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Summary. The real projective plane has been formalized in Isabelle/HOL
by Timothy Makarios [13] and in Coq by Nicolas Magaud, Julien Narboux and
Pascal Schreck [12].

Some definitions on the real projective spaces were introduced early in the
Mizar Mathematical Library by Wojciech Leonczuk [9], Krzysztof Prazmowski
[10] and by Wojciech Skaba [I8§].

In this article, we check with the Mizar system [4], some properties on the
determinants and the Grassmann-Pliicker relation in rank 3 [2], [, [7], [16], [17].

Then we show that the projective space induced (in the sense defined in [9])
by R? is a projective plane (in the sense defined in [I0]).

Finally, in the real projective plane, we define the homography induced by
a 3-by-3 invertible matrix and we show that the images of 3 collinear points are
themselves collinear.
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1. PRELIMINARIES

From now on a, b, ¢, d, e, f denote real numbers, k, m denote natural
numbers, D denotes a non empty set, V' denotes a non trivial real linear space,
u, v, w denote elements of V', and p, ¢, r denote elements of the projective space
over V.

Now we state the propositions:

(1) (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3) € Seg3 x
Seg 3.
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(1, 1), (2, 1), (3, 1) € Seg3 x Seg 1.
(1, 1), (1, 2), (1, 3) € Seg1 x Seg3.
({a), (b), (c)) is a matrix over Rp of dimension 3x1.

Let us consider a matrix N over Ry of dimension 3x 1. Suppose N = ({a),
(b),(c)). Then Ngo; = (a,b,c). The theorem is a consequence of (2).

(6) Let us consider a non empty multiplicative magma K, and elements a1,
asz, as, bl, bg, 63 Of K. Then (al, ag, a3> [ ] <b1, bQ, bg) = <CL1 -bl, ag bg, as - bg).

(7) Let us consider a commutative, associative, left unital, Abelian, add-
associative, right zeroed, right complementable, non empty double loop
structure K, and elements a1, ag, as, by, by, by of K. Then (a1, az,as) - (b1,
by, b3) = ay - by + ag - ba + ag - bs. The theorem is a consequence of (6).

(8) Let us consider a square matrix M over Ry of dimension 3, and a matrix
N over Ry of dimension 3x1. Suppose N = ((0), (0), (0)). Then M - N =
((0), (0}, (0)). The theorem is a consequence of (7), (5), and (2).

(9) wu, v and w are lineary dependent if and only if u =v or w = w or v = w
or {u,v,w} is linearly dependent.

(10) p, q and r are collinear if and only if there exists u and there exists v
and there exists w such that p = the direction of v and ¢ = the direction
of v and r = the direction of w and u is not zero and v is not zero and w is
not zero and (u =wv or u = w or v = w or {u, v, w} is linearly dependent).
The theorem is a consequence of (9).

(11) p, q and r are collinear if and only if there exists u and there exists v
and there exists w such that p = the direction of v and ¢ = the direction
of v and r = the direction of w and w is not zero and v is not zero and
w is not zero and there exists a and there exists b and there exists ¢ such
that a-u+b-v+c-w =0y and (a # 0 or b# 0 or ¢ # 0).

(12) Let us consider elements u, v, w of V. Suppose a # 0 and a-u+b-v+c-w =
Ov. Then u = (Z2) - v + (=£) - w.

(13) fa#0anda-b+c-d+e-f=0,thenb=—(5)-d—(5)-f.

(14) Let us consider points u, v, w of £%. Suppose there exists a and there
exists b and there exists ¢ such that a-u+b-v+c-w = Og% and a # 0.
Then (|u,v, w|) = 0. The theorem is a consequence of (12).

(15) Let us consider a natural number n. Then dom 1g matrix(n) = Segn.
(16) Let us consider a matrix A over Rp. Then (R — Rp)(Rp — R)A = A.

(17) Let us consider matrices A, B over Ry, and matrices Ry, Ry over R. If
A= Ry and B = Ry, then A- B = Ry - Ry. The theorem is a consequence

of (16).
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(18) Let us consider a natural number n, a square matrix M over R of di-
mension n, and a square matrix N over Rp of dimension n. If M = N,
then M is invertible iff NV is invertible. The theorem is a consequence of
(17).

From now on o, p, q, r, s, t denote points of 5% and M denotes a square
matrix over Ry of dimension 3.

Let us consider real numbers p1, p2, p3, q1, g2, g3, 71, T2, 3. Now we state
the propositions:

(19)  ({(p1,p2,p3),(q1,92,q3), (r1,72,73)) is a square matrix over Ry of dimen-
sion 3.

(20) Suppose M = ((p1,q1,71), (P2,q2,72), (P3,q3,73)). Then
(1) Ml,l = Pp1, and

(ii M1,2 = ({1, and
(iii) M3 =r1, and
(iv) Mz = p2, and

)
)
)
(v) Ma2 = g2, and
) M3 =1y, and
) M3 = p3, and
) M3z = g3, and
(ix) Mssz=rs.
The theorem is a consequence of (1).
(21) Suppose M = (p,q,r). Then
(i) Mi1 = (p)1, and
) My =(
) Mz =(
) My = (
(v) Mz = (
) Mas = (q
) (
) (
(r

p)2, and

p
q

3, and

, and

[y

)
)
)
)
q)2, and
)
)
)2,

(vi 3, and
(vil) M3; = (7)1, and
(viii) M39 = ()2, and
(ix) M33 = (r)s.

The theorem is a consequence of (1).
(22) Let us consider real numbers p1, p2, p3, q1, 92, q3, T1, T2, T'3. Suppose

M = ((p1,q1,71), (P2, 42, 72), (3,43, 73)). Then M = ((p1,p2,p3), (a1, 2,
qs), (r1,72,73)). The theorem is a consequence of (1) and (20).
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(23) Suppose M = (p,q,7). Then M™ = (((p)1, (@)1, (r)1), {(P)2; (9)2, ()2),
((p)s, (q)3,(r)3)). The theorem is a consequence of (1) and (21).

(24) lines(M) = {Line(M, 1), Line(M, 2), Line(M, 3)}.
PROOF: lines(M) C {Line(M, 1), Line(M,2), Line(M, 3)} by [14, (103)],
[19, (1)]. {Line(M, 1), Line(M, 2), Line(M, 3)} C lines(M) by [3, (1)], [14}
(103)]. O

(25)  Suppose M = {{(p)1, (P)2, (P)a); (@)1, (9)2, (¢)3), (1)1, (r)2, (r)3)). Then
(i) Line(M,1) = p, and
(ii) Line(M,2) = ¢, and
(iii) Line(M,3) = r.

(26) Let us consider an object z. Then z € lines(M7T) if and only if there
exists a natural number 7 such that ¢ € Seg 3 and x = M.

2. GRASSMANN-PLUCKER RELATION

Now we state the propositions:
27) Alp,a.r)) = (P)r-(@)2- (r)3 —(P)3 - (@)2- (1)1 — (P)1- (@)3- ()2 + (D)2 -
(@)s - (r)r— ()2 (@)1 (r)3+ (p)3- (@)1~ (r)2.
(28) GRASSMANNN-PLUCKER-RELATION IN RANK 3:

(‘paqar|> ’ <|pa5?t‘> - <|pa Q78|> ’ <|pa T‘,t‘) + <|pa Q7t|> ’ <|pa 7",5‘) = 0. The
theorem is a consequence of (27).

(29) (|p,q,r]) = —(|p, 7, ¢q|). The theorem is a consequence of (27).

(30) (|p,q,r]) = —(|g,p,r|). The theorem is a consequence of (27).

(31) (la-p,q,r|) =a-{p,q,r]). The theorem is a consequence of (27).

(32) (lp,a-q,r|) = a-{|p,q,r]). The theorem is a consequence of (30) and
(31).

(33) (lp,q,a-r|) = a-{|p,q,r]). The theorem is a consequence of (29) and
(32).

(34) Suppose M = ({(p)1, ()1, (r)1), {(P)2, (¢)2, (r)2), {(p)3, (¢)3, (r)3)). Then
(Ip,q,r]) = Det M. The theorem is a consequence of (22).

(35) Suppose M = (((p)1, (P)2; (P)3), {(9)1, (q)2, (9)3), ((r)1, (r)2, (r)3)). Then
{Ip,q,r|) = Det M.
Let us consider a square matrix M over Rg of dimension k. Now we state
the propositions:
(36) Det M = Og,, if and only if tk(M) < k.
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(37) rk(M) < k if and only if lines(M) is linearly dependent or M is not
without repeated line.

(38) Let us consider a matrix M over Rp of dimension kxm. Then Mx2Tran
(M) is a function from RLSp2RVSp(&X) into RLSp2RVSp(EM).

(39) Let us consider a square matrix M over Ry of dimension k. Then Mx2Tra-
n(M) is a linear transformation from RLSp2RVSp(E%) to RLSp2RVSp(&EX).
PROOF: Reconsider M; = Mx2Tran(M) as a function from RLSp2RVSp(EX)
into RLSp2RVSp(EX). For every elements x, y of RLSp2RVSp(EX), My (z+
y) = Mi(x) + Mi(y) by [15, (22)]. For every scalar a of Ry and for every
vector x of RLSp2RVSp(EX), Mi(a - x) = a - Mi(z) by [15, (23)]. O

(40) Suppose M = ()1, (P2, (P)s), (@)1, (9)2 (@)a), {(r)a, (P)2, (r)a)) and
rk(M) < 3. Then there exists a and there exists b and there exists ¢ such
that a-p+b'q+c-1“:05% and (a # 0 or b # 0 or ¢ # 0). The theorem
is a consequence of (37), (25), (24), (39), and (7).

(41) Ifa-p+b-g+cr= Ogs and (a#0o0rb+#0orc+#0),then (|p,q,r|) =0.
The theorem is a consequence of (14) and (30).

(42) Suppose {|p,q,r|) = 0. Then there exists a and there exists b and there
exists ¢ such that a -p+0b-q+4c-r = 0g and (a#0o0orb#0orc#0).
The theorem is a consequence of (19), (35), (36), and (40).

(43) p, q and r are lineary dependent if and only if (|p, ¢,7|) = 0. The theorem
is a consequence of (41) and (42).

3. SOME PROPERTIES ABOUT THE CROSS PRODUCT

Now we state the propositions:

(44) |(p.px gl =0.
(45) [(p,qg x p)| = 0.
(46) (i) (lo,p, (0 xp) x (¢ xr)]) =0, and
(i) (g, (0 x p) X (g X 7))} = 0.
The theorem is a consequence of (44) and (45).
(47) (i) o, p and (0 X p) x (¢ x r) are lineary dependent, and
(ii) g, r and (0 x p) X (¢ x r) are lineary dependent.
The theorem is a consequence of (46) and (43).
(48) (i) Ogs X p = 0Ogs, and

(i) p x Ogs = Ogs.



244 ROLAND COGHETTO

(49) (|p,q, ()g%|> = 0. The theorem is a consequence of (48).

(50) Ifpxgq= Ogg and r = [1,1,1], then p, ¢ and r are lineary dependent.
PROOF: Reconsider r = [1,1,1] as an element of £3. (|p,q,r|) = 0 by [8,
@), (27). 0

(51) If p is not zero and ¢ is not zero and p X ¢ = Og%, then p and ¢ are
proportional.

52) Let us consider non zero points p, g, r, s of £3. Suppose (p x ¢) X (r X s

T
is zero. Then
(i) p and g are proportional, or
(ii) r and s are proportional, or
iii) p X ¢ and r X s are proportional.
(iii)

The theorem is a consequence of (51).

(53) Alp.a,pxal) = g, @)l - [(p, p)| = g, )] - |(p, )]

(54) [(pxapxql=I(gal[pp)-Igp)- Pl

(55) If p is not zero and |(p,q)| = 0 and |(p,7)] = 0 and |(p,s)| = 0, then
(lg, 7, s|) = 0. The theorem is a consequence of (13) and (27).

(56) {|p,q,p % q|) = |p x q|%. The theorem is a consequence of (53) and (54).

(57) The projective space over &3 is a projective plane defined in terms of
collinearity.
PROOF: Set P = the projective space over 5%. There exist elements u, v,
wy of 5% such that for every real numbers a, b, ¢ such that a-u+b-v+c-w; =
Ogs holds a = 0 and b = 0 and ¢ = 0 by [0, (22)], [8, (4)], [LT, (39)], [8,
(2)]. For every elements p, p1, q, g1 of P, there exists an element r of P

such that p, p1 and r are collinear and ¢, ¢; and r are collinear by [9, (26)],
(52), [9, (22)], [18, (2)]. O

4. REAL PROJECTIVE PLANE AND HOMOGRAPHY

Let us consider elements u, v, w, x of 5%. Now we state the propositions:

(58) Suppose u is not zero and z is not zero and the direction of u = the direct-
ion of z. Then (|u,v,w|) = 0 if and only if (|, v, w|) = 0. The theorem is
a consequence of (31).

(59) Suppose v is not zero and z is not zero and the direction of v = the direct-

ion of z. Then (Ju,v,w|) =0 if and only if (|u,x,w|) = 0. The theorem is
a consequence of (32).
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(60) Suppose w is not zero and z is not zero and the direction of w =
the direction of x. Then (|u,v,w|) = 0 if and only if (|Ju,v,z|) = 0. The
theorem is a consequence of (33).

(61) (i) (g matrix(3))(1) = e1, and

(ii) (1gr matrix(3))(2) = ez, and
(iii) (1g matrix(3))(3) = es.

(62) (i) the base finite sequence of 3 and 1 = ej, and
(ii) the base finite sequence of 3 and 2 = ey, and

(iii) the base finite sequence of 3 and 3 = e3.

(63) Let us consider a finite sequence py of elements of D. Suppose len py = 3.
Then

(i) (p2)o1 = (p2(1)), and
(ii) (p2)o2 = (p2(2)), and
(ili) (p2)o3 = (p2(3))-
The theorem is a consequence of (3).
(64) (1) (er)o1 = (1), and
(ii) (e1)me = (0), and

(iii) (e1)m,s = (0).
The theorem is a consequence of (63).

(65) (i) (e2)m1 = (0), and
(ii) (e2)m2 = (1), and

(ili) (e2)m3 = (0).
The theorem is a consequence of (63).

(66) (i) (e3)o1 = (0), and
(ii) (es)me = (0), and

(iii) (e3)m3 = (1)-
The theorem is a consequence of (63).

67) (1) (I2*)o1 = (1,0,0), and
(i) (I2*)m2 = (0,1,0), and

(i) (12%)0 = (0,0,1).
The theorem is a consequence of (1) and (15).
(68) (i) Line(I3**,1) = (1,0,0), and

(if) Line(Z3**,2) = (0,1,0), and
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(iii) Line(/3<%,3) = (0,0,1).
The theorem is a consequence of (1).
(69) (i) {e1)" = ((1),(0),(0)), and
(ii) (e2)" = ((0),(1),(0)), and
(iii) (es)™ = ((0),(0), (1)).
The theorem is a consequence of (64), (65), and (66).

From now on p; denotes a finite sequence of elements of D.
Now we state the propositions:
(70) Let us consider a finite sequence p; of elements of D. If k£ € dom p;, then
(p1)1k = p1(K).
(711) If k € dompy, then (p1)or = (p1(k)). The theorem is a consequence of
(70).
(72) Let us consider an element ps of R3. Suppose p; = ps. Then (R —
Ry) ColVec2Mx(ps) = {p1)*. The theorem is a consequence of (71).

In the sequel P denotes a square matrix over R of dimension 3.
Now we state the propositions:

(73) Suppose P = (((p)1, (1)2 ()a), (@)1, (@2 (@)}, ()1, ()2, (r)s)). Then
(i) Line(P,1) = p, and
(ii) Line(P,2) = ¢, and
(iii) Line(P,3) = r.
(74)  Suppose P = (((p)1, (P)2, (P)3), {(0)1, (0)2, (@)3), {(r)1, (r)2, (r)3)). Then

(75)  width(p;) = lenp;.
(76) Suppose lenp; = 3. Then
(i) Line({p1)",1) = (p1(1)), and
(ii) Line({p1)T,2) = (p1(2)), and
(iif) Line((p1)",3) = (p1(3)).
The theorem is a consequence of (75) and (63).
(77) If lenp; = 3, then (p1)" = ((p1(1)), (p1(2)), (p1(3))). The theorem is
a consequence of (76).
Let us consider D. Let p be a finite sequence of elements of D. Assume
lenp = 3. The functor F2M(p) yielding a finite sequence of elements of D! is
defined by the term
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(Def. 1) {(p(1)), (p(2)), (p(3)))-
Let us consider a finite sequence p of elements of R. Now we state the
propositions:
(78) If lenp = 3, then len F2M(p) = 3.
(79) If lenp = 3, then p is a 3-element finite sequence of elements of R.
(80) If p=10,0,0], then F2M(p) = ((0), (0), (0)).
(81) Suppose lenp; = 3. Then ((p1)o1, (P1)Oe2, (P1)0o3) = F2M(p1). The the-
orem is a consequence of (63).

Let us consider D. Let p be a finite sequence of elements of D!'. Assume
lenp = 3. The functor M2F(p) yielding a finite sequence of elements of D is
defined by the term

(Def. 2)  (p(1)(1),p(2)(1),p(3)(1)).
Now we state the proposition:

(82) Let us consider a finite sequence p of elements of R!. Suppose lenp = 3.
Then M2F(p) is a point of £3.

Let p be a finite sequence of elements of R! and @ be a real number. Assume
len p = 3. The functor a - p yielding a finite sequence of elements of R! is defined
by

(Def. 3) there exist real numbers p;, p2, ps such that p; = p(1)(1) and py =
p(2)(1) and ps = p(3)(1) and it = ({(a - p1), (a - p2),{a - ps)).
Let us consider a finite sequence p of elements of R!. Now we state the
propositions:

(83) Iflenp =3, then M2F(a - p) = a - M2F(p).

(84) If lenp =3, then ((p(1)(1)), (p(2)(1)), (p(3)(1))) = p-

(85) If lenp = 3, then F2M(M2F(p)) = p. The theorem is a consequence of
(84).

(86) Let us consider a finite sequence p of elements of R. If lenp = 3, then
M2F(F2M(p)) = p.

(87) (i) (e1)T = F2M(ey), and
(ii) (e2)™ = F2M(e2), and
(iii) (e3)™ = F2M(e3).
The theorem is a consequence of (69).

(88) Let us consider a finite sequence p of elements of D. If lenp = 3, then
(p)T = F2M(p). The theorem is a consequence of (77).

(89) Line({p1),1) =p1.
(90) Let us consider a matrix M over D of dimension 3x1. Then
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(i) Line(M,1) = (M 1), and

(ii) Line(M,2) = (My), and
(iii) Line(M,3) = (M31).
From now on R denotes a ring.
Now we state the propositions:
(91) Let us consider a square matrix N over R of dimension 3, and a finite
sequence p of elements of R. If lenp = 3, then N - (p)7T is 3,1-size.
(92) Let us consider a finite sequence p; of elements of R, and a square matrix
N over R of dimension 3. Suppose lenp; = 3. Then

(i) Line(N - (p1)",1) = (N - (p1)")1,1), and
(i) Line(N - (p1)",2) = (N - (p1)T)2,1), and
(iif) Line(N - (p1)™,3) = (N - (p1)")3,1)-
The theorem is a consequence of (91) and (90).
(93)  ({p1)T)o1 = p1. The theorem is a consequence of (89).
(94) Let us consider finite sequences p1, g1, r1 of elements of Rp. Suppose

p =p and ¢ = q1 and 7 = 71 and (|p,q,r|) # 0. Then there exists
a square matrix M over Rp of dimension 3 such that
(i) M is invertible, and

(11) M P11 = FQM(eI), and
(iii) M - ¢ = F2M(e2), and
(iv) M -7 =F2M(es).
PROOF: Reconsider P = <<(p)17 (p)2a (p)3>7 <(Q)1’ (Q)% (Q)3>a <(T‘)1, (1")2,
(r)s)) as a square matrix over Rp of dimension 3. (|p,q,7|) = Det P.
Consider N being a square matrix over Ry of dimension 3 such that N
is inverse of PT. N - (p;)T is a matrix over Ry of dimension 3x1 and
N - {q1)7T is a matrix over R of dimension 3x1 and N - (r1)"* is a matrix
over Rp of dimension 3x1. N - (p;)T = F2M(e;) by (78), [3, (91), (45),
()] N {q1)" = F2M(e2) by (78), [3, (91), (45), (1)]. N - (r1)" = F2M(e3)
by (78), [3, (91), (45), (1)]. O

(95) Let us consider finite sequences p1, g1, r1 of elements of Ry, and finite
sequences pa, go, T2 of elements of R'. Suppose P = ({(p)1, (¢)1, (7)1),
((p)2, (@)2. (r)2), {(p)3, (¢)3, (r)3)) and p = p1 and ¢ = ¢1 and r = and
po =M -pyand g = M -q and 79 = M -r1. Then (M - P)T = (M2F(p2),
M2F (g3), M2F (r5)).
PrOOF: PT = (((p)1, (D)2, (D)), ((9)1, (@)2: (2)3), (1)1, ()2, (r)3))-
width M = len{p;)* and width M = len(g;)" and width M = len(r;)T by
(75), [I1l (50)]. lenpy = 3 and lengy = 3 and lenry = 3. O
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(96) Let us consider finite sequences pz2, g2, r2 of elements of R!. Suppose
M = (M2F(p2), M2F(g2), M2F(r2)) and Det M = 0 and M2F(p2) = p
and M2F(q2) = ¢ and M2F(r2) = r. Then (|p,¢,7|) = 0. The theorem is
a consequence of (35).

(97) Let us consider points ps, g3, r3 of £, finite sequences p2, g2, 72 of
elements of R', and finite sequences p1, q1, 71 of elements of Ry. Suppose
M is invertible and p = p; and ¢ = q; and r = r; and po = M - p; and
g2 = M -q and r9 = M - r; and M2F(p2) = p3 and M2F(¢q2) = ¢3 and
M2F(r2) = r3. Then (|p,q,7|) = 0 if and only if (|ps, ¢3,73]) = 0. The
theorem is a consequence of (19), (23), (95), and (35).

(98) If 0 < m, then every matrix over Ry of dimension mx1 is a finite sequ-
ence of elements of R,
PRroOF: Consider s being a finite sequence such that s € rng M and len s =
1. Consider n being a natural number such that for every object x such that
x € rng M there exists a finite sequence s such that s = z and lens = n.
Consider s; being a finite sequence such that s; = s and lens; = n.
mg M C R! by [5, (132)]. O

(99) Let us consider a finite sequence u; of elements of Rp. Suppose lenu; = 3.
Then (u1)T = Ifré:?’ - {u1)T. The theorem is a consequence of (77), (91),
(2), (68), (7), and (93).

(100) Let us consider an element u of £3, and a finite sequence u; of elements
of Rg. Suppose u = u; and {u1)T = ((0),(0), (0)). Then u = Ogs. The
theorem is a consequence of (77).

(101) Let us consider an invertible square matrix N over Ry of dimension 3,
elements u, p of £3, a finite sequence u; of elements of Ry, and a finite
sequence uy of elements of R!. Suppose u is not zero and v = u1 and uy =
N -uy and g = M2F(ug2). Then p is not zero. The theorem is a consequence
of (75), (85), (80), (8), (99), and (100).

Let N be an invertible square matrix over Ry of dimension 3. The homogra-
phy of N yielding a function from the projective space over 5% into the projective
space over £3. is defined by

(Def. 4) for every point z of the projective space over £3, there exist elements u,
v of £3. and there exists a finite sequence u; of elements of Rp and there
exists a finite sequence p of elements of R! such that « = the direction of
u and u is not zero and u = u; and p = N - u; and v = M2F(p) and v is
not zero and it(z) = the direction of v.

Now we state the proposition:

(102) Let us consider an invertible square matrix N over Ry of dimension 3,
and points p, g, r of the projective space over 5%. Then p, ¢ and r are
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collinear if and only if (the homography of N)(p), (the homography of
N)(gq) and (the homography of N)(r) are collinear.

PROOF: If p, ¢ and r are collinear, then (the homography of N)(p), (the ho-
mography of N)(¢) and (the homography of N)(r) are collinear by [10),
(23)], (43), [9, (22), (1)]. If (the homography of N)(p), (the homography
of N)(q) and (the homography of N)(r) are collinear, then p, ¢ and r are
collinear. [J
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