Algebraic Numbers

Yasushige Watase
Suginami-ku Matsunoki 6
3-21 Tokyo, Japan

Abstract

Summary. This article provides definitions and examples upon an integral element of unital commutative rings. An algebraic number is also treated as consequence of a concept of "integral". Definitions for an integral closure, an algebraic integer and a transcendental numbers [14, [1, [10 and [7 are included as well. As an application of an algebraic number, this article includes a formal proof of a ring extension of rational number field \mathbb{Q} induced by substitution of an algebraic number to the polynomial ring of $\mathbb{Q}[x]$ turns to be a field.

MSC: 11R04 13B21 03B35
Keywords: algebraic number; integral dependency
MML identifier: ALGNUM_1, version: 8.1.05 5.39.1282

1. Preliminaries

From now on i, j denote natural numbers and A, B denote rings. Now we state the propositions:
(1) Let us consider rings L_{1}, L_{2}, L_{3}. Suppose L_{1} is a subring of L_{2} and L_{2} is a subring of L_{3}. Then L_{1} is a subring of L_{3}.
(2) $\mathbb{F}_{\mathbb{Q}}$ is a subfield of \mathbb{C}_{F}.
(3) $\mathbb{F}_{\mathbb{Q}}$ is a subring of \mathbb{C}_{F}.
(4) \mathbb{Z}^{R} is a subring of \mathbb{C}_{F}.

Let us consider elements x, y of B and elements x_{1}, y_{1} of A. Now we state the propositions:
(5) If A is a subring of B and $x=x_{1}$ and $y=y_{1}$, then $x+y=x_{1}+y_{1}$.
(6) If A is a subring of B and $x=x_{1}$ and $y=y_{1}$, then $x \cdot y=x_{1} \cdot y_{1}$.

Let c be a complex. Observe that $c\left(\in \mathbb{C}_{F}\right)$ reduces to c.

2. Extended Evaluation Function

Let A, B be rings, p be a polynomial over A, and x be an element of B. The functor $\operatorname{Ext} \operatorname{Eval}(p, x)$ yielding an element of B is defined by
(Def. 1) there exists a finite sequence F of elements of B such that it $=\sum F$ and len $F=\operatorname{len} p$ and for every element n of \mathbb{N} such that $n \in \operatorname{dom} F$ holds $F(n)=p\left(n-{ }^{\prime} 1\right)(\in B) \cdot \operatorname{power}_{B}\left(x, n-{ }^{\prime} 1\right)$.
Now we state the proposition:
(7) Let us consider an element n of \mathbb{N}, rings A, B, and an element z of A. Suppose A is a subring of B. Then power $_{B}(z(\in B), n)=\operatorname{power}_{A}(z, n)(\in$ $B)$. The theorem is a consequence of (6).
Let us consider elements x_{1}, x_{2} of A. Now we state the propositions:
(8) If A is a subring of B, then $x_{1}(\in B)+x_{2}(\in B)=\left(x_{1}+x_{2}\right)(\in B)$. The theorem is a consequence of (5).
(9) If A is a subring of B, then $x_{1}(\in B) \cdot x_{2}(\in B)=\left(x_{1} \cdot x_{2}\right)(\in B)$. The theorem is a consequence of (6).
(10) Let us consider a finite sequence F of elements of A, and a finite sequence G of elements of B. If A is a subring of B and $F=G$, then $\left(\sum F\right)(\in B)=$ $\sum G$.
Proof: Define \mathcal{P} [natural number] \equiv for every finite sequence F of elements of A for every finite sequence G of elements of B such that len $F=\$_{1}$ and $F=G$ holds $\left(\sum F\right)(\in B)=\sum G$. $\mathcal{P}[0]$ by [13, (43)]. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1$] by [4, (4)], [5, (3)], [4, (59)], [3, (11)]. For every natural number $n, \mathcal{P}[n]$ from [3, Sch. 2].
(11) Let us consider a natural number n, an element x of A, and a polynomial p over A. Suppose A is a subring of B. Then $p\left(n-{ }^{\prime} 1\right)(\in B) \cdot \operatorname{power}_{B}(x(\in$ $\left.B), n-^{\prime} 1\right)=\left(p\left(n-^{\prime} 1\right) \cdot \operatorname{power}_{A}\left(x, n-^{\prime} 1\right)\right)(\in B)$. The theorem is a consequence of (9) and (7).
(12) Let us consider an element x of A, and a polynomial p over A. Suppose A is a subring of B. Then $\operatorname{ExtEval}(p, x(\in B))=(\operatorname{eval}(p, x))(\in B)$.
Proof: Consider F_{1} being a finite sequence of elements of B such that $\operatorname{ExtEval}(p, x(\in B))=\sum F_{1}$ and len $F_{1}=\operatorname{len} p$ and for every element n of \mathbb{N} such that $n \in \operatorname{dom} F_{1}$ holds $F_{1}(n)=p\left(n-{ }^{\prime} 1\right)(\in B) \cdot \operatorname{power}_{B}(x(\in$ $B), n-{ }^{\prime} 1$). Consider F_{2} being a finite sequence of elements of A such that $\operatorname{eval}(p, x)=\sum F_{2}$ and len $F_{2}=\operatorname{len} p$ and for every element n of \mathbb{N} such that $n \in \operatorname{dom} F_{2}$ holds $F_{2}(n)=p\left(n-{ }^{\prime} 1\right) \cdot \operatorname{power}_{A}\left(x, n-{ }^{\prime} 1\right) . F_{1}=F_{2}$ by [12, (29)], [5, (3)], (19).
(13) Let us consider an element x of B. Then $\operatorname{ExtEval}(\mathbf{0} . A, x)=0_{B}$.
(14) Let us consider non degenerated rings A, B, and an element x of B. If A is a subring of B, then $\operatorname{ExtEval}(1 . A, x)=1_{B}$.
(15) Let us consider an element x of B, and polynomials p, q over A. Suppose A is a subring of B. Then $\operatorname{ExtEval}(p+q, x)=\operatorname{ExtEval}(p, x)+\operatorname{Ext} \operatorname{Eval}(q, x)$. The theorem is a consequence of (8).
(16) Let us consider polynomials p, q over A. Suppose A is a subring of B and len $p>0$ and len $q>0$. Let us consider an element x of B. Then ExtEval(Leading-Monomial $p *$ Leading-Monomial $q, x)=\left(p\left(\operatorname{len} p-^{\prime} 1\right) \cdot\right.$ $\left.q\left(\operatorname{len} q-^{\prime} 1\right)\right)(\in B) \cdot \operatorname{power}_{B}\left(x\right.$, len $\left.p+\operatorname{len} q-{ }^{\prime} 2\right)$. The theorem is a consequence of (13).
(17) Let us consider a polynomial p over A, and an element x of B. Suppose A is a subring of B. Then ExtEval(Leading-Monomial $p, x)=p\left(\operatorname{len} p-^{\prime} 1\right)(\in$ $B) \cdot \operatorname{power}_{B}\left(x, \operatorname{len} p-^{\prime} 1\right)$. The theorem is a consequence of (13).

Let us consider a commutative ring B, polynomials p, q over A, and an element x of B. Now we state the propositions:
(18) Suppose A is a subring of B. Then $\operatorname{ExtEval}(L e a d i n g-M o n o m i a l ~ p *$ LeadingMonomial $q, x)=\operatorname{ExtEval}(L e a d i n g-M o n o m i a l ~ p, x) \cdot \operatorname{ExtEval}(L e a d i n g-M o n o-$ $\operatorname{mial} q, x)$. The theorem is a consequence of (16), (9), (17), and (13).
(19) Suppose A is a subring of B. Then $\operatorname{ExtEval(Leading-Monomial~} p * q, x)=$ ExtEval(Leading-Monomial $p, x) \cdot \operatorname{ExtEval}(q, x)$.
Proof: Set $p=$ Leading-Monomial p_{1}. Define \mathcal{P} [natural number] \equiv for every polynomial q over A such that len $q=\$_{1} \operatorname{holds} \operatorname{ExtEval}(p * q, x)=$ $\operatorname{ExtEval}(p, x) \cdot \operatorname{Ext} \operatorname{Eval}(q, x)$. For every natural number k such that for every natural number n such that $n<k$ holds $\mathcal{P}[n]$ holds $\mathcal{P}[k]$ by [9, (16)], [8, (31)], (15), (18). For every natural number $n, \mathcal{P}[n]$ from [3, Sch. 4].
(20) If A is a subring of B, then $\operatorname{ExtEval}(p * q, x)=\operatorname{Ext} \operatorname{Eval}(p, x) \cdot \operatorname{Ext} \operatorname{Eval}(q, x)$. Proof: Define \mathcal{P} [natural number] \equiv for every polynomial p over A such that len $p=\$_{1}$ holds $\operatorname{ExtEval}(p * q, x)=\operatorname{ExtEval}(p, x) \cdot \operatorname{ExtEval}(q, x)$. For every natural number k such that for every natural number n such that $n<k$ holds $\mathcal{P}[n]$ holds $\mathcal{P}[k]$ by [9, (16)], [8, (32)], (15), (19). For every natural number $n, \mathcal{P}[n]$ from [3, Sch. 4].
(21) Let us consider an element x of B, and an element z_{0} of A. Suppose A is a subring of B. Then $\operatorname{ExtEval}\left(\left\langle z_{0}\right\rangle, x\right)=z_{0}(\in B)$. The theorem is a consequence of (13).
(22) Let us consider an element x of B, and elements z_{0}, z_{1} of A. Suppose A is a subring of B. Then $\operatorname{ExtEval}\left(\left\langle z_{0}, z_{1}\right\rangle, x\right)=z_{0}(\in B)+z_{1}(\in B) \cdot x$. The theorem is a consequence of (13).

3. Integral Element and Algebraic Numbers

Let A, B be rings and x be an element of B. We say that x is integral over A if and only if
(Def. 2) there exists a polynomial f over A such that LC $f=1_{A}$ and $\operatorname{ExtEval}(f, x)=0_{B}$.
Now we state the proposition:
(23) Let us consider a non degenerated ring A, and an element a of A. If A is a subring of B, then $a(\in B)$ is integral over A. The theorem is a consequence of (12).
Let A be a non degenerated ring and B be a ring. Assume A is a subring of B. The integral closure over A in B yielding a non empty subset of B is defined by the term
(Def. 3) $\{z$, where z is an element of $B: z$ is integral over $A\}$.
Let c be a complex. We say that c is algebraic if and only if
(Def. 4) there exists an element x of \mathbb{C}_{F} such that $x=c$ and x is integral over $\mathbb{F}_{\mathbb{Q}}$.
Let x be an element of \mathbb{C}_{F}. Note that x is algebraic if and only if the condition (Def. 5) is satisfied.
(Def. 5) $\quad x$ is integral over $\mathbb{F}_{\mathbb{Q}}$.
Let c be a complex. We say that c is algebraic integer if and only if
(Def. 6) there exists an element x of \mathbb{C}_{F} such that $x=c$ and x is integral over \mathbb{Z}^{R}.
Let x be an element of \mathbb{C}_{F}. Observe that x is algebraic integer if and only if the condition (Def. 7) is satisfied.
(Def. 7) $\quad x$ is integral over \mathbb{Z}^{R}.
Let x be a complex. We introduce the notation x is transcendental as an antonym for x is algebraic.

Note that every complex which is rational is also algebraic and there exists a complex which is algebraic and there exists an element of \mathbb{C}_{F} which is algebraic and every complex which is integer is also algebraic integer and there exists a complex which is algebraic integer and there exists an element of \mathbb{C}_{F} which is algebraic integer.

Let A, B be rings and x be an element of B. The functor $\operatorname{AnnPoly}(x, A)$ yielding a non empty subset of $\operatorname{PolyRing}(A)$ is defined by the term
(Def. 8) $\left\{p\right.$, where p is a polynomial over $\left.A: \operatorname{Ext} \operatorname{Eval}(p, x)=0_{B}\right\}$.
Now we state the propositions:
(24) Let us consider rings A, B, an element w of B, and elements x, y of $\operatorname{PolyRing}(A)$. Suppose A is a subring of B and $x, y \in \operatorname{AnnPoly}(w, A)$. Then $x+y \in \operatorname{AnnPoly}(w, A)$. The theorem is a consequence of (15).
(25) Let us consider a commutative ring B, an element z of B, and elements p, x of $\operatorname{PolyRing}(A)$. Suppose A is a subring of B and $x \in \operatorname{AnnPoly}(z, A)$. Then $p \cdot x \in \operatorname{AnnPoly}(z, A)$. The theorem is a consequence of (20).
(26) Let us consider a commutative ring B, an element w of B, and elements p, x of PolyRing (A). Suppose A is a subring of B and $x \in \operatorname{AnnPoly}(w, A)$. Then $x \cdot p \in \operatorname{AnnPoly}(w, A)$. The theorem is a consequence of (20).
(27) Let us consider a non degenerated ring A, a non degenerated commutative ring B, and an element w of B. Suppose A is a subring of B. Then $\operatorname{AnnPoly}(w, A)$ is a proper ideal of $\operatorname{PolyRing}(A)$.
Proof: $\operatorname{AnnPoly}(w, A)$ is closed under addition. $\operatorname{AnnPoly}(w, A)$ is left ideal. $\operatorname{AnnPoly}(w, A)$ is right ideal. $\operatorname{AnnPoly}(w, A)$ is proper by [8, (37)], (14).

4. Properties of Polynomial Ring over Principal Ideal Domain

From now on K, L denote fields.
Now we state the propositions:
(28) Let us consider fields K, L, and an element w of L. Suppose K is a subring of L. Then there exists an element g of PolyRing (K) such that $\{g\}$-ideal $=\operatorname{AnnPoly}(w, K)$. The theorem is a consequence of (27).
(29) Let us consider fields K, L, and an element z of L. Suppose z is integral over K. Then $\operatorname{AnnPoly}(z, K) \neq\left\{0_{\text {PolyRing }(K)}\right\}$.
Proof: Consider f being a polynomial over K such that LC $f=1_{K}$ and $\operatorname{ExtEval}(f, z)=0_{L} . f \notin\left\{0_{\operatorname{PolyRing}(K)}\right\}$ by [2, (47), (64)], [11, (7)].
(30) Let us consider a field K, and an element p of PolyRing (K). Suppose $p \neq \mathbf{0} . K$. Then p is a non zero element of the carrier of PolyRing (K).
Let us consider fields K, L and an element w of L. Now we state the propositions:
(31) If K is a subring of L, then $\operatorname{AnnPoly}(w, K)$ is quasi-prime. The theorem is a consequence of (20).
(32) If K is a subring of L and w is integral over K, then $\operatorname{AnnPoly}(w, K)$ is prime. The theorem is a consequence of (31) and (27).
(33) Let us consider fields K, L, and an element z of L. Suppose K is a subring of L and z is integral over K. Then there exists an element f of PolyRing (K) such that
(i) $f \neq \mathbf{0} . K$, and
(ii) $\{f\}$-ideal $=\operatorname{AnnPoly}(z, K)$, and
(iii) $f=$ NormPoly f.

The theorem is a consequence of (28), (29), and (30).
(34) Let us consider fields K, L, an element z of L, and elements f, g of $\operatorname{PolyRing}(K)$. Suppose z is integral over K and $\{f\}$-ideal $=\operatorname{AnnPoly}(z, K)$ and $f=\operatorname{NormPoly} f$ and $\{g\}$-ideal $=\operatorname{AnnPoly}(z, K)$ and $g=$ NormPoly g. Then $f=g$. The theorem is a consequence of (29) and (30).
Let K, L be fields and z be an element of L. Assume K is a subring of L and z is integral over K. The minimal polynomial of z over K yielding an element of the carrier of PolyRing (K) is defined by
(Def. 9) it $\neq \mathbf{0} . K$ and $\{i t\}$-ideal $=\operatorname{AnnPoly}(z, K)$ and $i t=$ NormPoly $i t$.
Assume K is a subring of L and z is integral over K. The degree of algebraic number z over K yielding an element of \mathbb{N} is defined by the term
(Def. 10) $\operatorname{deg}($ the minimal polynomial of z over K).
Let A, B be rings and x be an element of B. The functor $\operatorname{HomExtEval}(x, A)$ yielding a function from PolyRing (A) into B is defined by
(Def. 11) for every polynomial p over $A, i t(p)=\operatorname{Ext} \operatorname{Eval}(p, x)$.
Let x be an element of \mathbb{C}_{F}. Note that $\operatorname{HomExtEval}\left(x, \mathbb{F}_{\mathbb{Q}}\right)$ is unity-preserving, additive, and multiplicative.

Now we state the propositions:
(35) Let us consider an element x of \mathbb{C}_{F}.

Then \mathbb{C}_{F} is $\left(\operatorname{PolyRing}\left(\mathbb{F}_{\mathbb{Q}}\right)\right)$-homomorphic.
(36) Let us consider an element x of B, and an object z.

If $z \in \operatorname{rng} \operatorname{HomExtEval}(x, A)$, then $z \in B$.
Let x be an element of \mathbb{C}_{F}. The functor $\mathrm{FQ}(x)$ yielding a subset of \mathbb{C}_{F} is defined by the term
(Def. 12) rng $\operatorname{HomExt} \operatorname{Eval}\left(x, \mathbb{F}_{\mathbb{Q}}\right)$.
Let us note that $\mathrm{FQ}(x)$ is non empty.
Let us consider elements x, z_{1}, z_{2} of \mathbb{C}_{F}. Now we state the propositions:
(37) If $z_{1}, z_{2} \in \mathrm{FQ}(x)$, then $z_{1}+z_{2} \in \mathrm{FQ}(x)$. The theorem is a consequence of (3) and (15).
(38) If $z_{1}, z_{2} \in \mathrm{FQ}(x)$, then $z_{1} \cdot z_{2} \in \mathrm{FQ}(x)$. The theorem is a consequence of (3) and (20).
(39) Let us consider an element x of \mathbb{C}_{F}, and an element a of $\mathbb{F}_{\mathbb{Q}}$. Then $a \in \mathrm{FQ}(x)$. The theorem is a consequence of (3) and (21).

Let x be an element of \mathbb{C}_{F}. The functor FQ -add (x) yielding a binary operation on $\mathrm{FQ}(x)$ is defined by the term
(Def. 13) $+_{\mathbb{C}} \upharpoonright \mathrm{FQ}(x)$.
The functor FQ-mult (x) yielding a binary operation on $\mathrm{FQ}(x)$ is defined by the term
(Def. 14) $\cdot \mathbb{C} \upharpoonright \mathrm{FQ}(x)$.
Let us consider an element x of \mathbb{C}_{F} and elements z, w of $\mathrm{FQ}(x)$. Now we state the propositions:
(40) $\quad(\mathrm{FQ}-\operatorname{add}(x))(z, w)=z+w$.
(41) (FQ-mult $(x))(z, w)=z \cdot w$.
(42) Let us consider an element x of \mathbb{C}_{F}. Then $1_{\mathbb{C}_{\mathrm{F}}}(\in \mathrm{FQ}(x))=1_{\mathbb{C}_{\mathrm{F}}}$. The theorem is a consequence of (3) and (39).
(43) $\quad\left(-1_{\mathbb{F}_{\mathbb{Q}}}\right)\left(\in \mathbb{C}_{F}\right)=-1_{\mathbb{C}_{F}}$. The theorem is a consequence of (3).

Let x be an element of \mathbb{C}_{F}. The functor $\mathbb{Q}[x]$ yielding a strict, non empty double loop structure is defined by the term
(Def. 15) $\left\langle\mathrm{FQ}(x), \operatorname{FQ}-\operatorname{add}(x), \mathrm{FQ}-m u l t(x), 1_{\mathbb{C}_{\mathrm{F}}}(\in \mathrm{FQ}(x)), 0_{\mathbb{C}_{\mathrm{F}}}(\in \mathrm{FQ}(x))\right\rangle$.
Now we state the proposition:
(44) Let us consider an element x of \mathbb{C}_{F}. Then $\mathbb{Q}[x]$ is a ring.

Proof: Reconsider $Z=\left\langle\mathrm{FQ}(x), \mathrm{FQ}-\operatorname{add}(x), \mathrm{FQ}-m u l t(x), 1_{\mathbb{C}_{\mathrm{F}}}(\in \mathrm{FQ}(x))\right.$, $\left.0_{\mathbb{C}_{\mathrm{F}}}(\in \mathrm{FQ}(x))\right\rangle$ as a non empty double loop structure. For every elements v, w of $Z, v+w=w+v$. For every elements u, v, w of $Z,(u+v)+w=$ $u+(v+w)$. For every element v of $Z, v+0_{Z}=v$. Every element of Z is right complementable by (36), [6, (9)], (39), (43). For every elements a, b, v of $Z,(a+b) \cdot v=a \cdot v+b \cdot v$. For every elements a, v, w of Z, $a \cdot(v+w)=a \cdot v+a \cdot w$ and $(v+w) \cdot a=v \cdot a+w \cdot a$. For every elements a, b, v of $Z,(a \cdot b) \cdot v=a \cdot(b \cdot v)$. For every element v of $Z, v \cdot 1_{Z}=v$ and $1_{Z} \cdot v=v$.
Let x be an element of \mathbb{C}_{F}. One can verify that $\mathbb{Q}[x]$ is Abelian, addassociative, right zeroed, right complementable, associative, well unital, and distributive.

Let z be an element of \mathbb{C}_{F}. One can verify that $\mathbb{Q}[z]$ is integral domain-like, commutative, and non degenerated.

Now we state the proposition:
(45) Let us consider an element x of \mathbb{C}_{F}. Then $\mathbb{Q} \times \mathbb{Q} \subseteq \mathrm{FQ}(x) \times \mathrm{FQ}(x) \subseteq \mathbb{C} \times$ \mathbb{C}. The theorem is a consequence of (39).
Let us consider an element x of \mathbb{C}_{F}. Now we state the propositions:
(46) The addition of $\mathbb{F}_{\mathbb{Q}}=($ the addition of $\mathbb{Q}[x]) \upharpoonright \mathbb{Q}$. The theorem is a consequence of (45).
(47) The multiplication of $\mathbb{F}_{\mathbb{Q}}=$ (the multiplication of $\left.\mathbb{Q}[x]\right) \upharpoonright \mathbb{Q}$. The theorem is a consequence of (45).
(48) $\mathbb{F}_{\mathbb{Q}}$ is a subring of $\mathbb{Q}[x]$. The theorem is a consequence of $(46),(47),(42)$, (3), and (39).

Let us consider elements f, g of PolyRing (K). Now we state the propositions:
(49) Suppose $f \neq 0_{\operatorname{PolyRing}(K)}$ and $\{f\}$-ideal is prime and $g \notin\{f\}$-ideal. Then $\{f, g\}$-ideal $=$ the carrier of $\operatorname{PolyRing}(K)$.
(50) Suppose $f \neq 0_{\operatorname{PolyRing}(K)}$ and $\{f\}$-ideal is prime and $g \notin\{f\}$-ideal. Then $\{f\}$-ideal and $\{g\}$-ideal are co-prime. The theorem is a consequence of (49).
(51) Let us consider an element x of \mathbb{C}_{F}, and an element a of $\mathbb{Q}[x]$. Then there exists an element g of $\operatorname{PolyRing}\left(\mathbb{F}_{\mathbb{Q}}\right)$ such that $a=\left(\operatorname{HomExtEval}\left(x, \mathbb{F}_{\mathbb{Q}}\right)\right)(g)$.

Let us consider elements x, a of \mathbb{C}_{F}. Now we state the propositions:
(52) Suppose $a \neq 0_{\mathbb{C}_{\mathrm{F}}}$ and $a \in$ the carrier of $\mathbb{Q}[x]$. Then there exists an element g of $\operatorname{PolyRing}\left(\mathbb{F}_{\mathbb{Q}}\right)$ such that
(i) $g \notin \operatorname{AnnPoly}\left(x, \mathbb{F}_{\mathbb{Q}}\right)$, and
(ii) $a=\left(\operatorname{HomExtEval}\left(x, \mathbb{F}_{\mathbb{Q}}\right)\right)(g)$.

The theorem is a consequence of (51).
(53) Suppose x is algebraic and $a \neq 0_{\mathbb{C}_{F}}$ and $a \in$ the carrier of $\mathbb{Q}[x]$. Then there exist elements f, g of PolyRing $\left(\mathbb{F}_{\mathbb{Q}}\right)$ such that
(i) $\{f\}$-ideal $=\operatorname{AnnPoly}\left(x, \mathbb{F}_{\mathbb{Q}}\right)$, and
(ii) $g \notin \operatorname{AnnPoly}\left(x, \mathbb{F}_{\mathbb{Q}}\right)$, and
(iii) $a=\left(\operatorname{HomExtEval}\left(x, \mathbb{F}_{\mathbb{Q}}\right)\right)(g)$, and
(iv) $\{f\}$-ideal and $\{g\}$-ideal are co-prime.

The theorem is a consequence of (28), (3), (52), (32), (29), and (50).
(54) Suppose x is algebraic and $a \neq 0_{\mathbb{C}_{F}}$ and $a \in$ the carrier of $\mathbb{Q}[x]$. Then there exists an element b of \mathbb{C}_{F} such that
(i) $b \in$ the carrier of $\mathbb{Q}[x]$, and
(ii) $a \cdot b=1_{\mathbb{C}_{\mathrm{F}}}$.

The theorem is a consequence of $(53),(3),(14),(15)$, and (20).
(55) Let us consider an element x of \mathbb{C}_{F}. If x is algebraic, then $\mathbb{Q}[x]$ is a field. The theorem is a consequence of (54), (41), and (42).

References

[1] Michael Francis Atiyah and Ian Grant Macdonald. Introduction to Commutative Algebra, volume 2. Addison-Wesley Reading, 1969.
[2] Jonathan Backer, Piotr Rudnicki, and Christoph Schwarzweller. Ring ideals. Formalized Mathematics, 9(3):565-582, 2001.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Functions and their basic properties Formalized Mathematics, 1(1): 55-65, 1990.
[6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[7] Hideyuki Matsumura. Commutative Ring Theory. Cambridge University Press, 2nd edition, 1989. Cambridge Studies in Advanced Mathematics.
[8] Robert Milewski. The ring of polynomials Formalized Mathematics, 9(2):339-346, 2001.
[9] Robert Milewski. The evaluation of polynomials Formalized Mathematics, 9(2):391-395, 2001.
[10] Masayoshi Nagata. Theory of Commutative Fields, volume 125. American Mathematical Society, 1985. Translations of Mathematical Monographs.
[11] Andrzej Trybulec. Binary operations applied to functions Formalized Mathematics, 1 (2):329-334, 1990.
[12] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences Formalized Mathematics, 1(3):569-573, 1990.
[13] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[14] Oscar Zariski and Pierre Samuel. Commutative Algebra I. Springer, 2nd edition, 1975.

Received December 15, 2016

