The Basic Existence Theorem of Riemann-Stieltjes Integral

Kazuhisa Nakasho
Akita Prefectural University
Akita, Japan
Yasunari Shidama
Shinshu University
Nagano, Japan

Keiko Narita
Hirosaki-city
Aomori, Japan

Abstract

Summary. In this article, the basic existence theorem of Riemann-Stieltjes integral is formalized. This theorem states that if f is a continuous function and ρ is a function of bounded variation in a closed interval of real line, f is Riemann-Stieltjes integrable with respect to ρ. In the first section, basic properties of real finite sequences are formalized as preliminaries. In the second section, we formalized the existence theorem of the Riemann-Stieltjes integral. These formalizations are based on [15], [12], [10], and [11].

MSC: 26A42 26A45 03B35
Keywords: Riemann-Stieltjes integral; bounded variation; continuous function MML identifier: INTEGR23, version: 8.1.05 5.39.1282

1. Preliminaries

Now we state the propositions:
(1) Let us consider a real number E, a finite sequence q of elements of \mathbb{R}, and a finite sequence S of elements of \mathbb{R}. Suppose len $S=\operatorname{len} q$ and for every natural number i such that $i \in \operatorname{dom} S$ there exists a real number r such that $r=q(i)$ and $S(i)=r \cdot E$. Then $\sum S=\sum q \cdot E$.
Proof: Define \mathcal{P} [natural number] \equiv for every finite sequence q of elements of \mathbb{R} for every finite sequence S of elements of \mathbb{R} such that $\$_{1}=\operatorname{len} S$
and $\operatorname{len} S=\operatorname{len} q$ and for every natural number i such that $i \in \operatorname{dom} S$ there exists a real number r such that $r=q(i)$ and $S(i)=r \cdot E$ holds $\sum S=\sum q \cdot E . \mathcal{P}[0]$ by [7, (72)]. For every natural number $i, \mathcal{P}[i]$ from [1, Sch. 2].
(2) Let us consider finite sequences x, y of elements of \mathbb{R}. Suppose len $x=$ len y and for every element i of \mathbb{N} such that $i \in \operatorname{dom} x$ there exists a real number v such that $v=x(i)$ and $y(i)=|v|$. Then $\left|\sum x\right| \leqslant \sum y$.
Proof: Define \mathcal{P} [natural number] \equiv for every finite sequences x, y of elements of \mathbb{R} such that $\$_{1}=\operatorname{len} x$ and len $x=\operatorname{len} y$ and for every element i of \mathbb{N} such that $i \in \operatorname{dom} x$ there exists a real number v such that $v=x(i)$ and $y(i)=|v|$ holds $\left|\sum x\right| \leqslant \sum y . \mathcal{P}[0]$ by [7, (72)], [3, (44)]. For every natural number $i, \mathcal{P}[i]$ from [1, Sch. 2].
(3) Let us consider finite sequences p, q of elements of \mathbb{R}. Suppose len $p=$ len q and for every natural number j such that $j \in \operatorname{dom} p$ holds $|p(j)| \leqslant$ $q(j)$. Then $\left|\sum p\right| \leqslant \sum q$.
Proof: Define \mathcal{P} [natural number, set] \equiv there exists a real number v such that $v=p\left(\$_{1}\right)$ and $\$_{2}=|v|$. For every natural number i such that $i \in \operatorname{Seg}$ len p there exists an element x of \mathbb{R} such that $\mathcal{P}[i, x]$. Consider u being a finite sequence of elements of \mathbb{R} such that $\operatorname{dom} u=\operatorname{Seg} \operatorname{len} p$ and for every natural number i such that $i \in \operatorname{Seg} \operatorname{len} p$ holds $\mathcal{P}[i, u(i)]$ from [2, Sch. 5]. For every element i of \mathbb{N} such that $i \in \operatorname{dom} p$ there exists a real number v such that $v=p(i)$ and $u(i)=|v| \cdot\left|\sum p\right| \leqslant \sum u$.
(4) Let us consider a natural number n, and an object a. Then len $(n \mapsto a)=$ n.
(5) Let us consider a finite sequence p, and an object a. Then $p=\operatorname{len} p \mapsto a$ if and only if for every object k such that $k \in \operatorname{dom} p$ holds $p(k)=a$.
Proof: If $p=\operatorname{len} p \mapsto a$, then for every object k such that $k \in \operatorname{dom} p$ holds $p(k)=a$ by [4, (57)].
(6) Let us consider a finite sequence p of elements of \mathbb{R}, a natural number i, and a real number r. Suppose $i \in \operatorname{dom} p$ and $p(i)=r$ and for every natural number k such that $k \in \operatorname{dom} p$ and $k \neq i$ holds $p(k)=0$. Then $\sum p=r$.
Proof: Define \mathcal{P} [natural number] \equiv for every finite sequence p of elements of \mathbb{R} for every natural number i for every real number r such that len $p=\$_{1}$ and $i \in \operatorname{dom} p$ and $p(i)=r$ and for every natural number k such that $k \in \operatorname{dom} p$ and $k \neq i$ holds $p(k)=0$ holds $\sum p=r . \mathcal{P}[0]$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [4, (19), (16)], [18, (25)], [17, (7)]. For every natural number $k, \mathcal{P}[k]$ from [1, Sch. 2].
(7) Let us consider finite sequences p, q of elements of \mathbb{R}. Suppose len $p \leqslant$
$\operatorname{len} q$ and for every natural number i such that $i \in \operatorname{dom} q$ holds if $i \leqslant \operatorname{len} p$, then $q(i)=p(i)$ and if len $p<i$, then $q(i)=0$. Then $\sum q=\sum p$.
Proof: Consider i_{1} being a natural number such that $i_{1}=\operatorname{len} q-\operatorname{len} p$. Set $x=i_{1} \mapsto\left(0\right.$ qua real number). $q=p^{\wedge} x$ by (4), [18, (25)], [16, (13)], [4, (57)].
(8) Let us consider real numbers a, b, c, d. If $b \leqslant c$, then $[a, b] \cap[c, d] \subseteq[b, b]$.
(9) Let us consider a real number a, a subset A of \mathbb{R}, and a real-valued function ϱ. If $A \subseteq[a, a]$, then $\operatorname{vol}(A, \varrho)=0$.
(10) Let us consider a non empty, increasing finite sequence s of elements of \mathbb{R}, and a natural number m. Suppose $m \in \operatorname{dom} s$. Then $s \upharpoonright m$ is a non empty, increasing finite sequence of elements of \mathbb{R}.
Proof: Set $H=s\left\lceil m\right.$. For every extended reals e_{1}, e_{2} such that $e_{1}, e_{2} \in$ dom H and $e_{1}<e_{2}$ holds $H\left(e_{1}\right)<H\left(e_{2}\right)$ by [19, (57)], [5, (47)].
(11) Let us consider non empty, increasing finite sequences s, t of elements of \mathbb{R}. Suppose $s(\operatorname{len} s)<t(1)$. Then $s^{\frown} t$ is a non empty, increasing finite sequence of elements of \mathbb{R}.
Proof: Set $H=s^{\wedge} t$. For every extended reals e_{1}, e_{2} such that e_{1}, $e_{2} \in \operatorname{dom} H$ and $e_{1}<e_{2}$ holds $H\left(e_{1}\right)<H\left(e_{2}\right)$ by [18, (25)], [2, (25), (3)].
(12) Let us consider a non empty, increasing finite sequence s of elements of \mathbb{R}, and a real number a. Suppose $s(\operatorname{len} s)<a$. Then $s^{\curvearrowleft}\langle a\rangle$ is a non empty, increasing finite sequence of elements of \mathbb{R}. The theorem is a consequence of (11).
(13) Let us consider a finite sequence T of elements of \mathbb{R}, and natural numbers n, m. Suppose $n+1<m \leqslant \operatorname{len} T$. Then there exists a finite sequence T_{1} of elements of \mathbb{R} such that
(i) len $T_{1}=m-(n+1)$, and
(ii) $\operatorname{rng} T_{1} \subseteq \operatorname{rng} T$, and
(iii) for every natural number i such that $i \in \operatorname{dom} T_{1}$ holds $T_{1}(i)=T(i+$ n).

Proof: Define \mathcal{F} (natural number) $=T\left(\$_{1}+n\right)$. Reconsider $m_{1}=m-$ $(n+1)$ as a natural number. Consider p being a finite sequence such that len $p=m_{1}$ and for every natural number k such that $k \in \operatorname{dom} p$ holds $p(k)=\mathcal{F}(k)$ from [2, Sch. 2]. $\operatorname{rng} p \subseteq \operatorname{rng} T$ by [18, (25)], [5, (3)]. \square
(14) Let us consider a non empty, increasing finite sequence T of elements of \mathbb{R}, and natural numbers n, m. Suppose $n+1<m \leqslant \operatorname{len} T$. Then there exists a non empty, increasing finite sequence T_{1} of elements of \mathbb{R} such that
(i) $\operatorname{len} T_{1}=m-(n+1)$, and
(ii) $\operatorname{rng} T_{1} \subseteq \operatorname{rng} T$, and
(iii) for every natural number i such that $i \in \operatorname{dom} T_{1}$ holds $T_{1}(i)=T(i+$ $n)$.
Proof: Consider p being a finite sequence of elements of \mathbb{R} such that len $p=m-(n+1)$ and $\operatorname{rng} p \subseteq \operatorname{rng} T$ and for every natural number i such that $i \in \operatorname{dom} p$ holds $p(i)=T(i+n)$. For every extended reals e_{1}, e_{2} such that $e_{1}, e_{2} \in \operatorname{dom} p$ and $e_{1}<e_{2}$ holds $p\left(e_{1}\right)<p\left(e_{2}\right)$ by [18, (25)].
(15) Let us consider a finite sequence p of elements of \mathbb{R}, and natural numbers n, m. Suppose $n+1<m \leqslant \operatorname{len} p$. Then there exists a finite sequence p_{1} of elements of \mathbb{R} such that
(i) len $p_{1}=m-(n+1)-1$, and
(ii) $\operatorname{rng} p_{1} \subseteq \operatorname{rng} p$, and
(iii) for every natural number i such that $i \in \operatorname{dom} p_{1}$ holds $p_{1}(i)=p(i+$ $n+1)$.

The theorem is a consequence of (13).

2. Existence of Riemann-Stieltjes Integral for Continuous Functions

Now we state the propositions:
(16) Let us consider a non empty, closed interval subset A of \mathbb{R}, a partition T of A, a real-valued function ϱ, a non empty, closed interval subset B of \mathbb{R}, a non empty, increasing finite sequence S_{0} of elements of \mathbb{R}, and a finite sequence S_{1} of elements of \mathbb{R}.
Suppose $B \subseteq A$ and $\inf B=\inf A$ and there exists a partition S of B such that $S=S_{0}$ and len $S_{1}=\operatorname{len} S$ and for every natural number j such that $j \in \operatorname{dom} S$ there exists a finite sequence p of elements of \mathbb{R} such that $S_{1}(j)=\sum p$ and len $p=\operatorname{len} T$ and for every natural number i such that $i \in \operatorname{dom} T$ holds $p(i)=|\operatorname{vol}(\operatorname{divset}(T, i) \cap \operatorname{divset}(S, j), \varrho)|$.
Then there exists a partition H of B and there exists a var-volume F of ϱ and H such that $\sum S_{1}=\sum F$.
Proof: Define \mathcal{P} [natural number] \equiv for every non empty, closed interval subset B of \mathbb{R} for every non empty, increasing finite sequence S_{0} of elements of \mathbb{R} for every finite sequence S_{1} of elements of \mathbb{R} such that $B \subseteq A$ and $\inf B=\inf A$ and len $S_{0}=\$_{1}$ and there exists a partition S of B such that $S=S_{0}$ and len $S_{1}=\operatorname{len} S$ and for every natural number j such
that $j \in \operatorname{dom} S$ there exists a finite sequence p of elements of \mathbb{R} such that $S_{1}(j)=\sum p$ and len $p=\operatorname{len} T$ and for every natural number i such that $i \in \operatorname{dom} T$ holds $p(i)=|\operatorname{vol}(\operatorname{divset}(T, i) \cap \operatorname{divset}(S, j), \varrho)|$ there exists a partition H of B and there exists a var-volume F of ϱ and H such that $\sum S_{1}=\sum F$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [18, (29)], [1, (14)], [18, (25)], [2, (40)]. For every natural number $k, \mathcal{P}[k]$ from [1, Sch. 2].
(17) Let us consider a non empty, closed interval subset A of \mathbb{R}, a function ϱ from A into \mathbb{R}, and partitions T, S of A. Suppose ϱ is bounded-variation. Then there exists a finite sequence S_{1} of elements of \mathbb{R} such that
(i) len $S_{1}=\operatorname{len} S$, and
(ii) $\sum S_{1} \leqslant \operatorname{TotalVD}(\varrho)$, and
(iii) for every natural number j such that $j \in \operatorname{dom} S$ there exists a finite sequence p of elements of \mathbb{R} such that $S_{1}(j)=\sum p$ and len $p=\operatorname{len} T$ and for every natural number i such that $i \in \operatorname{dom} T$ holds $p(i)=$ $|\operatorname{vol}(\operatorname{divset}(T, i) \cap \operatorname{divset}(S, j), \varrho)|$.

Proof: Define \mathcal{P} [natural number, object] \equiv there exists a finite sequence p of elements of \mathbb{R} such that $\$_{2}=\sum p$ and len $p=\operatorname{len} T$ and for every natural number i such that $i \in \operatorname{dom} T$ holds $p(i)=\mid \operatorname{vol}(\operatorname{divset}(T, i) \cap$ $\left.\operatorname{divset}\left(S, \$_{1}\right), \varrho\right) \mid$. For every natural number j such that $j \in \operatorname{Seg}$ len S there exists an element x of \mathbb{R} such that $\mathcal{P}[j, x]$. Consider S_{1} being a finite sequence of elements of \mathbb{R} such that $\operatorname{dom} S_{1}=\operatorname{Seg} \operatorname{len} S$ and for every natural number j such that $j \in \operatorname{Seg}$ len S holds $\mathcal{P}\left[j, S_{1}(j)\right]$ from [2, Sch. 5]. Consider H being a partition of A, F being a var-volume of ϱ and H such that $\sum S_{1}=\sum F$.
(18) Let us consider a non empty, closed interval subset A of \mathbb{R}, a function ϱ from A into \mathbb{R}, and a partial function u from \mathbb{R} to \mathbb{R}.
Suppose ϱ is bounded-variation and $\operatorname{dom} u=A$ and $u \upharpoonright A$ is uniformly continuous. Let us consider a division sequence T of A, and a middle volume sequence S of ϱ, u and T. Suppose δ_{T} is convergent and $\lim \delta_{T}=0$. Then middle-sum (S) is convergent.
Proof: For every division sequence T of A and for every middle volume sequence S of ϱ, u and T such that δ_{T} is convergent and $\lim \delta_{T}=0$ holds middle-sum (S) is convergent by [14, (6)], [9, (9)], [8, (87)], [6, (5)].
(19) Let us consider a non empty, closed interval subset A of \mathbb{R}, a function ϱ from A into \mathbb{R}, a partial function u from \mathbb{R} to \mathbb{R}, division sequences T_{0}, T, T_{1} of A, a middle volume sequence S_{0} of ϱ, u and T_{0}, and a middle volume sequence S of ϱ, u and T.

Suppose for every natural number $i, T_{1}(2 \cdot i)=T_{0}(i)$ and $T_{1}(2 \cdot i+1)=T(i)$. Then there exists a middle volume sequence S_{1} of ϱ, u and T_{1} such that for every natural number $i, S_{1}(2 \cdot i)=S_{0}(i)$ and $S_{1}(2 \cdot i+1)=S(i)$.
Proof: Reconsider $S_{3}=S_{0}, S_{2}=S$ as a sequence of \mathbb{R}^{*}. Define \mathcal{F} (natural number $)=S_{3}\left(\$_{1}\right)\left(\in \mathbb{R}^{*}\right)$. Define \mathcal{G} (natural number) $=S_{2}\left(\$_{1}\right)\left(\in \mathbb{R}^{*}\right)$. Consider S_{1} being a sequence of \mathbb{R}^{*} such that for every natural number n, $S_{1}(2 \cdot n)=\mathcal{F}(n)$ and $S_{1}(2 \cdot n+1)=\mathcal{G}(n)$ from [13, Sch. 1]. For every element i of $\mathbb{N}, S_{1}(i)$ is a middle volume of ϱ, u and $T_{1}(i)$ by [13, (14)], [6, (5)].
(20) Let us consider sequences S_{1}, S_{2}, S_{3} of real numbers. Suppose S_{3} is convergent and for every natural number $i, S_{3}(2 \cdot i)=S_{1}(i)$ and $S_{3}(2 \cdot i+$ 1) $=S_{2}(i)$. Then
(i) S_{1} is convergent, and
(ii) $\lim S_{1}=\lim S_{3}$, and
(iii) S_{2} is convergent, and
(iv) $\lim S_{2}=\lim S_{3}$.

Proof: For every real number r such that $0<r$ there exists a natural number m_{1} such that for every natural number i such that $m_{1} \leqslant i$ holds $\left|S_{1}(i)-\lim S_{3}\right|<r$ by [13, (14)], [1, (11)]. For every real number r such that $0<r$ there exists a natural number m_{1} such that for every natural number i such that $m_{1} \leqslant i$ holds $\left|S_{2}(i)-\lim S_{3}\right|<r$ by [13, (14)], [1, (11)].
(21) Let us consider a non empty, closed interval subset A of \mathbb{R}, a function ϱ from A into \mathbb{R}, and a continuous partial function u from \mathbb{R} to \mathbb{R}.
Suppose ϱ is bounded-variation and $\operatorname{dom} u=A$. Then u is RiemannStieltjes integrable with ϱ.
Proof: Consider T_{0} being a division sequence of A such that $\delta_{T_{0}}$ is convergent and $\lim \delta_{T_{0}}=0$. Set $S_{0}=$ the middle volume sequence of ϱ, u and T_{0}. Set $I=\lim$ middle-sum $\left(S_{0}\right)$. For every division sequence T of A and for every middle volume sequence S of ϱ, u and T such that δ_{T} is convergent and $\lim \delta_{T}=0$ holds middle-sum (S) is convergent and $\lim \operatorname{middle-sum}(S)=I$ by (18), [13, (15)], (19), [13, (16)].

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[5] Czesław Byliński. Functions and their basic properties Formalized Mathematics, 1(1): 55-65, 1990.
[6] Czesław Byliński. Functions from a set to a set Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński. The sum and product of finite sequences of real numbers Formalized Mathematics, 1(4):661-668, 1990.
[8] Czesław Byliński. Some basic properties of sets Formalized Mathematics, 1(1):47-53, 1990.
[9] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Darboux's theorem. Formalized Mathematics, 9(1):197-200, 2001.
[10] S.L. Gupta and Nisha Rani. Fundamental Real Analysis. Vikas Pub., 1986.
[11] Einar Hille. Methods in classical and functional analysis. Addison-Wesley Publishing Co., Halsted Press, 1974.
[12] H. Kestelman. Modern theories of integration. Dover Publications, 2nd edition, 1960.
[13] Keiko Narita, Noboru Endou, and Yasunari Shidama. Riemann integral of functions from \mathbb{R} into real Banach space. Formalized Mathematics, 21(2):145-152, 2013. doi 10.2478/forma-2013-0016
[14] Keiko Narita, Kazuhisa Nakasho, and Yasunari Shidama. Riemann-Stieltjes integral. Formalized Mathematics, 24(3):199-204, 2016. doi:10.1515/forma-2016-0016.
[15] Daniel W. Stroock. A Concise Introduction to the Theory of Integration. Springer Science \& Business Media, 1999.
[16] Andrzej Trybulec. Binary operations applied to functions Formalized Mathematics, 1 (2):329-334, 1990.
[17] Michał J. Trybulec. Integers Formalized Mathematics, 1(3):501-505, 1990.
[18] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences Formalized Mathematics, 1(3):569-573, 1990.
[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.

