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Summary. In this article, the basic existence theorem of Riemann-Stielt-
jes integral is formalized. This theorem states that if f is a continuous function
and ρ is a function of bounded variation in a closed interval of real line, f is
Riemann-Stieltjes integrable with respect to ρ. In the first section, basic proper-
ties of real finite sequences are formalized as preliminaries. In the second section,
we formalized the existence theorem of the Riemann-Stieltjes integral. These
formalizations are based on [15], [12], [10], and [11].
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1. Preliminaries

Now we state the propositions:

(1) Let us consider a real number E, a finite sequence q of elements of R,
and a finite sequence S of elements of R. Suppose lenS = len q and for
every natural number i such that i ∈ domS there exists a real number r
such that r = q(i) and S(i) = r · E. Then

∑
S =
∑
q · E.

Proof: Define P[natural number] ≡ for every finite sequence q of elements
of R for every finite sequence S of elements of R such that $1 = lenS
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and lenS = len q and for every natural number i such that i ∈ domS

there exists a real number r such that r = q(i) and S(i) = r · E holds∑
S =
∑
q ·E. P[0] by [7, (72)]. For every natural number i, P[i] from [1,

Sch. 2]. �

(2) Let us consider finite sequences x, y of elements of R. Suppose lenx =
len y and for every element i of N such that i ∈ domx there exists a real
number v such that v = x(i) and y(i) = |v|. Then |

∑
x| ¬

∑
y.

Proof: Define P[natural number] ≡ for every finite sequences x, y of
elements of R such that $1 = lenx and lenx = len y and for every element
i of N such that i ∈ domx there exists a real number v such that v = x(i)
and y(i) = |v| holds |

∑
x| ¬

∑
y. P[0] by [7, (72)], [3, (44)]. For every

natural number i, P[i] from [1, Sch. 2]. �

(3) Let us consider finite sequences p, q of elements of R. Suppose len p =
len q and for every natural number j such that j ∈ dom p holds |p(j)| ¬
q(j). Then |

∑
p| ¬

∑
q.

Proof: Define P[natural number, set] ≡ there exists a real number v

such that v = p($1) and $2 = |v|. For every natural number i such that
i ∈ Seg len p there exists an element x of R such that P[i, x]. Consider u
being a finite sequence of elements of R such that domu = Seg len p and
for every natural number i such that i ∈ Seg len p holds P[i, u(i)] from [2,
Sch. 5]. For every element i of N such that i ∈ dom p there exists a real
number v such that v = p(i) and u(i) = |v|. |

∑
p| ¬

∑
u. �

(4) Let us consider a natural number n, and an object a. Then len(n 7→ a) =
n.

(5) Let us consider a finite sequence p, and an object a. Then p = len p 7→ a

if and only if for every object k such that k ∈ dom p holds p(k) = a.
Proof: If p = len p 7→ a, then for every object k such that k ∈ dom p

holds p(k) = a by [4, (57)]. �

(6) Let us consider a finite sequence p of elements of R, a natural number
i, and a real number r. Suppose i ∈ dom p and p(i) = r and for every
natural number k such that k ∈ dom p and k 6= i holds p(k) = 0. Then∑
p = r.
Proof: Define P[natural number] ≡ for every finite sequence p of elements
of R for every natural number i for every real number r such that len p = $1
and i ∈ dom p and p(i) = r and for every natural number k such that
k ∈ dom p and k 6= i holds p(k) = 0 holds

∑
p = r. P[0]. For every natural

number n such that P[n] holds P[n+ 1] by [4, (19), (16)], [18, (25)], [17,
(7)]. For every natural number k, P[k] from [1, Sch. 2]. �

(7) Let us consider finite sequences p, q of elements of R. Suppose len p ¬



The basic existence theorem of Riemann-Stieltjes ... 255

len q and for every natural number i such that i ∈ dom q holds if i ¬ len p,
then q(i) = p(i) and if len p < i, then q(i) = 0. Then

∑
q =
∑
p.

Proof: Consider i1 being a natural number such that i1 = len q − len p.
Set x = i1 7→ (0 qua real number). q = p a x by (4), [18, (25)], [16, (13)],
[4, (57)]. �

(8) Let us consider real numbers a, b, c, d. If b ¬ c, then [a, b]∩ [c, d] ⊆ [b, b].

(9) Let us consider a real number a, a subset A of R, and a real-valued
function %. If A ⊆ [a, a], then vol(A, %) = 0.

(10) Let us consider a non empty, increasing finite sequence s of elements
of R, and a natural number m. Suppose m ∈ dom s. Then s�m is a non
empty, increasing finite sequence of elements of R.
Proof: Set H = s�m. For every extended reals e1, e2 such that e1, e2 ∈
domH and e1 < e2 holds H(e1) < H(e2) by [19, (57)], [5, (47)]. �

(11) Let us consider non empty, increasing finite sequences s, t of elements
of R. Suppose s(len s) < t(1). Then s a t is a non empty, increasing finite
sequence of elements of R.
Proof: Set H = s a t. For every extended reals e1, e2 such that e1,
e2 ∈ domH and e1 < e2 holds H(e1) < H(e2) by [18, (25)], [2, (25), (3)].
�

(12) Let us consider a non empty, increasing finite sequence s of elements of
R, and a real number a. Suppose s(len s) < a. Then sa 〈a〉 is a non empty,
increasing finite sequence of elements of R. The theorem is a consequence
of (11).

(13) Let us consider a finite sequence T of elements of R, and natural numbers
n, m. Suppose n + 1 < m ¬ lenT . Then there exists a finite sequence T1
of elements of R such that

(i) lenT1 = m− (n+ 1), and

(ii) rng T1 ⊆ rng T , and

(iii) for every natural number i such that i ∈ domT1 holds T1(i) = T (i+
n).

Proof: Define F(natural number) = T ($1 + n). Reconsider m1 = m −
(n+ 1) as a natural number. Consider p being a finite sequence such that
len p = m1 and for every natural number k such that k ∈ dom p holds
p(k) = F(k) from [2, Sch. 2]. rng p ⊆ rng T by [18, (25)], [5, (3)]. �

(14) Let us consider a non empty, increasing finite sequence T of elements of
R, and natural numbers n, m. Suppose n + 1 < m ¬ lenT . Then there
exists a non empty, increasing finite sequence T1 of elements of R such
that
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(i) lenT1 = m− (n+ 1), and

(ii) rng T1 ⊆ rng T , and

(iii) for every natural number i such that i ∈ domT1 holds T1(i) = T (i+
n).

Proof: Consider p being a finite sequence of elements of R such that
len p = m− (n+1) and rng p ⊆ rng T and for every natural number i such
that i ∈ dom p holds p(i) = T (i+ n). For every extended reals e1, e2 such
that e1, e2 ∈ dom p and e1 < e2 holds p(e1) < p(e2) by [18, (25)]. �

(15) Let us consider a finite sequence p of elements of R, and natural numbers
n, m. Suppose n + 1 < m ¬ len p. Then there exists a finite sequence p1
of elements of R such that

(i) len p1 = m− (n+ 1)− 1, and

(ii) rng p1 ⊆ rng p, and

(iii) for every natural number i such that i ∈ dom p1 holds p1(i) = p(i +
n+ 1).

The theorem is a consequence of (13).

2. Existence of Riemann-Stieltjes Integral for Continuous
Functions

Now we state the propositions:

(16) Let us consider a non empty, closed interval subset A of R, a partition T
of A, a real-valued function %, a non empty, closed interval subset B of R,
a non empty, increasing finite sequence S0 of elements of R, and a finite
sequence S1 of elements of R.
Suppose B ⊆ A and inf B = inf A and there exists a partition S of B
such that S = S0 and lenS1 = lenS and for every natural number j such
that j ∈ domS there exists a finite sequence p of elements of R such that
S1(j) =

∑
p and len p = lenT and for every natural number i such that

i ∈ domT holds p(i) = | vol(divset(T, i) ∩ divset(S, j), %)|.
Then there exists a partition H of B and there exists a var-volume F of
% and H such that

∑
S1 =

∑
F .

Proof: Define P[natural number] ≡ for every non empty, closed interval
subsetB of R for every non empty, increasing finite sequence S0 of elements
of R for every finite sequence S1 of elements of R such that B ⊆ A and
inf B = inf A and lenS0 = $1 and there exists a partition S of B such
that S = S0 and lenS1 = lenS and for every natural number j such
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that j ∈ domS there exists a finite sequence p of elements of R such
that S1(j) =

∑
p and len p = lenT and for every natural number i such

that i ∈ domT holds p(i) = | vol(divset(T, i)∩divset(S, j), %)| there exists
a partition H of B and there exists a var-volume F of % and H such that∑
S1 =

∑
F . For every natural number k such that P[k] holds P[k+1] by

[18, (29)], [1, (14)], [18, (25)], [2, (40)]. For every natural number k, P[k]
from [1, Sch. 2]. �

(17) Let us consider a non empty, closed interval subset A of R, a function %
from A into R, and partitions T , S of A. Suppose % is bounded-variation.
Then there exists a finite sequence S1 of elements of R such that

(i) lenS1 = lenS, and

(ii)
∑
S1 ¬ TotalVD(%), and

(iii) for every natural number j such that j ∈ domS there exists a finite
sequence p of elements of R such that S1(j) =

∑
p and len p = lenT

and for every natural number i such that i ∈ domT holds p(i) =
| vol(divset(T, i) ∩ divset(S, j), %)|.

Proof: Define P[natural number, object] ≡ there exists a finite sequence
p of elements of R such that $2 =

∑
p and len p = lenT and for every

natural number i such that i ∈ domT holds p(i) = | vol(divset(T, i) ∩
divset(S, $1), %)|. For every natural number j such that j ∈ Seg lenS there
exists an element x of R such that P[j, x]. Consider S1 being a finite
sequence of elements of R such that domS1 = Seg lenS and for every
natural number j such that j ∈ Seg lenS holds P[j, S1(j)] from [2, Sch. 5].
Consider H being a partition of A, F being a var-volume of % and H such
that

∑
S1 =

∑
F . �

(18) Let us consider a non empty, closed interval subset A of R, a function %
from A into R, and a partial function u from R to R.
Suppose % is bounded-variation and domu = A and u�A is uniformly
continuous. Let us consider a division sequence T of A, and a middle
volume sequence S of %, u and T . Suppose δT is convergent and lim δT = 0.
Then middle-sum(S) is convergent.
Proof: For every division sequence T of A and for every middle volume
sequence S of %, u and T such that δT is convergent and lim δT = 0 holds
middle-sum(S) is convergent by [14, (6)], [9, (9)], [8, (87)], [6, (5)]. �

(19) Let us consider a non empty, closed interval subset A of R, a function %
from A into R, a partial function u from R to R, division sequences T0, T ,
T1 of A, a middle volume sequence S0 of %, u and T0, and a middle volume
sequence S of %, u and T .
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Suppose for every natural number i, T1(2·i) = T0(i) and T1(2·i+1) = T (i).
Then there exists a middle volume sequence S1 of %, u and T1 such that
for every natural number i, S1(2 · i) = S0(i) and S1(2 · i+ 1) = S(i).
Proof: Reconsider S3 = S0, S2 = S as a sequence of R∗. Define F(natural
number) = S3($1)(∈ R∗). Define G(natural number) = S2($1)(∈ R∗). Con-
sider S1 being a sequence of R∗ such that for every natural number n,
S1(2 · n) = F(n) and S1(2 · n + 1) = G(n) from [13, Sch. 1]. For every
element i of N, S1(i) is a middle volume of %, u and T1(i) by [13, (14)], [6,
(5)]. �

(20) Let us consider sequences S1, S2, S3 of real numbers. Suppose S3 is
convergent and for every natural number i, S3(2 · i) = S1(i) and S3(2 · i+
1) = S2(i). Then

(i) S1 is convergent, and

(ii) limS1 = limS3, and

(iii) S2 is convergent, and

(iv) limS2 = limS3.

Proof: For every real number r such that 0 < r there exists a natural
number m1 such that for every natural number i such that m1 ¬ i holds
|S1(i) − limS3| < r by [13, (14)], [1, (11)]. For every real number r such
that 0 < r there exists a natural number m1 such that for every natural
number i such that m1 ¬ i holds |S2(i) − limS3| < r by [13, (14)], [1,
(11)]. �

(21) Let us consider a non empty, closed interval subset A of R, a function %
from A into R, and a continuous partial function u from R to R.
Suppose % is bounded-variation and domu = A. Then u is Riemann-
Stieltjes integrable with %.
Proof: Consider T0 being a division sequence of A such that δT0 is co-
nvergent and lim δT0 = 0. Set S0 = the middle volume sequence of %,
u and T0. Set I = lim middle-sum(S0). For every division sequence T

of A and for every middle volume sequence S of %, u and T such that
δT is convergent and lim δT = 0 holds middle-sum(S) is convergent and
lim middle-sum(S) = I by (18), [13, (15)], (19), [13, (16)]. �
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