product measure

 MML identifier: <code>MEASUR11</code>, version: <code>8.1.05 5.40.1286</code>

1. Preliminaries

Now we state the propositions:

- (1) Let us consider a disjoint valued finite sequence F, and natural numbers n, m. If n < m, then $\bigcup \operatorname{rng}(F \upharpoonright n)$ misses F(m).
- (2) Let us consider a finite sequence F, and natural numbers m, n. Suppose $m \leq n$. Then $\operatorname{len}(F \upharpoonright m) \leq \operatorname{len}(F \upharpoonright n)$.
- (3) Let us consider a finite sequence F, and a natural number n. Then $\bigcup \operatorname{rng}(F \upharpoonright n) \cup F(n+1) = \bigcup \operatorname{rng}(F \upharpoonright (n+1))$. The theorem is a consequence of (2).
- (4) Let us consider a disjoint valued finite sequence F, and a natural number n. Then $\bigcup (F \upharpoonright n)$ misses F(n+1).
- (5) Let us consider a set P, and a finite sequence F. Suppose P is \cup -closed and $\emptyset \in P$ and for every natural number n such that $n \in \text{dom } F$ holds $F(n) \in P$. Then $\bigcup F \in P$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \bigcup \operatorname{rng}(F | \$_1) \in P$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [2, (13)], [3, (59)], [19, (55)], [3, (82)]. For every natural number $k, \mathcal{P}[k]$ from [2, Sch. 2]. \Box

Let A, X be sets. Observe that the functor $\chi_{A,X}$ yields a function from Xinto $\overline{\mathbb{R}}$. Let X be a non empty set, S be a σ -field of subsets of X, and F be a finite sequence of elements of S. Let us observe that the functor $\bigcup F$ yields an element of S. Let F be a sequence of S. Let us note that the functor $\bigcup F$ yields an element of S. Let F be a finite sequence of elements of $X \rightarrow \overline{\mathbb{R}}$ and xbe an element of X. The functor F # x yielding a finite sequence of elements of $\overline{\mathbb{R}}$ is defined by

(Def. 1) dom it = dom F and for every element n of \mathbb{N} such that $n \in \text{dom } it$ holds it(n) = F(n)(x).

Now we state the proposition:

(6) Let us consider a non empty set X, a non empty family S of subsets of X, a finite sequence f of elements of S, and a finite sequence F of elements of $X \rightarrow \overline{\mathbb{R}}$. Suppose dom f = dom F and f is disjoint valued and for every natural number n such that $n \in \text{dom } F$ holds $F(n) = \chi_{f(n),X}$. Let us consider an element x of X. Then $\chi_{\lfloor f,X}(x) = \sum (F \# x)$.

2. Product Measure and Product σ -measure

Now we state the proposition:

(7) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , and a σ -field S_2 of subsets of X_2 . Then $\sigma(\text{DisUnion MeasRect}(S_1, S_2)) = \sigma(\text{MeasRect}(S_1, S_2)).$

Let X_1, X_2 be non empty sets, S_1 be a σ -field of subsets of X_1, S_2 be a σ -field of subsets of X_2, M_1 be a σ -measure on S_1 , and M_2 be a σ -measure on S_2 . The functor ProdMeas (M_1, M_2) yielding an induced measure of MeasRect (S_1, S_2) and ProdpreMeas (M_1, M_2) is defined by

(Def. 2) for every set E such that $E \in$ the field generated by MeasRect (S_1, S_2) for every disjoint valued finite sequence F of elements of MeasRect (S_1, S_2) such that $E = \bigcup F$ holds $it(E) = \sum (\operatorname{ProdpreMeas}(M_1, M_2) \cdot F)$.

The functor $\operatorname{Prod} \sigma$ -Meas (M_1, M_2) yielding an induced σ -measure of Meas $\operatorname{Rect}(S_1, S_2)$ and $\operatorname{ProdMeas}(M_1, M_2)$ is defined by the term

(Def. 3) σ -Meas(the Caratheodory measure determined by ProdMeas (M_1, M_2)) $\upharpoonright \sigma$ (MeasRect (S_1, S_2)).

Now we state the propositions:

- (8) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , and a σ -measure M_2 on S_2 . Then Prod σ -Meas (M_1, M_2) is a σ -measure on $\sigma(\text{MeasRect}(S_1, S_2))$. The theorem is a consequence of (7).
- (9) Let us consider non empty sets X₁, X₂, a σ-field S₁ of subsets of X₁, a σ-field S₂ of subsets of X₂, a set sequence F₁ of S₁, a set sequence F₂ of S₂, and a natural number n. Then F₁(n) × F₂(n) is an element of σ(MeasRect(S₁, S₂)). The theorem is a consequence of (7).
- (10) Let us consider sets X_1 , X_2 , a sequence F_1 of subsets of X_1 , a sequence F_2 of subsets of X_2 , and a natural number n. Suppose F_1 is non descending and F_2 is non descending. Then $F_1(n) \times F_2(n) \subseteq F_1(n+1) \times F_2(n+1)$.
- (11) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , an element A of S_1 , and an element B of S_2 . Then $(\operatorname{ProdMeas}(M_1, M_2))(A \times B) = M_1(A) \cdot M_2(B)$.
- (12) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , a set sequence F_1 of S_1 , a set sequence F_2 of S_2 , and a natural number n. Then $(\operatorname{ProdMeas}(M_1, M_2))(F_1(n) \times F_2(n)) = M_1(F_1(n)) \cdot M_2(F_2(n)))$. The theorem is a consequence of (11).
- (13) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , a finite sequence F_1 of elements of S_1 , a finite sequence F_2 of elements of S_2 , and a natural number n. Suppose $n \in \text{dom } F_1$ and $n \in \text{dom } F_2$. Then $(\text{ProdMeas}(M_1, M_2))(F_1(n) \times F_2(n)) = M_1(F_1(n)) \cdot M_2(F_2(n)).$
- (14) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , and a subset E of $X_1 \times X_2$. Then (the Caratheodory measure determined by $\operatorname{ProdMeas}(M_1, M_2))(E) = \inf \operatorname{Svc}(\operatorname{ProdMeas}(M_1, M_2), E)$.
- (15) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , and a σ -measure M_2 on S_2 . Then $\sigma(\text{MeasRect}(S_1, S_2)) \subseteq \sigma$ -Field(the Caratheodory measure determined by $\text{ProdMeas}(M_1, M_2)$). The theorem is a consequence of (7).
- (16) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , an element E of σ (MeasRect (S_1, S_2)), an element A of S_1 , and an element B of S_2 . Suppose $E = A \times B$. Then $(\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2))(E) = M_1(A) \cdot M_2(B)$. The theorem is a consequence of (15) and (11).
- (17) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 ,

a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , a set sequence F_1 of S_1 , a set sequence F_2 of S_2 , and a natural number n. Then $(\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2))(F_1(n) \times F_2(n)) = M_1(F_1(n)) \cdot M_2(F_2(n))$. The theorem is a consequence of (9), (15), and (12).

- (18) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , and elements E_1 , E_2 of σ (MeasRect (S_1, S_2)). Suppose E_1 misses E_2 . Then $(\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2))(E_1 \cup E_2) = (\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2))(E_1) + (\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2))(E_2)$. The theorem is a consequence of (8).
- (19) Let us consider sets X_1 , X_2 , A, B, a sequence F_1 of subsets of X_1 , a sequence F_2 of subsets of X_2 , and a sequence F of subsets of $X_1 \times X_2$. Suppose F_1 is non descending and $\lim F_1 = A$ and F_2 is non descending and $\lim F_2 = B$ and for every natural number n, $F(n) = F_1(n) \times F_2(n)$. Then $\lim F = A \times B$. The theorem is a consequence of (10).

3. Sections

Let X be a set, Y be a non empty set, E be a subset of $X \times Y$, and x be a set. The functor $\operatorname{Xsection}(E, x)$ yielding a subset of Y is defined by the term

- (Def. 4) $\{y, \text{ where } y \text{ is an element of } Y : \langle x, y \rangle \in E \}$. Let X be a non empty set, Y be a set, and y be a set. The functor Ysection(E, y) yielding a subset of X is defined by the term
- (Def. 5) $\{x, \text{ where } x \text{ is an element of } X : \langle x, y \rangle \in E \}.$ Now we state the propositions:
 - (20) Let us consider a set X, a non empty set Y, subsets E_1 , E_2 of $X \times Y$, and a set p. Suppose $E_1 \subseteq E_2$. Then $\operatorname{Xsection}(E_1, p) \subseteq \operatorname{Xsection}(E_2, p)$.
 - (21) Let us consider a non empty set X, a set Y, subsets E_1 , E_2 of $X \times Y$, and a set p. Suppose $E_1 \subseteq E_2$. Then $\operatorname{Ysection}(E_1, p) \subseteq \operatorname{Ysection}(E_2, p)$.
 - (22) Let us consider non empty sets X, Y, a subset A of X, a subset B of Y, and a set p. Then
 - (i) if $p \in A$, then $\operatorname{Xsection}(A \times B, p) = B$, and
 - (ii) if $p \notin A$, then $\operatorname{Xsection}(A \times B, p) = \emptyset$, and
 - (iii) if $p \in B$, then $\operatorname{Ysection}(A \times B, p) = A$, and
 - (iv) if $p \notin B$, then $\operatorname{Ysection}(A \times B, p) = \emptyset$.
 - (23) Let us consider non empty sets X, Y, a subset E of $X \times Y$, and a set p. Then
 - (i) if $p \notin X$, then $\operatorname{Xsection}(E, p) = \emptyset$, and

- (ii) if $p \notin Y$, then $\operatorname{Ysection}(E, p) = \emptyset$.
- (24) Let us consider non empty sets X, Y, and a set p. Then
 - (i) Xsection($\emptyset_{X \times Y}, p$) = \emptyset , and
 - (ii) $\operatorname{Ysection}(\emptyset_{X \times Y}, p) = \emptyset$, and
 - (iii) if $p \in X$, then $\operatorname{Xsection}(\Omega_{X \times Y}, p) = Y$, and
 - (iv) if $p \in Y$, then $\operatorname{Ysection}(\Omega_{X \times Y}, p) = X$.

The theorem is a consequence of (22).

- (25) Let us consider non empty sets X, Y, a subset E of $X \times Y$, and a set p. Then
 - (i) if $p \in X$, then $\operatorname{Xsection}(X \times Y \setminus E, p) = Y \setminus \operatorname{Xsection}(E, p)$, and
 - (ii) if $p \in Y$, then $\operatorname{Ysection}(X \times Y \setminus E, p) = X \setminus \operatorname{Ysection}(E, p)$.
- Let us consider non empty sets X, Y, subsets E_1 , E_2 of $X \times Y$, and a set p.
- (i) $\operatorname{Xsection}(E_1 \cup E_2, p) = \operatorname{Xsection}(E_1, p) \cup \operatorname{Xsection}(E_2, p)$, and (26)
 - (ii) $\operatorname{Ysection}(E_1 \cup E_2, p) = \operatorname{Ysection}(E_1, p) \cup \operatorname{Ysection}(E_2, p).$
- (27)(i) $\operatorname{Xsection}(E_1 \cap E_2, p) = \operatorname{Xsection}(E_1, p) \cap \operatorname{Xsection}(E_2, p)$, and (ii) $\operatorname{Ysection}(E_1 \cap E_2, p) = \operatorname{Ysection}(E_1, p) \cap \operatorname{Ysection}(E_2, p).$ Now we state the propositions:

- (28) Let us consider a set X, a non empty set Y, a finite sequence F of elements of $2^{X \times Y}$, a finite sequence F_4 of elements of 2^Y , and a set p. Suppose dom $F = \text{dom } F_4$ and for every natural number n such that $n \in \text{dom } F_4$ holds $F_4(n) = \text{Xsection}(F(n), p)$. Then $\text{Xsection}(\bigcup \operatorname{rng} F, p) = \bigcup \operatorname{rng} F_4$.
- (29) Let us consider a non empty set X, a set Y, a finite sequence F of elements of $2^{X \times Y}$, a finite sequence F_3 of elements of 2^X , and a set p. Suppose dom $F = \text{dom } F_3$ and for every natural number n such that $n \in \text{dom } F_3$ holds $F_3(n) =$ Ysection(F(n), p). Then Ysection $(\bigcup \operatorname{rng} F, p) = \bigcup \operatorname{rng} F_3$.

Let us consider a set X, a non empty set Y, a set p, a sequence F of subsets of $X \times Y$, and a sequence F_4 of subsets of Y. Now we state the propositions:

- (30) If for every natural number $n, F_4(n) = \text{Xsection}(F(n), p),$ then $\operatorname{Xsection}(\bigcup \operatorname{rng} F, p) = \bigcup \operatorname{rng} F_4$.
- (31) If for every natural number $n, F_4(n) = \text{Xsection}(F(n), p),$ then $\operatorname{Xsection}(\bigcap \operatorname{rng} F, p) = \bigcap \operatorname{rng} F_4.$

Let us consider a non empty set X, a set Y, a set p, a sequence F of subsets of $X \times Y$, and a sequence F_3 of subsets of X. Now we state the propositions:

(32) If for every natural number $n, F_3(n) = \text{Ysection}(F(n), p)$, then $\operatorname{Ysection}(\bigcup \operatorname{rng} F, p) = \bigcup \operatorname{rng} F_3$.

- (33) If for every natural number $n, F_3(n) = \text{Ysection}(F(n), p)$, then $\text{Ysection}(\bigcap \operatorname{rng} F, p) = \bigcap \operatorname{rng} F_3$.
- (34) Let us consider non empty sets X, Y, sets x, y, and a subset E of $X \times Y$. Then
 - (i) $\chi_{E,X\times Y}(x,y) = \chi_{\operatorname{Xsection}(E,x),Y}(y)$, and
 - (ii) $\chi_{E,X\times Y}(x,y) = \chi_{\operatorname{Ysection}(E,y),X}(x).$
- (35) Let us consider non empty sets X, Y, subsets E_1 , E_2 of $X \times Y$, and a set p. Suppose E_1 misses E_2 . Then
 - (i) $\operatorname{Xsection}(E_1, p)$ misses $\operatorname{Xsection}(E_2, p)$, and
 - (ii) $\operatorname{Ysection}(E_1, p)$ misses $\operatorname{Ysection}(E_2, p)$.
- (36) Let us consider non empty sets X, Y, a disjoint valued finite sequence F of elements of $2^{X \times Y}$, and a set p. Then
 - (i) there exists a disjoint valued finite sequence F_4 of elements of 2^X such that dom $F = \text{dom } F_4$ and for every natural number n such that $n \in \text{dom } F_4$ holds $F_4(n) = \text{Ysection}(F(n), p)$, and
 - (ii) there exists a disjoint valued finite sequence F_3 of elements of 2^Y such that dom $F = \text{dom } F_3$ and for every natural number n such that $n \in \text{dom } F_3$ holds $F_3(n) = \text{Xsection}(F(n), p)$.

PROOF: There exists a disjoint valued finite sequence F_4 of elements of 2^X such that dom $F = \text{dom } F_4$ and for every natural number n such that $n \in \text{dom } F_4$ holds $F_4(n) = \text{Ysection}(F(n), p)$ by (35), [19, (29)]. There exists a disjoint valued finite sequence F_3 of elements of 2^Y such that dom $F = \text{dom } F_3$ and for every natural number n such that $n \in \text{dom } F_3$ holds $F_3(n) = \text{Xsection}(F(n), p)$ by (35), [19, (29)]. \Box

- (37) Let us consider non empty sets X, Y, a disjoint valued sequence F of subsets of $X \times Y$, and a set p. Then
 - (i) there exists a disjoint valued sequence F_4 of subsets of X such that for every natural number n, $F_4(n) = \text{Ysection}(F(n), p)$, and
 - (ii) there exists a disjoint valued sequence F_3 of subsets of Y such that for every natural number n, $F_3(n) = \text{Xsection}(F(n), p)$.

PROOF: There exists a disjoint valued sequence F_4 of subsets of X such that for every natural number $n, F_4(n) = \text{Ysection}(F(n), p)$. Define $\mathcal{A}(\text{natural number}) = \text{Xsection}(F(\$_1), p)$. Consider F_3 being a sequence of subsets of Y such that for every element n of $\mathbb{N}, F_3(n) = \mathcal{A}(n)$ from [11, Sch. 4]. \Box

(38) Let us consider non empty sets X, Y, sets x, y, and subsets E_1 , E_2 of $X \times Y$. Suppose E_1 misses E_2 . Then

- (i) $\chi_{E_1 \cup E_2, X \times Y}(x, y) = \chi_{\operatorname{Xsection}(E_1, x), Y}(y) + \chi_{\operatorname{Xsection}(E_2, x), Y}(y)$, and
- (ii) $\chi_{E_1 \cup E_2, X \times Y}(x, y) = \chi_{\operatorname{Ysection}(E_1, y), X}(x) + \chi_{\operatorname{Ysection}(E_2, y), X}(x).$

The theorem is a consequence of (35), (34), and (26).

- (39) Let us consider a set X, a non empty set Y, a set x, a sequence E of subsets of $X \times Y$, and a sequence G of subsets of Y. Suppose E is non descending and for every natural number n, G(n) = Xsection(E(n), x). Then G is non descending. The theorem is a consequence of (20).
- (40) Let us consider a non empty set X, a set Y, a set x, a sequence E of subsets of $X \times Y$, and a sequence G of subsets of X. Suppose E is non descending and for every natural number n, G(n) = Ysection(E(n), x). Then G is non descending. The theorem is a consequence of (21).
- (41) Let us consider a set X, a non empty set Y, a set x, a sequence E of subsets of $X \times Y$, and a sequence G of subsets of Y. Suppose E is non ascending and for every natural number n, G(n) = Xsection(E(n), x). Then G is non ascending. The theorem is a consequence of (20).
- (42) Let us consider a non empty set X, a set Y, a set x, a sequence E of subsets of $X \times Y$, and a sequence G of subsets of X. Suppose E is non ascending and for every natural number n, G(n) = Ysection(E(n), x). Then G is non ascending. The theorem is a consequence of (21).
- (43) Let us consider a set X, a non empty set Y, a sequence E of subsets of $X \times Y$, and a set x. Suppose E is non descending. Then there exists a sequence G of subsets of Y such that

(i) G is non descending, and

(ii) for every natural number n, G(n) = Xsection(E(n), x).

PROOF: Define $\mathcal{F}(\text{natural number}) = \text{Xsection}(E(\$_1), x)$. Consider G being a function from \mathbb{N} into 2^Y such that for every element n of \mathbb{N} , $G(n) = \mathcal{F}(n)$ from [11, Sch. 4]. For every natural number n, G(n) = Xsection(E(n), x). \Box

- (44) Let us consider a non empty set X, a set Y, a sequence E of subsets of $X \times Y$, and a set x. Suppose E is non descending. Then there exists a sequence G of subsets of X such that
 - (i) G is non descending, and

(ii) for every natural number n, G(n) = Ysection(E(n), x).

PROOF: Define $\mathcal{F}(\text{natural number}) = \text{Ysection}(E(\$_1), x)$. Consider G being a function from N into 2^X such that for every element n of N, $G(n) = \mathcal{F}(n)$ from [11, Sch. 4]. For every natural number n, G(n) = Ysection(E(n), x). \Box

- (45) Let us consider a set X, a non empty set Y, a sequence E of subsets of $X \times Y$, and a set x. Suppose E is non ascending. Then there exists a sequence G of subsets of Y such that
 - (i) G is non ascending, and
 - (ii) for every natural number n, G(n) = Xsection(E(n), x).

PROOF: Define $\mathcal{F}(\text{natural number}) = \text{Xsection}(E(\$_1), x)$. Consider G being a function from \mathbb{N} into 2^Y such that for every element n of \mathbb{N} , $G(n) = \mathcal{F}(n)$ from [11, Sch. 4]. For every natural number n, G(n) = Xsection(E(n), x). \Box

- (46) Let us consider a non empty set X, a set Y, a sequence E of subsets of $X \times Y$, and a set x. Suppose E is non ascending. Then there exists a sequence G of subsets of X such that
 - (i) G is non ascending, and
 - (ii) for every natural number n, G(n) = Ysection(E(n), x).

PROOF: Define $\mathcal{F}(\text{natural number}) = \text{Ysection}(E(\$_1), x)$. Consider G being a function from \mathbb{N} into 2^X such that for every element n of \mathbb{N} , $G(n) = \mathcal{F}(n)$ from [11, Sch. 4]. For every natural number n, G(n) = Ysection(E(n), x). \Box

4. Measurable Sections

Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , an element E of σ (MeasRect (S_1, S_2)), and a set K. Now we state the propositions:

- (47) Suppose $K = \{C, \text{ where } C \text{ is a subset of } X_1 \times X_2 : \text{ for every set } p, Xsection(C, p) \in S_2\}$. Then
 - (i) the field generated by MeasRect $(S_1, S_2) \subseteq K$, and
 - (ii) K is a σ -field of subsets of $X_1 \times X_2$.

PROOF: For every set x, Xsection $(\emptyset_{X_1 \times X_2}, x) \in S_2$ by (24), [5, (7)]. For every subset C of $X_1 \times X_2$ such that $C \in K$ holds $C^c \in K$ by [17, (5), (6)], (25), (23). \Box

- (48) Suppose $K = \{C, \text{ where } C \text{ is a subset of } X_1 \times X_2 : \text{ for every set } p, \text{ Ysection}(C, p) \in S_1\}$. Then
 - (i) the field generated by MeasRect $(S_1, S_2) \subseteq K$, and
 - (ii) K is a σ -field of subsets of $X_1 \times X_2$.

PROOF: For every set y, Ysection $(\emptyset_{X_1 \times X_2}, y) \in S_1$ by (24), [5, (7)]. For every subset C of $X_1 \times X_2$ such that $C \in K$ holds $C^c \in K$ by [17, (5), (6)], (25), (23). \Box

- (49) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , and an element E of $\sigma(\text{MeasRect}(S_1, S_2))$. Then
 - (i) for every set p, Xsection $(E, p) \in S_2$, and
 - (ii) for every set p, $\operatorname{Ysection}(E, p) \in S_1$.

The theorem is a consequence of (47) and (48).

Let X_1 , X_2 be non empty sets, S_1 be a σ -field of subsets of X_1 , S_2 be a σ -field of subsets of X_2 , E be an element of σ (MeasRect (S_1, S_2)), and x be a set. The functor MeasurableXsection(E, x) yielding an element of S_2 is defined by the term

(Def. 6) $\operatorname{Xsection}(E, x)$.

Let y be a set. The functor MeasurableYsection(E, y) yielding an element of S_1 is defined by the term

(Def. 7) $\operatorname{Ysection}(E, y)$.

Now we state the propositions:

- (50) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a finite sequence F of elements of σ (MeasRect(S_1 , S_2)), a finite sequence F_4 of elements of S_2 , and a set p. Suppose dom $F = \text{dom } F_4$ and for every natural number n such that $n \in \text{dom } F_4$ holds $F_4(n) = \text{MeasurableXsection}(F(n), p)$. Then MeasurableXsection($\bigcup F, p$) = $\bigcup F_4$. The theorem is a consequence of (28).
- (51) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a finite sequence F of elements of σ (MeasRect(S_1 , S_2)), a finite sequence F_3 of elements of S_1 , and a set p. Suppose dom $F = \text{dom } F_3$ and for every natural number n such that $n \in \text{dom } F_3$ holds $F_3(n) = \text{MeasurableYsection}(F(n), p)$. Then MeasurableYsection($\bigcup F, p$) = $\bigcup F_3$. The theorem is a consequence of (29).
- (52) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_2 on S_2 , an element A of S_1 , an element B of S_2 , and an element x of X_1 . Then $M_2(B) \cdot \chi_{A,X_1}(x) = \int \operatorname{curry}(\chi_{A \times B, X_1 \times X_2}, x) \, \mathrm{d}M_2$. PROOF: For every element y of X_2 , $(\operatorname{curry}(\chi_{A \times B, X_1 \times X_2}, x))(y) = \chi_{A,X_1}(x) \cdot \chi_{B,X_2}(y)$. \Box
- (53) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_2 on S_2 , an element E of

 $\sigma(\text{MeasRect}(S_1, S_2))$, an element A of S_1 , an element B of S_2 , and an element x of X_1 . Suppose $E = A \times B$. Then $M_2(\text{MeasurableXsection}(E, x)) = M_2(B) \cdot \chi_{A,X_1}(x)$. The theorem is a consequence of (22).

- (54) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , an element A of S_1 , an element B of S_2 , and an element y of X_2 . Then $M_1(A) \cdot \chi_{B,X_2}(y) = \int \operatorname{curry}'(\chi_{A \times B, X_1 \times X_2}, y) \, \mathrm{d}M_1$. PROOF: For every element x of X_1 , $(\operatorname{curry}'(\chi_{A \times B, X_1 \times X_2}, y))(x) = \chi_{A,X_1}(x) \cdot \chi_{B,X_2}(y)$. \Box
- (55) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , an element E of σ (MeasRect (S_1, S_2)), an element A of S_1 , an element B of S_2 , and an element y of X_2 . Suppose $E = A \times B$. Then M_1 (MeasurableYsection(E, y)) = $M_1(A) \cdot \chi_{B,X_2}(y)$. The theorem is a consequence of (22).

5. FINITE SEQUENCE OF FUNCTIONS

Let X, Y be non empty sets, G be a non empty set of functions from X to Y, F be a finite sequence of elements of G, and n be a natural number. Observe that the functor F_n yields an element of G. Let X be a set and F be a finite sequence of elements of $\overline{\mathbb{R}}^X$. We say that F is (without $+\infty$)-valued if and only if

(Def. 8) for every natural number n such that $n \in \text{dom } F$ holds F(n) is without $+\infty$.

We say that F is (without $-\infty$)-valued if and only if

(Def. 9) for every natural number n such that $n \in \text{dom } F$ holds F(n) is without $-\infty$.

Now we state the proposition:

- (56) Let us consider a non empty set X. Then
 - (i) $\langle X \longmapsto 0 \rangle$ is a finite sequence of elements of $\overline{\mathbb{R}}^X$, and
 - (ii) for every natural number n such that $n \in \operatorname{dom}(X \longmapsto 0)$ holds $\langle X \longmapsto 0 \rangle(n)$ is without $+\infty$, and
 - (iii) for every natural number n such that $n \in \operatorname{dom}(X \longmapsto 0)$ holds $\langle X \longmapsto 0 \rangle(n)$ is without $-\infty$.

Let X be a non empty set. One can verify that there exists a finite sequence of elements of $\overline{\mathbb{R}}^X$ which is (without $+\infty$)-valued and (without $-\infty$)-valued.

- (57) Let us consider a non empty set X, a (without $+\infty$)-valued finite sequence F of elements of $\overline{\mathbb{R}}^X$, and a natural number n. If $n \in \text{dom } F$, then $(F_n)^{-1}(\{+\infty\}) = \emptyset$.
- (58) Let us consider a non empty set X, a (without $-\infty$)-valued finite sequence F of elements of $\overline{\mathbb{R}}^X$, and a natural number n. If $n \in \operatorname{dom} F$, then $(F_n)^{-1}(\{-\infty\}) = \emptyset$.
- (59) Let us consider a non empty set X, and a finite sequence F of elements of $\overline{\mathbb{R}}^X$. Suppose F is (without $+\infty$)-valued or (without $-\infty$)-valued. Let us consider natural numbers n, m. If $n, m \in \text{dom } F$, then $\text{dom}(F_n + F_m) = X$. The theorem is a consequence of (57) and (58).

Let X be a non empty set and F be a finite sequence of elements of $\overline{\mathbb{R}}^X$. We say that F is summable if and only if

(Def. 10) F is (without $+\infty$)-valued or (without $-\infty$)-valued.

Observe that there exists a finite sequence of elements of $\overline{\mathbb{R}}^X$ which is summable.

Let F be a summable finite sequence of elements of $\overline{\mathbb{R}}^X$. The functor $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa\in\mathbb{N}}$ yielding a finite sequence of elements of $\overline{\mathbb{R}}^X$ is defined by

(Def. 11) len F = len it and F(1) = it(1) and for every natural number n such that $1 \leq n < \text{len } F$ holds $it(n+1) = it_n + F_{n+1}$.

One can check that every finite sequence of elements of $\overline{\mathbb{R}}^X$ which is (without $+\infty$)-valued is also summable and every finite sequence of elements of $\overline{\mathbb{R}}^X$ which is (without $-\infty$)-valued is also summable.

Now we state the propositions:

(60) Let us consider a non empty set X, and a (without $+\infty$)-valued finite sequence F of elements of $\overline{\mathbb{R}}^X$. Then $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa\in\mathbb{N}}$ is (without $+\infty$)-valued.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{if } \$_1 \in \text{dom}(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}, \text{ then } (\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(\$_1) \text{ is without } +\infty.$ For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [19, (29)], [2, (14)], [19, (25)], [2, (13)]. For every natural number $n, \mathcal{P}[n]$ from [2, Sch. 2]. \Box

(61) Let us consider a non empty set X, and a (without $-\infty$)-valued finite sequence F of elements of $\overline{\mathbb{R}}^X$. Then $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa\in\mathbb{N}}$ is (without $-\infty$)-valued.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{if } \$_1 \in \text{dom}(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}, \text{ then } (\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(\$_1) \text{ is without } -\infty.$ For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [19, (29)], [2, (14)], [19, (25)], [2, (13)]. For every natural number $n, \mathcal{P}[n]$ from [2, Sch. 2]. \Box

- (62) Let us consider a non empty set X, a set A, an extended real e, and a function f from X into $\overline{\mathbb{R}}$. Suppose for every element x of X, $f(x) = e \cdot \chi_{A,X}(x)$. Then
 - (i) if $e = +\infty$, then $f = \overline{\chi}_{A,X}$, and
 - (ii) if $e = -\infty$, then $f = -\overline{\chi}_{A,X}$, and
 - (iii) if $e \neq +\infty$ and $e \neq -\infty$, then there exists a real number r such that r = e and $f = r \cdot \chi_{A,X}$.
- (63) Let us consider a non empty set X, a σ -field S of subsets of X, a partial function f from X to $\overline{\mathbb{R}}$, and an element A of S. Suppose f is measurable on A and $A \subseteq \text{dom } f$. Then -f is measurable on A.

Let X be a non empty set and f be a without $-\infty$ partial function from X to $\overline{\mathbb{R}}$. Observe that -f is without $+\infty$.

Let f be a without $+\infty$ partial function from X to \mathbb{R} . One can check that -f is without $-\infty$.

Let f_1 , f_2 be without $+\infty$ partial functions from X to \mathbb{R} . Let us note that the functor $f_1 + f_2$ yields a without $+\infty$ partial function from X to $\overline{\mathbb{R}}$. Let f_1 , f_2 be without $-\infty$ partial functions from X to $\overline{\mathbb{R}}$. Note that the functor $f_1 + f_2$ yields a without $-\infty$ partial function from X to $\overline{\mathbb{R}}$. Let f_1 be a without $+\infty$ partial function from X to $\overline{\mathbb{R}}$ and f_2 be a without $-\infty$ partial function from X to $\overline{\mathbb{R}}$. One can verify that the functor $f_1 - f_2$ yields a without $+\infty$ partial function from X to $\overline{\mathbb{R}}$. Let f_1 be a without $-\infty$ partial function from X to $\overline{\mathbb{R}}$ and f_2 be a without $+\infty$ partial function from X to $\overline{\mathbb{R}}$. Observe that the functor $f_1 - f_2$ yields a without $-\infty$ partial function from X to $\overline{\mathbb{R}}$. Now we state the propositions:

- (64) Let us consider a non empty set X, and partial functions f, g from X to $\overline{\mathbb{R}}$. Then
 - (i) -(f+g) = -f + -g, and
 - (ii) -(f-g) = -f + g, and
 - (iii) -(f-g) = g f, and
 - (iv) -(-f+g) = f g, and

(v)
$$-(-f+g) = f + -g$$
.

- (65) Let us consider a non empty set X, a σ -field S of subsets of X, without $+\infty$ partial functions f, g from X to \mathbb{R} , and an element A of S. Suppose f is measurable on A and g is measurable on A and $A \subseteq \text{dom}(f+g)$. Then f+g is measurable on A. The theorem is a consequence of (63) and (64).
- (66) Let us consider a non empty set X, a σ -field S of subsets of X, an element A of S, a without $+\infty$ partial function f from X to $\overline{\mathbb{R}}$, and a without $-\infty$

partial function g from X to \mathbb{R} . Suppose f is measurable on A and g is measurable on A and $A \subseteq \text{dom}(f-g)$. Then f-g is measurable on A. The theorem is a consequence of (63) and (64).

- (67) Let us consider a non empty set X, a σ -field S of subsets of X, an element A of S, a without $-\infty$ partial function f from X to $\overline{\mathbb{R}}$, and a without $+\infty$ partial function g from X to $\overline{\mathbb{R}}$. Suppose f is measurable on A and g is measurable on A and $A \subseteq \text{dom}(f-g)$. Then f-g is measurable on A. The theorem is a consequence of (64), (63), and (65).
- (68) Let us consider a non empty set X, a σ -field S of subsets of X, an element P of S, and a summable finite sequence F of elements of \mathbb{R}^X . Suppose for every natural number n such that $n \in \text{dom } F$ holds F_n is measurable on P. Let us consider a natural number n. Suppose $n \in \text{dom } F$. Then $((\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa\in\mathbb{N}})_n$ is measurable on P. The theorem is a consequence of (60), (65), and (61).

6. Some Properties of Integral

Now we state the propositions:

- (69) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , an element E of σ (MeasRect (S_1, S_2)), an element A of S_1 , an element B of S_2 , an element x of X_1 , and an element y of X_2 . Suppose $E = A \times B$. Then
 - (i) $\int \operatorname{curry}(\chi_{E,X_1 \times X_2}, x) dM_2 = M_2(\operatorname{MeasurableXsection}(E, x)) \cdot \chi_{A,X_1}(x),$ and
 - (ii) $\int \operatorname{curry}'(\chi_{E,X_1 \times X_2}, y) \, \mathrm{d}M_1 = M_1(\operatorname{MeasurableYsection}(E, y)) \cdot \chi_{B,X_2}(y).$

The theorem is a consequence of (52), (53), (54), and (55).

(70) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , and an element E of $\sigma(\text{MeasRect}(S_1, S_2))$. Suppose $E \in$ the field generated by $\text{MeasRect}(S_1, S_2)$. Then there exists a disjoint valued finite sequence f of elements of $\text{MeasRect}(S_1, S_2)$ and there exists a finite sequence A of elements of S_1 . There exists a finite sequence B of elements of S_2 such that len f = len Aand len f = len B and $E = \bigcup f$ and for every natural number n such that $n \in \text{dom } f$ holds $\pi_1(f(n)) = A(n)$ and $\pi_2(f(n)) = B(n)$ and for every natural number n and for every sets x, y such that $n \in \text{dom } f$ and $x \in X_1$ and $y \in X_2$ holds $\chi_{f(n), X_1 \times X_2}(x, y) = \chi_{A(n), X_1}(x) \cdot \chi_{B(n), X_2}(y)$. **PROOF:** Consider E_1 being a subset of $X_1 \times X_2$ such that $E = E_1$ and there exists a disjoint valued finite sequence f of elements of MeasRect (S_1, S_2) such that $E_1 = \bigcup f$. Consider f being a disjoint valued finite sequence of elements of MeasRect (S_1, S_2) such that $E_1 = \bigcup f$. Define \mathcal{S} [natural number, object] $\equiv \$_2 = \pi_1(f(\$_1))$. For every natural number i such that $i \in \text{Seg len } f$ there exists an element A_1 of S_1 such that $\mathcal{S}[i, A_1]$ by [12, (4)], [1, (9)], [5, (7)]. Consider A being a finite sequence of elements of S_1 such that dom A = Seg len f and for every natural number i such that $i \in \text{Seglen } f$ holds $\mathcal{S}[i, A(i)]$ from [3, Sch. 5]. Define $\mathcal{T}[\text{natural}]$ number, object] $\equiv \$_2 = \pi_2(f(\$_1))$. For every natural number i such that $i \in \text{Seglen } f$ there exists an element B_1 of S_2 such that $\mathcal{T}[i, B_1]$ by [12, (4)], [1, (9)], [5, (7)]. Consider B being a finite sequence of elements of S_2 such that dom B = Seg len f and for every natural number i such that $i \in \text{Seg len } f$ holds $\mathcal{T}[i, B(i)]$ from [3, Sch. 5]. For every natural number n such that $n \in \text{dom } f$ holds $\pi_1(f(n)) = A(n)$ and $\pi_2(f(n)) = B(n)$. Consider A_2 being an element of S_1 , B_2 being an element of S_2 such that $f(n) = A_2 \times B_2$. \Box

- (71) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , an element E of σ (MeasRect (S_1, S_2)), an element x of X_1 , an element y of X_2 , an element U of S_1 , and an element V of S_2 . Then
 - (i) M_1 (MeasurableYsection $(E, y) \cap U$) = $\int \operatorname{curry}'(\chi_{E \cap (U \times X_2), X_1 \times X_2}, y) \, \mathrm{d}M_1$, and
 - (ii) $M_2(\text{MeasurableXsection}(E, x) \cap V) = \int \text{curry}(\chi_{E \cap (X_1 \times V), X_1 \times X_2}, x) \, \mathrm{d}M_2.$

The theorem is a consequence of (34), (27), and (22).

- (72) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , an element E of σ (MeasRect (S_1, S_2)), an element x of X_1 , and an element y of X_2 . Then
 - (i) M_1 (MeasurableYsection(E, y)) = $\int \operatorname{curry}'(\chi_{E, X_1 \times X_2}, y) \, dM_1$, and
 - (ii) $M_2(\text{MeasurableXsection}(E, x)) = \int \text{curry}(\chi_{E, X_1 \times X_2}, x) \, \mathrm{d}M_2.$

The theorem is a consequence of (71).

(73) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_2 on S_2 , a disjoint valued finite sequence f of elements of MeasRect (S_1, S_2) , an element x of X_1 , a natural number n, an element E_2 of σ (MeasRect (S_1, S_2)), an element A_2 of S_1 , and an element B_2 of S_2 . Suppose $n \in \text{dom } f$ and $f(n) = E_2$ and $E_2 = A_2 \times$ B₂. Then $\int \operatorname{curry}(\chi_{f(n),X_1 \times X_2}, x) \, \mathrm{d}M_2 = M_2(\operatorname{MeasurableXsection}(E_2, x)) \cdot \chi_{A_2,X_1}(x).$

(74) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , and an element E of σ (MeasRect (S_1, S_2)). Suppose $E \in$ the field generated by MeasRect (S_1, S_2) and $E \neq \emptyset$. Then there exists a disjoint valued finite sequence f of elements of MeasRect (S_1, S_2) and there exists a finite sequence A of elements of S_1 and there exists a finite sequence B of elements of S_2 .

There exists a summable finite sequence X_3 of elements of $\mathbb{R}^{X_1 \times X_2}$ such that $E = \bigcup f$ and len $f \in \text{dom } f$ and len f = len A and len f = len B and len $f = \text{len } X_3$ and for every natural number n such that $n \in \text{dom } f$ holds $f(n) = A(n) \times B(n)$ and for every natural number n such that $n \in \text{dom } X_3$ holds $X_3(n) = \chi_{f(n), X_1 \times X_2}$ and $(\sum_{\alpha=0}^{\kappa} X_3(\alpha))_{\kappa \in \mathbb{N}}(\text{len } X_3) = \chi_{E, X_1 \times X_2}$ and for every natural number n and for every sets x, y such that $n \in \text{dom } X_3$ and $x \in X_1$ and $y \in X_2$ holds $X_3(n)(x, y) = \chi_{A(n), X_1}(x) \cdot \chi_{B(n), X_2}(y)$.

For every element x of X_1 , curry $(\chi_{E,X_1 \times X_2}, x) =$

 $\operatorname{curry}(((\sum_{\alpha=0}^{\kappa} X_3(\alpha))_{\kappa\in\mathbb{N}})_{\operatorname{len} X_3}, x)$ and for every element y of X_2 ,

 $\operatorname{curry}'(\chi_{E,X_1 \times X_2}, y) = \operatorname{curry}'(((\sum_{\alpha=0}^{\kappa} X_3(\alpha))_{\kappa \in \mathbb{N}})_{\operatorname{len} X_3}, y).$

PROOF: Consider f being a disjoint valued finite sequence of elements of MeasRect (S_1, S_2) , A being a finite sequence of elements of S_1 , B being a finite sequence of elements of S_2 such that $\ln f = \ln A$ and $\ln f =$ len B and $E = \bigcup f$ and for every natural number n such that $n \in I$ dom f holds $\pi_1(f(n)) = A(n)$ and $\pi_2(f(n)) = B(n)$ and for every natural number n and for every sets x, y such that $n \in \text{dom } f$ and $x \in X_1$ and $y \in X_2$ holds $\chi_{f(n),X_1 \times X_2}(x,y) = \chi_{A(n),X_1}(x) \cdot \chi_{B(n),X_2}(y)$. Define $\mathcal{F}(\text{set}) = \chi_{f(\$_1), X_1 \times X_2}$. Consider X_3 being a finite sequence such that $\ln X_3 = \ln f$ and for every natural number n such that $n \in \operatorname{dom} X_3$ holds $X_3(n) = \mathcal{F}(n)$ from [3, Sch. 2]. Define $\mathcal{P}[\text{natural number}] \equiv \text{if}$ $\mathfrak{S}_1 \in \mathrm{dom}\, f$, then $(\sum_{\alpha=0}^{\kappa} X_3(\alpha))_{\kappa \in \mathbb{N}}(\mathfrak{S}_1) = \chi_{\bigcup (f \mid \mathfrak{S}_1), X_1 \times X_2}$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [9, (20)], [3, (39)], [13, (25)], [2, (14)]. For every natural number $n, \mathcal{P}[n]$ from [2, Sch. 2]. For every natural number n such that $n \in \text{dom } f$ holds $f(n) = A(n) \times$ B(n) by [12, (4)], [13, (90)], [1, (9)]. For every natural number n and for every sets x, y such that $n \in \text{dom } X_3$ and $x \in X_1$ and $y \in X_2$ holds $X_3(n)(x,y) = \chi_{A(n),X_1}(x) \cdot \chi_{B(n),X_2}(y)$. For every element x of X_1 , $\operatorname{curry}(\chi_{E,X_1\times X_2}, x) = \operatorname{curry}(((\sum_{\alpha=0}^{\kappa} X_3(\alpha))_{\kappa\in\mathbb{N}})_{\mathrm{len}\,X_3}, x). \square$

(75) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , and a finite sequence F of elements of MeasRect (S_1, S_2) . Then $\bigcup F \in \sigma(\text{MeasRect}(S_1, S_2))$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{if } \$_1 \leq \text{len } F$, then $\bigcup \text{rng}(F|\$_1) \in \sigma(\text{MeasRect}(S_1, S_2))$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [2, (11)], [19, (25)], [8, (11)], [3, (59)]. For every natural number $k, \mathcal{P}[k]$ from [2, Sch. 2]. \Box

(76) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , and an element E of $\sigma(\text{MeasRect}(S_1, S_2))$. Suppose $E \in$ the field generated by MeasRect (S_1, S_2) and $E \neq \emptyset$.

Then there exists a disjoint valued finite sequence F of elements of MeasRect (S_1, S_2) and there exists a finite sequence A of elements of S_1 and there exists a finite sequence B of elements of S_2 and there exists a summable finite sequence C of elements of $\overline{\mathbb{R}}^{X_1 \times X_2}$ and there exists a summable finite sequence I of elements of $\overline{\mathbb{R}}^{X_1}$ and there exists a summable finite sequence J of elements of $\overline{\mathbb{R}}^{X_2}$ such that $E = \bigcup F$ and len $F \in \text{dom } F$ and len F = len A and len F = len B and len F = len C and len F = len I and len F = len J and for every natural number n such that $n \in \text{dom } C$ holds $C(n) = \chi_{F(n), X_1 \times X_2}$ and $((\sum_{\alpha=0}^{\kappa} C(\alpha))_{\kappa \in \mathbb{N}})_{\text{len } C} = \chi_{E, X_1 \times X_2}.$

For every element x of X_1 and for every natural number n such that $n \in \text{dom } I$ holds $I(n)(x) = \int \text{curry}(C_n, x) \, dM_2$ and for every natural number n and for every element P of S_1 such that $n \in \text{dom } I$ holds I_n is measurable on P and for every element x of X_1 , $\int \text{curry}(((\sum_{\alpha=0}^{\kappa} C(\alpha))_{\kappa\in\mathbb{N}})_{\text{len } C}, x) \, dM_2 = ((\sum_{\alpha=0}^{\kappa} I(\alpha))_{\kappa\in\mathbb{N}})_{\text{len } I}(x)$ and for every element y of X_2 and for every natural number n such that $n \in \text{dom } J$ holds $J(n)(y) = \int \text{curry}'(C_n, y) \, dM_1$ and for every natural number n and for every element P of S_2 such that $n \in \text{dom } J$ holds J_n is measurable on P and for every element y of X_2 , $\int \text{curry}'(((\sum_{\alpha=0}^{\kappa} C(\alpha))_{\kappa\in\mathbb{N}})_{\text{len } C}, y) \, dM_1 = ((\sum_{\alpha=0}^{\kappa} J(\alpha))_{\kappa\in\mathbb{N}})_{\text{len } J}(y).$

PROOF: Consider F being a disjoint valued finite sequence of elements of MeasRect (S_1, S_2) , A being a finite sequence of elements of S_2 , C being a summable finite sequence of elements of $\overline{\mathbb{R}}^{X_1 \times X_2}$ such that $E = \bigcup F$ and $\operatorname{len} F \in \operatorname{dom} F$ and $\operatorname{len} F = \operatorname{len} A$ and $\operatorname{len} F = \operatorname{len} B$ and $\operatorname{len} F = \operatorname{len} C$ and for every natural number n such that $n \in \operatorname{dom} F$ holds $F(n) = A(n) \times B(n)$ and for every natural number n such that $n \in \operatorname{dom} C$ holds $C(n) = \chi_{F(n),X_1 \times X_2}$ and $(\sum_{\alpha=0}^{\kappa} C(\alpha))_{\kappa \in \mathbb{N}}(\operatorname{len} C) = \chi_{E,X_1 \times X_2}$ and for every natural number n and for every sets x, y such that $n \in \operatorname{dom} C$ and $x \in X_1$ and $y \in X_2$ holds $C(n)(x,y) = \chi_{A(n),X_1}(x) \cdot \chi_{B(n),X_2}(y)$ and for every element x of X_1 , $\operatorname{curry}(\chi_{E,X_1 \times X_2}, x) = \operatorname{curry}(((\sum_{\alpha=0}^{\kappa} C(\alpha))_{\kappa \in \mathbb{N}})_{\operatorname{len} C}, x)$ and for every element y of X_2 , $\operatorname{curry}'(\chi_{E,X_1 \times X_2}, y) = \operatorname{curry}'(((\sum_{\alpha=0}^{\kappa} C(\alpha))_{\kappa \in \mathbb{N}})_{\operatorname{len} C}, y)$. Define S[natural number, object] \equiv there exists a function f from X_1 into \mathbb{R} such that $f = \$_2$ and for every element x of $X_1, f(x) = \int \operatorname{curry}(C \$_1, x) \, dM_2$.

For every natural number n such that $n \in \text{Seg len } F$ there exists an object z such that $\mathcal{S}[n,z]$. Consider I being a finite sequence such that dom I = Seg len F and for every natural number n such that $n \in \text{Seg len } F$ holds $\mathcal{S}[n, I(n)]$ from [3, Sch. 1]. For every element x of X_1 and for every natural number n such that $n \in \text{dom } I$ holds $I(n)(x) = \int \text{curry}(C_n, x) \, dM_2$ by [12, (4)]. Define \mathcal{T} [natural number, object] \equiv there exists a function f from X_2 into $\overline{\mathbb{R}}$ such that $f = \$_2$ and for every element x of X_2 , $f(x) = \int \operatorname{curry}'(C_{\$_1}, x) \, \mathrm{d}M_1$. For every natural number n such that $n \in$ Seg len F there exists an object z such that $\mathcal{T}[n, z]$. Consider J being a finite sequence such that dom J = Seglen F and for every natural number n such that $n \in \text{Seglen } F$ holds $\mathcal{T}[n, J(n)]$ from [3, Sch. 1]. For every element x of X_2 and for every natural number n such that $n \in \operatorname{dom} J$ holds $J(n)(x) = \int \operatorname{curry}'(C_n, x) \, dM_1$ by [12, (4)]. For every natural number n and for every element P of S_1 such that $n \in \operatorname{dom} I$ holds I_n is measurable on P by [12, (4)], (69), (22). For every element x of X_1 , $\int \operatorname{curry}(((\sum_{\alpha=0}^{\kappa} C(\alpha))_{\kappa\in\mathbb{N}})_{\operatorname{len} C}, x) \, \mathrm{d}M_2 = ((\sum_{\alpha=0}^{\kappa} I(\alpha))_{\kappa\in\mathbb{N}})_{\operatorname{len} I}(x) \text{ by } [19,$ (24), (25)], [2, (13)], [9, (20)]. For every natural number n and for every element P of S_2 such that $n \in \text{dom } J$ holds J_n is measurable on P by [12, (4)], (69), (22). For every element x of X_2 , $\int \operatorname{curry}'(((\sum_{\alpha=0}^{\kappa} C(\alpha))_{\kappa\in\mathbb{N}})_{\operatorname{len} C}, x)$ $dM_1 = ((\sum_{\alpha=0}^{\kappa} J(\alpha))_{\kappa \in \mathbb{N}})_{\text{len } J}(x)$ by [19, (24), (25)], [2, (13)], [9, (20)]. \Box

Let X_1 , X_2 be non empty sets, S_1 be a σ -field of subsets of X_1 , S_2 be a σ -field of subsets of X_2 , F be a set sequence of $\sigma(\text{MeasRect}(S_1, S_2))$, and n be a natural number. One can verify that the functor F(n) yields an element of $\sigma(\text{MeasRect}(S_1, S_2))$. Let F be a function from $\mathbb{N} \times \sigma(\text{MeasRect}(S_1, S_2))$ into $\sigma(\text{MeasRect}(S_1, S_2))$, n be an element of \mathbb{N} , and E be an element of

 $\sigma(\text{MeasRect}(S_1, S_2))$. Let us observe that the functor F(n, E) yields an element of $\sigma(\text{MeasRect}(S_1, S_2))$. Now we state the propositions:

- (77) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , an element E of σ (MeasRect (S_1, S_2)), and an element V of S_2 . Suppose $E \in$ the field generated by MeasRect (S_1, S_2) . Then there exists a function F from X_1 into $\overline{\mathbb{R}}$ such that
 - (i) for every element x of X_1 , $F(x) = M_2(\text{MeasurableXsection}(E, x) \cap V)$, and
 - (ii) for every element P of S_1 , F is measurable on P.

The theorem is a consequence of (22), (27), (24), (76), (71), and (68).

(78) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , an element E of σ (MeasRect (S_1, S_2)), and an element V of S_1 . Suppose $E \in$ the field generated by MeasRect (S_1, S_2) . Then there exists a function F from X_2 into $\overline{\mathbb{R}}$ such that

- (i) for every element x of X_2 , $F(x) = M_1(\text{MeasurableYsection}(E, x) \cap V)$, and
- (ii) for every element P of S_2 , F is measurable on P.

The theorem is a consequence of (22), (27), (24), (76), (71), and (68).

- (79) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_2 on S_2 , and an element E of σ (MeasRect (S_1, S_2)). Suppose $E \in$ the field generated by MeasRect (S_1, S_2) . Let us consider an element B of S_2 . Then $E \in \{E, \text{ where } E \text{ is an element}$ of σ (MeasRect (S_1, S_2)): there exists a function F from X_1 into \mathbb{R} such that for every element x of $X_1, F(x) = M_2$ (MeasurableXsection $(E, x) \cap B$) and for every element V of S_1, F is measurable on V}. The theorem is a consequence of (77).
- (80) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , and an element E of $\sigma(\text{MeasRect}(S_1, S_2))$. Suppose $E \in$ the field generated by $\text{MeasRect}(S_1, S_2)$. Let us consider an element B of S_1 . Then $E \in \{E, \text{ where } E \text{ is an element}$ of $\sigma(\text{MeasRect}(S_1, S_2))$: there exists a function F from X_2 into \mathbb{R} such that for every element x of $X_2, F(x) = M_1(\text{MeasurableYsection}(E, x) \cap B)$ and for every element V of S_2, F is measurable on V. The theorem is a consequence of (78).
- (81) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_2 on S_2 , and an element Bof S_2 . Then the field generated by MeasRect $(S_1, S_2) \subseteq \{E, \text{ where } E \text{ is}$ an element of $\sigma(\text{MeasRect}(S_1, S_2))$: there exists a function F from X_1 into $\overline{\mathbb{R}}$ such that for every element x of $X_1, F(x) =$ $M_2(\text{MeasurableXsection}(E, x) \cap B)$ and for every element V of S_1, F is measurable on V}. The theorem is a consequence of (7) and (79).
- (82) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , and an element Bof S_1 . Then the field generated by MeasRect $(S_1, S_2) \subseteq \{E, \text{ where } E \text{ is}$ an element of $\sigma(\text{MeasRect}(S_1, S_2))$: there exists a function F from X_2 into \mathbb{R} such that for every element y of $X_2, F(y) =$

 M_1 (MeasurableYsection $(E, y) \cap B$) and for every element V of S_2, F is measurable on V}. The theorem is a consequence of (7) and (80).

7. σ -finite Measure

Let X be a non empty set, S be a σ -field of subsets of X, and M be a σ measure on S. We say that M is σ -finite if and only if

(Def. 12) there exists a set sequence E of S such that for every natural number n, $M(E(n)) < +\infty$ and $\bigcup E = X$.

Now we state the propositions:

- (83) Let us consider a non empty set X, a σ -field S of subsets of X, and a σ -measure M on S. Then M is σ -finite if and only if there exists a set sequence F of S such that F is non descending and for every natural number $n, M(F(n)) < +\infty$ and $\lim F = X$.
- (84) Let us consider a set X, a semialgebra S of sets of X, a pre-measure P of S, and an induced measure M of S and P. Then $M = (\text{the Caratheodory} measure determined by } M) \upharpoonright (\text{the field generated by } S).$

8. Fubini's Theorem on Measure

Now we state the propositions:

(85) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_2 on S_2 , and an element B of S_2 . Suppose $M_2(B) < +\infty$. Then $\{E, \text{ where } E \text{ is an element of}$ $\sigma(\text{MeasRect}(S_1, S_2))$: there exists a function F from X_1 into \mathbb{R} such that for every element x of X_1 , $F(x) = M_2(\text{MeasurableXsection}(E, x) \cap B)$ and for every element V of S_1 , F is measurable on V is a monotone class of $X_1 \times X_2$.

PROOF: Set $Z = \{E, \text{ where } E \text{ is an element of } \sigma(\text{MeasRect}(S_1, S_2)) :$ there exists a function F from X_1 into \mathbb{R} such that for every element xof $X_1, F(x) = M_2(\text{MeasurableXsection}(E, x) \cap B)$ and for every element Vof S_1, F is measurable on $V\}$. For every sequence A_1 of subsets of $X_1 \times X_2$ such that A_1 is monotone and $\operatorname{rng} A_1 \subseteq Z$ holds $\lim A_1 \in Z$ by [10, (3)], [5, (35)], [21, (63)], [12, (45)]. \Box

(86) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , and an element B of S_1 . Suppose $M_1(B) < +\infty$. Then $\{E, \text{ where } E \text{ is an element of}$ $\sigma(\text{MeasRect}(S_1, S_2))$: there exists a function F from X_2 into \mathbb{R} such that for every element y of X_2 , $F(y) = M_1(\text{MeasurableYsection}(E, y) \cap B)$ and for every element V of S_2 , F is measurable on V is a monotone class of $X_1 \times X_2$. PROOF: Set $Z = \{E, \text{ where } E \text{ is an element of } \sigma(\text{MeasRect}(S_1, S_2)) :$ there exists a function F from X_2 into \mathbb{R} such that for every element yof $X_2, F(y) = M_1(\text{MeasurableYsection}(E, y) \cap B)$ and for every element Vof S_2, F is measurable on $V\}$. For every sequence A_1 of subsets of $X_1 \times X_2$ such that A_1 is monotone and $\operatorname{rng} A_1 \subseteq Z$ holds $\lim A_1 \in Z$ by [10, (3)], [5, (35)], [21, (63)], [12, (45)]. \Box

- (87) Let us consider a non empty set X, a field F of subsets of X, and a sequence L of subsets of X. Suppose rng L is a monotone class of X and $F \subseteq \operatorname{rng} L$. Then
 - (i) $\sigma(F) = \text{monotone-class}(F)$, and
 - (ii) $\sigma(F) \subseteq \operatorname{rng} L$.
- (88) Let us consider a non empty set X, a field F of subsets of X, and a family K of subsets of X. Suppose K is a monotone class of X and $F \subseteq K$. Then
 - (i) $\sigma(F) = \text{monotone-class}(F)$, and
 - (ii) $\sigma(F) \subseteq K$.
- (89) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_2 on S_2 , and an element B of S_2 . Suppose $M_2(B) < +\infty$. Then $\sigma(\text{MeasRect}(S_1, S_2)) \subseteq \{E, \text{ where } E \text{ is}$ an element of $\sigma(\text{MeasRect}(S_1, S_2))$: there exists a function F from X_1 into \mathbb{R} such that for every element x of $X_1, F(x) =$ $M_2(\text{MeasurableXsection}(E, x) \cap B)$ and for every element V of S_1, F is measurable on V. The theorem is a consequence of (85), (81), (7), and (88).
- (90) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , and an element B of S_1 . Suppose $M_1(B) < +\infty$. Then $\sigma(\text{MeasRect}(S_1, S_2)) \subseteq \{E, \text{ where } E \text{ is}$ an element of $\sigma(\text{MeasRect}(S_1, S_2))$: there exists a function F from X_2 into \mathbb{R} such that for every element y of $X_2, F(y) =$ $M_1(\text{MeasurableYsection}(E, y) \cap B)$ and for every element V of S_2, F is measurable on V. The theorem is a consequence of (86), (82), (7), and (88).
- (91) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_2 on S_2 , and an element E of σ (MeasRect(S_1, S_2)). Suppose M_2 is σ -finite. Then there exists a function F from X_1 into \mathbb{R} such that
 - (i) for every element x of X_1 , $F(x) = M_2(\text{MeasurableXsection}(E, x))$, and
 - (ii) for every element V of S_1 , F is measurable on V.

PROOF: Consider B being a set sequence of S_2 such that B is non descending and for every natural number $n, M_2(B(n)) < +\infty$ and $\lim B =$ X_2 . Define $\mathcal{P}[\text{natural number, object}] \equiv \text{there exists a function } f_1 \text{ from}$ X_1 into $\overline{\mathbb{R}}$ such that $\$_2 = f_1$ and for every element x of $X_1, f_1(x) =$ M_2 (MeasurableXsection $(E, x) \cap B(\$_1)$) and for every element V of S_1, f_1 is measurable on V. For every element n of \mathbb{N} , there exists an element f of $X_1 \rightarrow \overline{\mathbb{R}}$ such that $\mathcal{P}[n, f]$ by (89), [12, (45)]. Consider f being a function from \mathbb{N} into $X_1 \rightarrow \overline{\mathbb{R}}$ such that for every element n of \mathbb{N} , $\mathcal{P}[n, f(n)]$ from [11, Sch. 3]. For every natural number n, f(n) is a function from X_1 into \mathbb{R} and for every element x of X_1 , $f(n)(x) = M_2(\text{MeasurableXsection}(E, x) \cap$ B(n) and for every element V of S_1 , f(n) is measurable on V. For every natural numbers n, m, dom(f(n)) = dom(f(m)). For every element x of X_1 such that $x \in X_1$ holds f # x is convergent by [5, (11), (31)], [20, (7), (37)]. Reconsider $F = \lim f$ as a function from X_1 into $\overline{\mathbb{R}}$. For every element x of X_1 , $F(x) = M_2$ (MeasurableXsection(E, x)) by [21, (80)], [22, (92)], (49), [5, (11)].

- (92) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , and an element E of σ (MeasRect(S_1, S_2)). Suppose M_1 is σ -finite. Then there exists a function F from X_2 into \mathbb{R} such that
 - (i) for every element y of X_2 , $F(y) = M_1(\text{MeasurableYsection}(E, y))$, and
 - (ii) for every element V of S_2 , F is measurable on V.

PROOF: Consider B being a set sequence of S_1 such that B is non descending and for every natural number $n, M_1(B(n)) < +\infty$ and $\lim B =$ X_1 . Define $\mathcal{P}[\text{natural number, object}] \equiv \text{there exists a function } f_1 \text{ from}$ X_2 into $\overline{\mathbb{R}}$ such that $\$_2 = f_1$ and for every element y of X_2 , $f_1(y) =$ M_1 (MeasurableYsection $(E, y) \cap B(\$_1)$) and for every element V of S_2, f_1 is measurable on V. For every element n of \mathbb{N} , there exists an element f of $X_2 \rightarrow \overline{\mathbb{R}}$ such that $\mathcal{P}[n, f]$ by (90), [12, (45)]. Consider f being a function from \mathbb{N} into $X_2 \rightarrow \overline{\mathbb{R}}$ such that for every element n of \mathbb{N} , $\mathcal{P}[n, f(n)]$ from [11, Sch. 3]. For every natural number n, f(n) is a function from X_2 into $\overline{\mathbb{R}}$ and for every element y of X_2 , $f(n)(y) = M_1(\text{MeasurableYsection}(E, y) \cap B(n))$ and for every element V of S_2 , f(n) is measurable on V. For every natural numbers n, m, dom(f(n)) = dom(f(m)). For every element y of X_2 such that $y \in X_2$ holds f # y is convergent by [5, (11), (31)], [20, (7), (37)]. Reconsider $F = \lim f$ as a function from X_2 into $\overline{\mathbb{R}}$. For every element y of X_2 , $F(y) = M_1$ (MeasurableYsection(E, y)) by [21, (80)], [22, (92)], (49), [5, (11)].

Let X_1 , X_2 be non empty sets, S_1 be a σ -field of subsets of X_1 , S_2 be a σ -field of subsets of X_2 , M_2 be a σ -measure on S_2 , and E be an element of σ (MeasRect(S_1, S_2)). Assume M_2 is σ -finite. The functor $\text{Yvol}(E, M_2)$ yielding a non-negative function from X_1 into $\overline{\mathbb{R}}$ is defined by

(Def. 13) for every element x of X_1 , $it(x) = M_2(\text{MeasurableXsection}(E, x))$ and for every element V of S_1 , it is measurable on V.

Let M_1 be a σ -measure on S_1 . Assume M_1 is σ -finite. The functor $\text{Xvol}(E, M_1)$ yielding a non-negative function from X_2 into $\overline{\mathbb{R}}$ is defined by

(Def. 14) for every element y of X_2 , $it(y) = M_1(\text{MeasurableYsection}(E, y))$ and for every element V of S_2 , it is measurable on V.

Now we state the propositions:

- (93) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_2 on S_2 , and elements E_1 , E_2 of σ (MeasRect (S_1, S_2)). Suppose M_2 is σ -finite and E_1 misses E_2 . Then $\operatorname{Yvol}(E_1 \cup E_2, M_2) = \operatorname{Yvol}(E_1, M_2) + \operatorname{Yvol}(E_2, M_2)$. PROOF: For every element x of X_1 such that $x \in \operatorname{dom} \operatorname{Yvol}(E_1 \cup E_2, M_2)$ holds $(\operatorname{Yvol}(E_1 \cup E_2, M_2))(x) = (\operatorname{Yvol}(E_1, M_2) + \operatorname{Yvol}(E_2, M_2))(x)$ by (26), (35), [5, (30)]. \Box
- (94) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , and elements E_1 , E_2 of σ (MeasRect(S_1, S_2)). Suppose M_1 is σ -finite and E_1 misses E_2 . Then $\operatorname{Xvol}(E_1 \cup E_2, M_1) = \operatorname{Xvol}(E_1, M_1) + \operatorname{Xvol}(E_2, M_1)$. PROOF: For every element x of X_2 such that $x \in \operatorname{dom} \operatorname{Xvol}(E_1 \cup E_2, M_1)$ holds $(\operatorname{Xvol}(E_1 \cup E_2, M_1))(x) = (\operatorname{Xvol}(E_1, M_1) + \operatorname{Xvol}(E_2, M_1))(x)$ by (26), (35), [5, (30)]. \Box

Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , and elements E_1 , E_2 of σ (MeasRect (S_1, S_2)). Now we state the propositions:

- (95) Suppose M_2 is σ -finite and E_1 misses E_2 . Then $\int \text{Yvol}(E_1 \cup E_2, M_2) \, \mathrm{d}M_1 = \int \text{Yvol}(E_1, M_2) \, \mathrm{d}M_1 + \int \text{Yvol}(E_2, M_2) \, \mathrm{d}M_1$. The theorem is a consequence of (93).
- (96) Suppose M_1 is σ -finite and E_1 misses E_2 . Then $\int \operatorname{Xvol}(E_1 \cup E_2, M_1) dM_2 = \int \operatorname{Xvol}(E_1, M_1) dM_2 + \int \operatorname{Xvol}(E_2, M_1) dM_2$. The theorem is a consequence of (94).

Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , an element E of σ (MeasRect (S_1, S_2)), an element A of S_1 , and an element B of S_2 . Now we state the propositions:

- (97) Suppose $E = A \times B$ and M_2 is σ -finite. Then
 - (i) if $M_2(B) = +\infty$, then $\text{Yvol}(E, M_2) = \overline{\chi}_{A, X_1}$, and
 - (ii) if $M_2(B) \neq +\infty$, then there exists a real number r such that $r = M_2(B)$ and $\text{Yvol}(E, M_2) = r \cdot \chi_{A, X_1}$.

The theorem is a consequence of (53).

- (98) Suppose $E = A \times B$ and M_1 is σ -finite. Then
 - (i) if $M_1(A) = +\infty$, then $\operatorname{Xvol}(E, M_1) = \overline{\chi}_{B,X_2}$, and
 - (ii) if $M_1(A) \neq +\infty$, then there exists a real number r such that $r = M_1(A)$ and $\operatorname{Xvol}(E, M_1) = r \cdot \chi_{B, X_2}$.

The theorem is a consequence of (55).

(99) Let us consider a non empty set X, a σ -field S of subsets of X, a σ measure M on S, an element A of S, and a real number r. If $r \ge 0$, then $\int r \cdot \chi_{A,X} dM = r \cdot M(A)$.

Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , a finite sequence F of elements of σ (MeasRect (S_1, S_2)), and a natural number n. Now we state the propositions:

- (100) Suppose M_2 is σ -finite and F is a finite sequence of elements of MeasRect (S_1, S_2) . Then $(\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2))(F(n)) = \int \operatorname{Yvol}(F(n), M_2) dM_1$. The theorem is a consequence of (16), (97), and (99).
- (101) Suppose M_1 is σ -finite and F is a finite sequence of elements of MeasRect (S_1, S_2) . Then $(\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2))(F(n)) = \int \operatorname{Xvol}(F(n), M_1) dM_2$. The theorem is a consequence of (16), (98), and (99).

Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , a disjoint valued finite sequence F of elements of $\sigma(\text{MeasRect}(S_1, S_2))$, and a natural number n. Now we state the propositions:

- (102) Suppose M_2 is σ -finite and F is a finite sequence of elements of MeasRect (S_1, S_2) . Then $(\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2))(\bigcup F) = \int \operatorname{Yvol}(\bigcup F, M_2) \, \mathrm{d}M_1$. PROOF: Define $\mathcal{P}[\operatorname{natural number}] \equiv (\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2))(\bigcup (F | \$_1)) = \int \operatorname{Yvol}(\bigcup (F | \$_1), M_2) \, \mathrm{d}M_1$. $\mathcal{P}[0]$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [2, (13)], [3, (59)], [19, (55)], [3, (82)]. For every natural number k, $\mathcal{P}[k]$ from [2, Sch. 2]. \Box
- (103) Suppose M_1 is σ -finite and F is a finite sequence of elements of MeasRect (S_1, S_2) . Then $(\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2))(\bigcup F) = \int \operatorname{Xvol}(\bigcup F, M_1) \, \mathrm{d}M_2$. PROOF: Define $\mathcal{P}[\operatorname{natural number}] \equiv (\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2))(\bigcup (F | \$_1)) = \int \operatorname{Xvol}(\bigcup (F | \$_1), M_1) \, \mathrm{d}M_2$. $\mathcal{P}[0]$. For every natural number k such that

 $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [2, (13)], [3, (59)], [19, (55)], [3, (82)]. For every natural number $k, \mathcal{P}[k]$ from [2, Sch. 2]. \Box

Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , an element E of σ (MeasRect (S_1, S_2)), an element V of σ (MeasRect (S_1, S_2)), an element A of S_1 , and an element B of S_2 . Now we state the propositions:

- (104) Suppose $E \in$ the field generated by MeasRect (S_1, S_2) and M_2 is σ -finite. Then suppose $V = A \times B$. Then $E \in \{E, \text{ where } E \text{ is an element of } \sigma(\text{MeasRect}(S_1, S_2)) : \int \text{Yvol}(E \cap V, M_2) \, dM_1 = (\text{Prod } \sigma \text{-Meas}(M_1, M_2)) (E \cap V) \}$. The theorem is a consequence of (102).
- (105) Suppose $E \in$ the field generated by MeasRect (S_1, S_2) and M_1 is σ -finite. Then suppose $V = A \times B$. Then $E \in \{E, \text{where } E \text{ is an element of } \sigma(\text{MeasRect}(S_1, S_2)) : \int \text{Xvol}(E \cap V, M_1) \, dM_2 = (\text{Prod } \sigma \text{-Meas}(M_1, M_2)) (E \cap V) \}$. The theorem is a consequence of (103).

Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , an element V of σ (MeasRect (S_1, S_2)), an element A of S_1 , and an element B of S_2 . Now we state the propositions:

- (106) Suppose M_2 is σ -finite and $V = A \times B$. Then the field generated by MeasRect $(S_1, S_2) \subseteq \{E, \text{ where } E \text{ is an element of } \sigma(\text{MeasRect}(S_1, S_2)) : \int \text{Yvol}(E \cap V, M_2) \, dM_1 = (\text{Prod } \sigma \text{-Meas}(M_1, M_2))(E \cap V)\}$. The theorem is a consequence of (7) and (104).
- (107) Suppose M_1 is σ -finite and $V = A \times B$. Then the field generated by MeasRect $(S_1, S_2) \subseteq \{E, \text{ where } E \text{ is an element of } \sigma(\text{MeasRect}(S_1, S_2)) : \int \text{Xvol}(E \cap V, M_1) \, dM_2 = (\text{Prod } \sigma \text{-Meas}(M_1, M_2))(E \cap V)\}$. The theorem is a consequence of (7) and (105).
- (108) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_2 on S_2 , elements E, Vof σ (MeasRect (S_1, S_2)), a set sequence P of σ (MeasRect (S_1, S_2)), and an element x of X_1 . Suppose P is non descending and $\lim P = E$. Then there exists a sequence K of subsets of S_2 such that
 - (i) K is non descending, and
 - (ii) for every natural number $n, K(n) = \text{MeasurableXsection}(P(n), x) \cap \text{MeasurableXsection}(V, x)$, and
 - (iii) $\lim K = \text{MeasurableXsection}(E, x) \cap \text{MeasurableXsection}(V, x).$

The theorem is a consequence of (43), (49), and (30).

(109) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , elements E, V of $\sigma(\text{MeasRect}(S_1, S_2))$, a set sequence P of $\sigma(\text{MeasRect}(S_1, S_2))$, and an element y of X_2 . Suppose P is non descending and $\lim P = E$. Then there exists a sequence K of subsets of S_1 such that

- (i) K is non descending, and
- (ii) for every natural number $n, K(n) = \text{MeasurableYsection}(P(n), y) \cap \text{MeasurableYsection}(V, y)$, and
- (iii) $\lim K = \text{MeasurableYsection}(E, y) \cap \text{MeasurableYsection}(V, y).$

The theorem is a consequence of (44), (49), and (32).

- (110) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_2 on S_2 , elements E, Vof σ (MeasRect(S_1, S_2)), a set sequence P of σ (MeasRect(S_1, S_2)), and an element x of X_1 . Suppose P is non ascending and $\lim P = E$. Then there exists a sequence K of subsets of S_2 such that
 - (i) K is non ascending, and
 - (ii) for every natural number $n, K(n) = \text{MeasurableXsection}(P(n), x) \cap \text{MeasurableXsection}(V, x)$, and
 - (iii) $\lim K = \text{MeasurableXsection}(E, x) \cap \text{MeasurableXsection}(V, x).$

The theorem is a consequence of (45), (49), and (31).

- (111) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , elements E, Vof σ (MeasRect (S_1, S_2)), a set sequence P of σ (MeasRect (S_1, S_2)), and an element y of X_2 . Suppose P is non ascending and $\lim P = E$. Then there exists a sequence K of subsets of S_1 such that
 - (i) K is non ascending, and
 - (ii) for every natural number $n, K(n) = \text{MeasurableYsection}(P(n), y) \cap \text{MeasurableYsection}(V, y)$, and
 - (iii) $\lim K = \text{MeasurableYsection}(E, y) \cap \text{MeasurableYsection}(V, y).$

The theorem is a consequence of (46), (49), and (33).

Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , an element V of σ (MeasRect (S_1, S_2)), an element A of S_1 , and an element B of S_2 . Now we state the propositions:

(112) Suppose M_2 is σ -finite and $V = A \times B$ and $(\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2))(V) < +\infty$ and $M_2(B) < +\infty$. Then $\{E, \text{ where } E \text{ is an element of } \sigma(\operatorname{MeasRect}(S_1, S_2)) : \int \operatorname{Yvol}(E \cap V, M_2) \, \mathrm{d}M_1 = (\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2))(E \cap V) \}$ is a monotone class of $X_1 \times X_2$.

PROOF: Set $Z = \{E, \text{ where } E \text{ is an element of } \sigma(\text{MeasRect}(S_1, S_2)) : \int \text{Yvol}(E \cap V, M_2) \, dM_1 = (\text{Prod } \sigma \text{-Meas}(M_1, M_2))(E \cap V)\}$. For every sequence A_1 of subsets of $X_1 \times X_2$ such that A_1 is monotone and $\text{rng } A_1 \subseteq Z$ holds $\lim A_1 \in Z$ by [10, (3)], [5, (35)], [21, (63)], [12, (45)]. \Box

(113) Suppose M_1 is σ -finite and $V = A \times B$ and $(\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2))(V) < +\infty$ and $M_1(A) < +\infty$. Then $\{E, \text{ where } E \text{ is an element of } \sigma(\operatorname{MeasRect}(S_1, S_2)) : \int \operatorname{Xvol}(E \cap V, M_1) \, \mathrm{d}M_2 = (\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2))(E \cap V)\}$ is a monotone class of $X_1 \times X_2$. PROOF: Set $Z = \{E, \text{ where } E \text{ is an element of } \sigma(\operatorname{MeasRect}(S_1, S_2)) : \int \operatorname{Xvol}(E \cap V, M_1) \, \mathrm{d}M_2 = (\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2))(E \cap V)\}$. For every sequence A_1 of subsets of $X_1 \times X_2$ such that A_1 is monotone and $\operatorname{rng} A_1 \subseteq Z$

holds $\lim A_1 \in \mathbb{Z}$ by [10, (3)], [5, (35)], [21, (63)], [12, (45)]. \Box (114) Suppose M_2 is σ -finite and $V = A \times B$ and $(\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2))(V) < +\infty$ and $M_2(B) < +\infty$. Then $\sigma(\operatorname{MeasRect}(S_1, S_2)) \subseteq \{E, \text{ where } E \text{ is an element of } \sigma(\operatorname{MeasRect}(S_1, S_2)) : \int \operatorname{Yvol}(E \cap V, M_2) \, \mathrm{d}M_1 = (\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2))(E \cap V)\}$. The theorem is a consequence of (112),

- (106), (7), and (88). (115) Suppose M_1 is σ -finite and $V = A \times B$ and $(\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2))(V) < +\infty$ and $M_1(A) < +\infty$. Then $\sigma(\operatorname{MeasRect}(S_1, S_2)) \subseteq \{E, \text{ where } E \text{ is } E\}$
- $+\infty$ and $M_1(A) < +\infty$. Then $\sigma(\text{MeasRect}(S_1, S_2)) \subseteq \{E, \text{ where } E \text{ is an element of } \sigma(\text{MeasRect}(S_1, S_2)) : \int \text{Xvol}(E \cap V, M_1) \, dM_2 =$ (Prod σ -Meas $(M_1, M_2))(E \cap V)$ }. The theorem is a consequence of (113), (107), (7), and (88).
- (116) Let us consider sets X, Y, a sequence A of subsets of X, a sequence B of subsets of Y, and a sequence C of subsets of $X \times Y$. Suppose A is non descending and B is non descending and for every natural number n, $C(n) = A(n) \times B(n)$. Then
 - (i) C is non descending and convergent, and
 - (ii) $\bigcup C = \bigcup A \times \bigcup B$.

PROOF: For every natural numbers n, m such that $n \leq m$ holds $C(n) \subseteq C(m)$ by [13, (96)]. \Box

(117) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , and an element E of σ (MeasRect (S_1, S_2)). Suppose M_1 is σ -finite and M_2 is σ -finite. Then $\int \text{Yvol}(E, M_2) \, dM_1 = (\text{Prod } \sigma - \text{Meas}(M_1, M_2))(E)$. PROOF: Consider A being a set sequence of S_1 such that A is non descending and for every natural number n, $M_1(A(n)) < +\infty$ and $\lim A =$ X_1 . Consider B being a set sequence of S_2 such that B is non descending and for every natural number n, $M_2(B(n)) < +\infty$ and $\lim B =$ X_2 . Define $\mathcal{C}(\text{element of } \mathbb{N}) = A(\$_1) \times B(\$_1)$. Consider C being a function from N into $2^{X_1 \times X_2}$ such that for every element n of N, C(n) = $\mathcal{C}(n)$ from [11, Sch. 4]. For every natural number n, $C(n) = A(n) \times$ B(n). For every natural number $n, C(n) \in \sigma(\text{MeasRect}(S_1, S_2))$. For every natural numbers n, m such that $n \leq m$ holds $C(n) \subset C(m)$ by [13, (96)]. For every natural number n, $(\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2))(C(n)) <$ $+\infty$ by (16), [6, (51)]. Set $C_1 = E \cap C$. For every object n such that $n \in \mathbb{N}$ holds $C_1(n) \in \sigma(\text{MeasRect}(S_1, S_2))$. For every natural number n, $\int \operatorname{Yvol}(E \cap C(n), M_2) dM_1 = (\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2))(E \cap C(n)).$ Define $\mathcal{P}[\text{element of } \mathbb{N}, \text{object}] \equiv \$_2 = \text{Yvol}(E \cap C(\$_1), M_2).$ For every element n of N, there exists an element f of $X_1 \rightarrow \overline{\mathbb{R}}$ such that $\mathcal{P}[n, f]$ by [12, (45)]. Consider F being a function from N into $X_1 \rightarrow \overline{\mathbb{R}}$ such that for every element n of N, $\mathcal{P}[n, F(n)]$ from [11, Sch. 3]. For every natural number n, $F(n) = \text{Yvol}(E \cap C(n), M_2)$. Reconsider $X_3 = X_1$ as an element of S_1 . For every natural number n and for every element xof X_1 , $(F \# x)(n) = (\text{Yvol}(E \cap C(n), M_2))(x)$. For every natural numbers $n, m, \operatorname{dom}(F(n)) = \operatorname{dom}(F(m))$. For every natural number n, F(n) is measurable on X_3 . For every natural numbers n, m such that $n \leq m$ for every element x of X_1 such that $x \in X_3$ holds $F(n)(x) \leq F(m)(x)$ by (20), [5, (31)]. For every element x of X_1 such that $x \in X_3$ holds F # x is convergent by [20, (7), (37)]. Consider I being a sequence of extended reals such that for every natural number $n, I(n) = \int F(n) dM_1$ and I is convergent and $\int \lim F \, dM_1 = \lim I$. For every element x of X_1 such that $x \in \operatorname{dom} \lim F$ holds $(\lim F)(x) = (\operatorname{Yvol}(E, M_2))(x)$ by (116), (108), (27), [10, (13)]. Set $J = E \cap C$. For every object n such that $n \in \mathbb{N}$ holds $J(n) \in \sigma(\text{MeasRect}(S_1, S_2))$. Prod σ -Meas (M_1, M_2) is a σ -measure on σ (MeasRect (S_1, S_2)). For every element n of \mathbb{N} , I(n) = $(\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2)_* J)(n)$ by [10, (13)].

(118) FUBINI'S THEOREM:

Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , and an element E of σ (MeasRect (S_1, S_2)). Suppose M_1 is σ -finite and M_2 is σ -finite. Then $\int \text{Xvol}(E, M_1) \, dM_2 = (\text{Prod } \sigma - \text{Meas}(M_1, M_2))(E)$.

PROOF: Consider A being a set sequence of S_1 such that A is non descending and for every natural number n, $M_1(A(n)) < +\infty$ and $\lim A = X_1$. Consider B being a set sequence of S_2 such that B is non descending and for every natural number n, $M_2(B(n)) < +\infty$ and $\lim B = X_2$. Define $\mathcal{C}(\text{element of } \mathbb{N}) = A(\$_1) \times B(\$_1)$. Consider C being a function from \mathbb{N} into $2^{X_1 \times X_2}$ such that for every element n of \mathbb{N} , $C(n) = \mathcal{C}(n)$ from [11, Sch. 4]. For every natural number n, $C(n) = A(n) \times$ B(n). For every natural number $n, C(n) \in \sigma(\text{MeasRect}(S_1, S_2))$. For every natural numbers n, m such that $n \leq m$ holds $C(n) \subseteq C(m)$ by [13, (96)]. For every natural number n, $(\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2))(C(n)) <$ $+\infty$ by (16), [6, (51)]. Set $C_1 = E \cap C$. For every object n such that $n \in \mathbb{N}$ holds $C_1(n) \in \sigma(\text{MeasRect}(S_1, S_2))$. For every natural number n, $\int \operatorname{Xvol}(E \cap C(n), M_1) dM_2 = (\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2))(E \cap C(n)).$ Define $\mathcal{P}[\text{element of } \mathbb{N}, \text{object}] \equiv \$_2 = \text{Xvol}(E \cap C(\$_1), M_1).$ For every element n of N, there exists an element f of $X_2 \rightarrow \mathbb{R}$ such that $\mathcal{P}[n, f]$ by [12, (45)]. Consider F being a function from N into $X_2 \rightarrow \overline{\mathbb{R}}$ such that for every element n of N, $\mathcal{P}[n, F(n)]$ from [11, Sch. 3]. For every natural number n, $F(n) = \text{Xvol}(E \cap C(n), M_1)$. Reconsider $X_3 = X_2$ as an element of S_2 . For every natural number n and for every element x of X_2 , $(F \# x)(n) = (\text{Xvol}(E \cap C(n), M_1))(x)$. For every natural numbers $n, m, \operatorname{dom}(F(n)) = \operatorname{dom}(F(m))$. For every natural number n, F(n) is measurable on X_3 . For every natural numbers n, m such that $n \leq m$ for every element x of X_2 such that $x \in X_3$ holds $F(n)(x) \leq F(m)(x)$ by (21), [5, (31)]. For every element x of X_2 such that $x \in X_3$ holds F # x is convergent by [20, (7), (37)]. Consider I being a sequence of extended reals such that for every natural number n, $I(n) = \int F(n) dM_2$ and I is convergent and $\int \lim F \, dM_2 = \lim I$. For every element x of X_2 such that $x \in \operatorname{dom} \lim F$ holds $(\lim F)(x) = (\operatorname{Xvol}(E, M_1))(x)$ by (116), (109), (27), [10, (13)]. Set $J = E \cap C$. For every object n such that $n \in \mathbb{N}$ holds $J(n) \in \sigma(\operatorname{MeasRect}(S_1, S_2))$. Prod σ -Meas (M_1, M_2) is a σ -measure on σ (MeasRect (S_1, S_2)). For every element n of \mathbb{N} , I(n) = $(\operatorname{Prod} \sigma \operatorname{-Meas}(M_1, M_2)_*J)(n)$ by [10, (13)].

References

- [1] Grzegorz Bancerek. Curried and uncurried functions. *Formalized Mathematics*, 1(3): 537–541, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Heinz Bauer. Measure and Integration Theory. Walter de Gruyter Inc., 2002.
- [5] Józef Białas. The σ -additive measure theory. Formalized Mathematics, 2(2):263–270, 1991.
- [6] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173–183, 1991.
- [7] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure theory, volume 1. Springer, 2007.
- [8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [9] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241–245, 1996.

- [10] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
- [11] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [12] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [13] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [14] Noboru Endou. Product pre-measure. Formalized Mathematics, 24(1):69–79, 2016. doi:10.1515/forma-2016-0006.
- [15] Gerald B. Folland. Real Analysis: Modern Techniques and Their Applications. Wiley, 2nd edition, 1999.
- [16] P. R. Halmos. Measure Theory. Springer-Verlag, 1974.
- [17] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [18] M.M. Rao. Measure Theory and Integration. Marcel Dekker, 2nd edition, 2004.
- [19] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
- [20] Hiroshi Yamazaki, Noboru Endou, Yasunari Shidama, and Hiroyuki Okazaki. Inferior limit, superior limit and convergence of sequences of extended real numbers. *Formalized Mathematics*, 15(4):231–236, 2007. doi:10.2478/v10037-007-0026-3.
- [21] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Limit of sequence of subsets. Formalized Mathematics, 13(2):347–352, 2005.
- [22] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Some equations related to the limit of sequence of subsets. *Formalized Mathematics*, 13(3):407–412, 2005.

Received February 23, 2017