

## The Basic Existence Theorem of Riemann-Stieltjes Integral

Kazuhisa Nakasho Akita Prefectural University Akita, Japan Keiko Narita Hirosaki-city Aomori, Japan

Yasunari Shidama Shinshu University Nagano, Japan

**Summary.** In this article, the basic existence theorem of Riemann-Stieltjes integral is formalized. This theorem states that if f is a continuous function and  $\rho$  is a function of bounded variation in a closed interval of real line, f is Riemann-Stieltjes integrable with respect to  $\rho$ . In the first section, basic properties of real finite sequences are formalized as preliminaries. In the second section, we formalized the existence theorem of the Riemann-Stieltjes integral. These formalizations are based on [15], [12], [10], and [11].

MSC: 26A42 26A45 03B35

Keywords: Riemann-Stieltjes integral; bounded variation; continuous function MML identifier: INTEGR23, version: 8.1.05 5.39.1282

## 1. Preliminaries

Now we state the propositions:

(1) Let us consider a real number E, a finite sequence q of elements of  $\mathbb{R}$ , and a finite sequence S of elements of  $\mathbb{R}$ . Suppose len S = len q and for every natural number i such that  $i \in \text{dom } S$  there exists a real number rsuch that r = q(i) and  $S(i) = r \cdot E$ . Then  $\sum S = \sum q \cdot E$ . PROOF: Define  $\mathcal{P}[\text{natural number}] \equiv \text{for every finite sequence } q \text{ of elements}$ of  $\mathbb{R}$  for every finite sequence S of elements of  $\mathbb{R}$  such that  $\$_1 = \text{len } S$  and len S = len q and for every natural number i such that  $i \in \text{dom } S$ there exists a real number r such that r = q(i) and  $S(i) = r \cdot E$  holds  $\sum S = \sum q \cdot E$ .  $\mathcal{P}[0]$  by [7, (72)]. For every natural number i,  $\mathcal{P}[i]$  from [1, Sch. 2].  $\Box$ 

(2) Let us consider finite sequences x, y of elements of  $\mathbb{R}$ . Suppose len x =len y and for every element i of  $\mathbb{N}$  such that  $i \in$ dom x there exists a real number v such that v = x(i) and y(i) = |v|. Then  $|\sum x| \leq \sum y$ .

PROOF: Define  $\mathcal{P}[\text{natural number}] \equiv \text{for every finite sequences } x, y \text{ of elements of } \mathbb{R} \text{ such that } \$_1 = \text{len } x \text{ and len } x = \text{len } y \text{ and for every element } i \text{ of } \mathbb{N} \text{ such that } i \in \text{dom } x \text{ there exists a real number } v \text{ such that } v = x(i) \text{ and } y(i) = |v| \text{ holds } |\sum x| \leq \sum y. \mathcal{P}[0] \text{ by } [7, (72)], [3, (44)]. \text{ For every natural number } i, \mathcal{P}[i] \text{ from } [1, \text{Sch. 2}]. \square$ 

(3) Let us consider finite sequences p, q of elements of  $\mathbb{R}$ . Suppose len p =len q and for every natural number j such that  $j \in$ dom p holds  $|p(j)| \leq q(j)$ . Then  $|\sum p| \leq \sum q$ .

PROOF: Define  $\mathcal{P}[\text{natural number, set}] \equiv \text{there exists a real number } v$ such that  $v = p(\$_1)$  and  $\$_2 = |v|$ . For every natural number i such that  $i \in \text{Seg len } p$  there exists an element x of  $\mathbb{R}$  such that  $\mathcal{P}[i, x]$ . Consider ubeing a finite sequence of elements of  $\mathbb{R}$  such that dom u = Seg len p and for every natural number i such that  $i \in \text{Seg len } p$  holds  $\mathcal{P}[i, u(i)]$  from [2, Sch. 5]. For every element i of  $\mathbb{N}$  such that  $i \in \text{dom } p$  there exists a real number v such that v = p(i) and u(i) = |v|.  $|\sum p| \leq \sum u$ .  $\Box$ 

- (4) Let us consider a natural number n, and an object a. Then  $len(n \mapsto a) = n$ .
- (5) Let us consider a finite sequence p, and an object a. Then p = len p → a if and only if for every object k such that k ∈ dom p holds p(k) = a.
  PROOF: If p = len p → a, then for every object k such that k ∈ dom p holds p(k) = a by [4, (57)]. □
- (6) Let us consider a finite sequence p of elements of  $\mathbb{R}$ , a natural number i, and a real number r. Suppose  $i \in \text{dom } p$  and p(i) = r and for every natural number k such that  $k \in \text{dom } p$  and  $k \neq i$  holds p(k) = 0. Then  $\sum p = r$ .

PROOF: Define  $\mathcal{P}[\text{natural number}] \equiv \text{for every finite sequence } p \text{ of elements}$ of  $\mathbb{R}$  for every natural number i for every real number r such that  $\text{len } p = \$_1$ and  $i \in \text{dom } p$  and p(i) = r and for every natural number k such that  $k \in \text{dom } p$  and  $k \neq i$  holds p(k) = 0 holds  $\sum p = r$ .  $\mathcal{P}[0]$ . For every natural number n such that  $\mathcal{P}[n]$  holds  $\mathcal{P}[n+1]$  by [4, (19), (16)], [18, (25)], [17, (7)]. For every natural number k,  $\mathcal{P}[k]$  from [1, Sch. 2].  $\Box$ 

(7) Let us consider finite sequences p, q of elements of  $\mathbb{R}$ . Suppose len  $p \leq$ 

len q and for every natural number i such that  $i \in \text{dom } q$  holds if  $i \leq \text{len } p$ , then q(i) = p(i) and if len p < i, then q(i) = 0. Then  $\sum q = \sum p$ . PROOF: Consider  $i_1$  being a natural number such that  $i_1 = \text{len } q - \text{len } p$ .

Set  $x = i_1 \mapsto (0$  qua real number).  $q = p \cap x$  by (4), [18, (25)], [16, (13)], [4, (57)].  $\Box$ 

- (8) Let us consider real numbers a, b, c, d. If  $b \leq c$ , then  $[a, b] \cap [c, d] \subseteq [b, b]$ .
- (9) Let us consider a real number a, a subset A of  $\mathbb{R}$ , and a real-valued function  $\rho$ . If  $A \subseteq [a, a]$ , then  $\operatorname{vol}(A, \rho) = 0$ .
- (10) Let us consider a non empty, increasing finite sequence s of elements of  $\mathbb{R}$ , and a natural number m. Suppose  $m \in \text{dom } s$ . Then  $s \upharpoonright m$  is a non empty, increasing finite sequence of elements of  $\mathbb{R}$ . PROOF: Set  $H = s \upharpoonright m$ . For every extended reals  $e_1, e_2$  such that  $e_1, e_2 \in$ dom H and  $e_1 < e_2$  holds  $H(e_1) < H(e_2)$  by [19, (57)], [5, (47)].  $\Box$
- (11) Let us consider non empty, increasing finite sequences s, t of elements of  $\mathbb{R}$ . Suppose  $s(\operatorname{len} s) < t(1)$ . Then  $s \cap t$  is a non empty, increasing finite sequence of elements of  $\mathbb{R}$ . PROOF: Set  $H = s \cap t$ . For every extended reals  $e_1, e_2$  such that  $e_1, e_2 \in \operatorname{dom} H$  and  $e_1 < e_2$  holds  $H(e_1) < H(e_2)$  by [18, (25)], [2, (25), (3)].
- (12) Let us consider a non empty, increasing finite sequence s of elements of  $\mathbb{R}$ , and a real number a. Suppose  $s(\operatorname{len} s) < a$ . Then  $s \cap \langle a \rangle$  is a non empty, increasing finite sequence of elements of  $\mathbb{R}$ . The theorem is a consequence of (11).
- (13) Let us consider a finite sequence T of elements of  $\mathbb{R}$ , and natural numbers n, m. Suppose  $n + 1 < m \leq \text{len } T$ . Then there exists a finite sequence  $T_1$  of elements of  $\mathbb{R}$  such that
  - (i)  $\ln T_1 = m (n+1)$ , and
  - (ii)  $\operatorname{rng} T_1 \subseteq \operatorname{rng} T$ , and

(iii) for every natural number *i* such that  $i \in \text{dom } T_1$  holds  $T_1(i) = T(i + n)$ .

PROOF: Define  $\mathcal{F}(\text{natural number}) = T(\$_1 + n)$ . Reconsider  $m_1 = m - (n+1)$  as a natural number. Consider p being a finite sequence such that  $\text{len } p = m_1$  and for every natural number k such that  $k \in \text{dom } p$  holds  $p(k) = \mathcal{F}(k)$  from [2, Sch. 2]. rng  $p \subseteq \text{rng } T$  by [18, (25)], [5, (3)].  $\Box$ 

(14) Let us consider a non empty, increasing finite sequence T of elements of  $\mathbb{R}$ , and natural numbers n, m. Suppose  $n + 1 < m \leq \ln T$ . Then there exists a non empty, increasing finite sequence  $T_1$  of elements of  $\mathbb{R}$  such that

- (i)  $\ln T_1 = m (n+1)$ , and
- (ii)  $\operatorname{rng} T_1 \subseteq \operatorname{rng} T$ , and
- (iii) for every natural number *i* such that  $i \in \text{dom } T_1$  holds  $T_1(i) = T(i + n)$ .

PROOF: Consider p being a finite sequence of elements of  $\mathbb{R}$  such that len p = m - (n+1) and rng  $p \subseteq$  rng T and for every natural number i such that  $i \in \text{dom } p$  holds p(i) = T(i+n). For every extended reals  $e_1, e_2$  such that  $e_1, e_2 \in \text{dom } p$  and  $e_1 < e_2$  holds  $p(e_1) < p(e_2)$  by [18, (25)].  $\Box$ 

- (15) Let us consider a finite sequence p of elements of  $\mathbb{R}$ , and natural numbers n, m. Suppose  $n + 1 < m \leq \text{len } p$ . Then there exists a finite sequence  $p_1$  of elements of  $\mathbb{R}$  such that
  - (i)  $\ln p_1 = m (n+1) 1$ , and
  - (ii)  $\operatorname{rng} p_1 \subseteq \operatorname{rng} p$ , and
  - (iii) for every natural number *i* such that  $i \in \text{dom } p_1$  holds  $p_1(i) = p(i + n + 1)$ .

The theorem is a consequence of (13).

## 2. Existence of Riemann-Stieltjes Integral for Continuous Functions

Now we state the propositions:

(16) Let us consider a non empty, closed interval subset A of  $\mathbb{R}$ , a partition T of A, a real-valued function  $\rho$ , a non empty, closed interval subset B of  $\mathbb{R}$ , a non empty, increasing finite sequence  $S_0$  of elements of  $\mathbb{R}$ , and a finite sequence  $S_1$  of elements of  $\mathbb{R}$ .

Suppose  $B \subseteq A$  and  $\inf B = \inf A$  and there exists a partition S of B such that  $S = S_0$  and  $\lim S_1 = \lim S$  and for every natural number j such that  $j \in \operatorname{dom} S$  there exists a finite sequence p of elements of  $\mathbb{R}$  such that  $S_1(j) = \sum p$  and  $\lim p = \lim T$  and for every natural number i such that  $i \in \operatorname{dom} T$  holds  $p(i) = |\operatorname{vol}(\operatorname{divset}(T, i) \cap \operatorname{divset}(S, j), \varrho)|$ .

Then there exists a partition H of B and there exists a var-volume F of  $\rho$  and H such that  $\sum S_1 = \sum F$ .

PROOF: Define  $\mathcal{P}[\text{natural number}] \equiv \text{for every non empty, closed interval subset } B \text{ of } \mathbb{R} \text{ for every non empty, increasing finite sequence } S_0 \text{ of elements of } \mathbb{R} \text{ for every finite sequence } S_1 \text{ of elements of } \mathbb{R} \text{ such that } B \subseteq A \text{ and } \inf B = \inf A \text{ and } \lim S_0 = \$_1 \text{ and there exists a partition } S \text{ of } B \text{ such } \text{ that } S = S_0 \text{ and } \lim S_1 = \lim S \text{ and for every natural number } j \text{ such }$ 

that  $j \in \text{dom } S$  there exists a finite sequence p of elements of  $\mathbb{R}$  such that  $S_1(j) = \sum p$  and len p = len T and for every natural number i such that  $i \in \text{dom } T$  holds  $p(i) = |\operatorname{vol}(\operatorname{divset}(T, i) \cap \operatorname{divset}(S, j), \varrho)|$  there exists a partition H of B and there exists a var-volume F of  $\varrho$  and H such that  $\sum S_1 = \sum F$ . For every natural number k such that  $\mathcal{P}[k]$  holds  $\mathcal{P}[k+1]$  by [18, (29)], [1, (14)], [18, (25)], [2, (40)]. For every natural number  $k, \mathcal{P}[k]$  from [1, Sch. 2].  $\Box$ 

- (17) Let us consider a non empty, closed interval subset A of  $\mathbb{R}$ , a function  $\rho$  from A into  $\mathbb{R}$ , and partitions T, S of A. Suppose  $\rho$  is bounded-variation. Then there exists a finite sequence  $S_1$  of elements of  $\mathbb{R}$  such that
  - (i)  $\operatorname{len} S_1 = \operatorname{len} S$ , and
  - (ii)  $\sum S_1 \leq \text{TotalVD}(\varrho)$ , and
  - (iii) for every natural number j such that  $j \in \text{dom } S$  there exists a finite sequence p of elements of  $\mathbb{R}$  such that  $S_1(j) = \sum p$  and len p = len Tand for every natural number i such that  $i \in \text{dom } T$  holds  $p(i) = |\operatorname{vol}(\operatorname{divset}(T, i) \cap \operatorname{divset}(S, j), \varrho)|$ .

PROOF: Define  $\mathcal{P}[\text{natural number, object}] \equiv \text{there exists a finite sequence} p \text{ of elements of } \mathbb{R} \text{ such that } \$_2 = \sum p \text{ and } \text{len } p = \text{len } T \text{ and for every} \text{ natural number } i \text{ such that } i \in \text{dom } T \text{ holds } p(i) = |\text{vol}(\text{divset}(T, i) \cap \text{divset}(S, \$_1), \varrho)|.$  For every natural number j such that  $j \in \text{Seg len } S$  there exists an element x of  $\mathbb{R}$  such that  $\mathcal{P}[j, x]$ . Consider  $S_1$  being a finite sequence of elements of  $\mathbb{R}$  such that  $\text{dom } S_1 = \text{Seg len } S$  and for every natural number j such that  $j \in \text{Seg len } S$  holds  $\mathcal{P}[j, S_1(j)]$  from [2, Sch. 5]. Consider H being a partition of A, F being a var-volume of  $\varrho$  and H such that  $\sum S_1 = \sum F$ .  $\Box$ 

(18) Let us consider a non empty, closed interval subset A of  $\mathbb{R}$ , a function  $\varrho$  from A into  $\mathbb{R}$ , and a partial function u from  $\mathbb{R}$  to  $\mathbb{R}$ . Suppose  $\varrho$  is bounded-variation and dom u = A and  $u \upharpoonright A$  is uniformly continuous. Let us consider a division sequence T of A, and a middle volume sequence S of  $\varrho$ , u and T. Suppose  $\delta_T$  is convergent and  $\lim \delta_T = 0$ . Then middle-sum(S) is convergent.

PROOF: For every division sequence T of A and for every middle volume sequence S of  $\rho$ , u and T such that  $\delta_T$  is convergent and  $\lim \delta_T = 0$  holds middle-sum(S) is convergent by [14, (6)], [9, (9)], [8, (87)], [6, (5)].  $\Box$ 

(19) Let us consider a non empty, closed interval subset A of  $\mathbb{R}$ , a function  $\rho$  from A into  $\mathbb{R}$ , a partial function u from  $\mathbb{R}$  to  $\mathbb{R}$ , division sequences  $T_0, T$ ,  $T_1$  of A, a middle volume sequence  $S_0$  of  $\rho$ , u and  $T_0$ , and a middle volume sequence S of  $\rho$ , u and T.

Suppose for every natural number i,  $T_1(2 \cdot i) = T_0(i)$  and  $T_1(2 \cdot i+1) = T(i)$ . Then there exists a middle volume sequence  $S_1$  of  $\rho$ , u and  $T_1$  such that for every natural number i,  $S_1(2 \cdot i) = S_0(i)$  and  $S_1(2 \cdot i+1) = S(i)$ . PROOF: Reconsider  $S_3 = S_0$ ,  $S_2 = S$  as a sequence of  $\mathbb{R}^*$ . Define  $\mathcal{F}($ natural number $) = S_3(\$_1) (\in \mathbb{R}^*)$ . Define  $\mathcal{G}($ natural number $) = S_2(\$_1) (\in \mathbb{R}^*)$ . Consider  $S_1$  being a sequence of  $\mathbb{R}^*$  such that for every natural number n,  $S_1(2 \cdot n) = \mathcal{F}(n)$  and  $S_1(2 \cdot n+1) = \mathcal{G}(n)$  from [13, Sch. 1]. For every element i of  $\mathbb{N}$ ,  $S_1(i)$  is a middle volume of  $\rho$ , u and  $T_1(i)$  by [13, (14)], [6, (5)].  $\Box$ 

- (20) Let us consider sequences  $S_1$ ,  $S_2$ ,  $S_3$  of real numbers. Suppose  $S_3$  is convergent and for every natural number i,  $S_3(2 \cdot i) = S_1(i)$  and  $S_3(2 \cdot i + 1) = S_2(i)$ . Then
  - (i)  $S_1$  is convergent, and
  - (ii)  $\lim S_1 = \lim S_3$ , and
  - (iii)  $S_2$  is convergent, and
  - (iv)  $\lim S_2 = \lim S_3$ .

PROOF: For every real number r such that 0 < r there exists a natural number  $m_1$  such that for every natural number i such that  $m_1 \leq i$  holds  $|S_1(i) - \lim S_3| < r$  by [13, (14)], [1, (11)]. For every real number r such that 0 < r there exists a natural number  $m_1$  such that for every natural number i such that  $m_1 \leq i$  holds  $|S_2(i) - \lim S_3| < r$  by [13, (14)], [1, (11)].  $\Box$ 

(21) Let us consider a non empty, closed interval subset A of  $\mathbb{R}$ , a function  $\rho$  from A into  $\mathbb{R}$ , and a continuous partial function u from  $\mathbb{R}$  to  $\mathbb{R}$ . Suppose  $\rho$  is bounded-variation and dom u = A. Then u is Riemann-Stieltjes integrable with  $\rho$ .

PROOF: Consider  $T_0$  being a division sequence of A such that  $\delta_{T_0}$  is convergent and  $\lim \delta_{T_0} = 0$ . Set  $S_0 =$  the middle volume sequence of  $\rho$ , u and  $T_0$ . Set  $I = \liminf (S_0)$ . For every division sequence T of A and for every middle volume sequence S of  $\rho$ , u and T such that  $\delta_T$  is convergent and  $\lim \delta_T = 0$  holds middle-sum(S) is convergent and  $\lim \delta_T = 0$  holds middle-sum(S) is convergent and  $\lim \delta_T = 1$  by (18), [13, (15)], (19), [13, (16)].  $\Box$ 

## References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.

- [4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [7] Czesław Byliński. The sum and product of finite sequences of real numbers. *Formalized Mathematics*, 1(4):661–668, 1990.
- [8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [9] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Darboux's theorem. Formalized Mathematics, 9(1):197–200, 2001.
- [10] S.L. Gupta and Nisha Rani. Fundamental Real Analysis. Vikas Pub., 1986.
- [11] Einar Hille. Methods in classical and functional analysis. Addison-Wesley Publishing Co., Halsted Press, 1974.
- [12] H. Kestelman. Modern theories of integration. Dover Publications, 2nd edition, 1960.
- [13] Keiko Narita, Noboru Endou, and Yasunari Shidama. Riemann integral of functions from ℝ into real Banach space. Formalized Mathematics, 21(2):145–152, 2013. doi:10.2478/forma-2013-0016.
- [14] Keiko Narita, Kazuhisa Nakasho, and Yasunari Shidama. Riemann-Stieltjes integral. Formalized Mathematics, 24(3):199–204, 2016. doi:10.1515/forma-2016-0016.
- [15] Daniel W. Stroock. A Concise Introduction to the Theory of Integration. Springer Science & Business Media, 1999.
- [16] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329–334, 1990.
- [17] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [18] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
- [19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.

Received October 18, 2016