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Homography in RP2
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Summary. The real projective plane has been formalized in Isabelle/HOL
by Timothy Makarios [13] and in Coq by Nicolas Magaud, Julien Narboux and
Pascal Schreck [12].

Some definitions on the real projective spaces were introduced early in the
Mizar Mathematical Library by Wojciech Leonczuk [9], Krzysztof Prazmowski
[10] and by Wojciech Skaba [18].

In this article, we check with the Mizar system [4], some properties on the
determinants and the Grassmann-Plücker relation in rank 3 [2], [1], [7], [16], [17].

Then we show that the projective space induced (in the sense defined in [9])
by R3 is a projective plane (in the sense defined in [10]).

Finally, in the real projective plane, we define the homography induced by
a 3-by-3 invertible matrix and we show that the images of 3 collinear points are
themselves collinear.
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1. Preliminaries

From now on a, b, c, d, e, f denote real numbers, k, m denote natural
numbers, D denotes a non empty set, V denotes a non trivial real linear space,
u, v, w denote elements of V , and p, q, r denote elements of the projective space
over V .

Now we state the propositions:

(1) 〈〈1, 1〉〉, 〈〈1, 2〉〉, 〈〈1, 3〉〉, 〈〈2, 1〉〉, 〈〈2, 2〉〉, 〈〈2, 3〉〉, 〈〈3, 1〉〉, 〈〈3, 2〉〉, 〈〈3, 3〉〉 ∈ Seg 3×
Seg 3.
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(2) 〈〈1, 1〉〉, 〈〈2, 1〉〉, 〈〈3, 1〉〉 ∈ Seg 3× Seg 1.

(3) 〈〈1, 1〉〉, 〈〈1, 2〉〉, 〈〈1, 3〉〉 ∈ Seg 1× Seg 3.

(4) 〈〈a〉, 〈b〉, 〈c〉〉 is a matrix over RF of dimension 3×1.

(5) Let us consider a matrix N over RF of dimension 3×1. Suppose N = 〈〈a〉,
〈b〉, 〈c〉〉. Then N�,1 = 〈a, b, c〉. The theorem is a consequence of (2).

(6) Let us consider a non empty multiplicative magma K, and elements a1,
a2, a3, b1, b2, b3 of K. Then 〈a1, a2, a3〉•〈b1, b2, b3〉 = 〈a1 ·b1, a2 ·b2, a3 ·b3〉.

(7) Let us consider a commutative, associative, left unital, Abelian, add-
associative, right zeroed, right complementable, non empty double loop
structure K, and elements a1, a2, a3, b1, b2, b3 of K. Then 〈a1, a2, a3〉 · 〈b1,
b2, b3〉 = a1 · b1 + a2 · b2 + a3 · b3. The theorem is a consequence of (6).

(8) Let us consider a square matrix M over RF of dimension 3, and a matrix
N over RF of dimension 3×1. Suppose N = 〈〈0〉, 〈0〉, 〈0〉〉. Then M ·N =
〈〈0〉, 〈0〉, 〈0〉〉. The theorem is a consequence of (7), (5), and (2).

(9) u, v and w are lineary dependent if and only if u = v or u = w or v = w

or {u, v, w} is linearly dependent.

(10) p, q and r are collinear if and only if there exists u and there exists v
and there exists w such that p = the direction of u and q = the direction
of v and r = the direction of w and u is not zero and v is not zero and w is
not zero and (u = v or u = w or v = w or {u, v, w} is linearly dependent).
The theorem is a consequence of (9).

(11) p, q and r are collinear if and only if there exists u and there exists v
and there exists w such that p = the direction of u and q = the direction
of v and r = the direction of w and u is not zero and v is not zero and
w is not zero and there exists a and there exists b and there exists c such
that a · u+ b · v + c · w = 0V and (a 6= 0 or b 6= 0 or c 6= 0).

(12) Let us consider elements u, v, w of V . Suppose a 6= 0 and a·u+b·v+c·w =
0V . Then u = (−ba ) · v + (−ca ) · w.

(13) If a 6= 0 and a · b+ c · d+ e · f = 0, then b = −( ca) · d− ( ea) · f .

(14) Let us consider points u, v, w of E3T. Suppose there exists a and there
exists b and there exists c such that a · u + b · v + c · w = 0E3T and a 6= 0.
Then 〈|u, v, w|〉 = 0. The theorem is a consequence of (12).

(15) Let us consider a natural number n. Then dom 1R matrix(n) = Segn.

(16) Let us consider a matrix A over RF. Then (R→ RF)(RF → R)A = A.

(17) Let us consider matrices A, B over RF, and matrices R1, R2 over R. If
A = R1 and B = R2, then A ·B = R1 ·R2. The theorem is a consequence
of (16).
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(18) Let us consider a natural number n, a square matrix M over R of di-
mension n, and a square matrix N over RF of dimension n. If M = N ,
then M is invertible iff N is invertible. The theorem is a consequence of
(17).

From now on o, p, q, r, s, t denote points of E3T and M denotes a square
matrix over RF of dimension 3.

Let us consider real numbers p1, p2, p3, q1, q2, q3, r1, r2, r3. Now we state
the propositions:

(19) 〈〈p1, p2, p3〉, 〈q1, q2, q3〉, 〈r1, r2, r3〉〉 is a square matrix over RF of dimen-
sion 3.

(20) Suppose M = 〈〈p1, q1, r1〉, 〈p2, q2, r2〉, 〈p3, q3, r3〉〉. Then

(i) M1,1 = p1, and

(ii) M1,2 = q1, and

(iii) M1,3 = r1, and

(iv) M2,1 = p2, and

(v) M2,2 = q2, and

(vi) M2,3 = r2, and

(vii) M3,1 = p3, and

(viii) M3,2 = q3, and

(ix) M3,3 = r3.

The theorem is a consequence of (1).

(21) Suppose M = 〈p, q, r〉. Then

(i) M1,1 = (p)1, and

(ii) M1,2 = (p)2, and

(iii) M1,3 = (p)3, and

(iv) M2,1 = (q)1, and

(v) M2,2 = (q)2, and

(vi) M2,3 = (q)3, and

(vii) M3,1 = (r)1, and

(viii) M3,2 = (r)2, and

(ix) M3,3 = (r)3.

The theorem is a consequence of (1).

(22) Let us consider real numbers p1, p2, p3, q1, q2, q3, r1, r2, r3. Suppose
M = 〈〈p1, q1, r1〉, 〈p2, q2, r2〉, 〈p3, q3, r3〉〉. Then MT = 〈〈p1, p2, p3〉, 〈q1, q2,
q3〉, 〈r1, r2, r3〉〉. The theorem is a consequence of (1) and (20).
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(23) Suppose M = 〈p, q, r〉. Then MT = 〈〈(p)1, (q)1, (r)1〉, 〈(p)2, (q)2, (r)2〉,
〈(p)3, (q)3, (r)3〉〉. The theorem is a consequence of (1) and (21).

(24) lines(M) = {Line(M, 1),Line(M, 2),Line(M, 3)}.
Proof: lines(M) ⊆ {Line(M, 1),Line(M, 2),Line(M, 3)} by [14, (103)],
[19, (1)]. {Line(M, 1),Line(M, 2),Line(M, 3)} ⊆ lines(M) by [3, (1)], [14,
(103)]. �

(25) SupposeM = 〈〈(p)1, (p)2, (p)3〉, 〈(q)1, (q)2, (q)3〉, 〈(r)1, (r)2, (r)3〉〉. Then

(i) Line(M, 1) = p, and

(ii) Line(M, 2) = q, and

(iii) Line(M, 3) = r.

(26) Let us consider an object x. Then x ∈ lines(MT) if and only if there
exists a natural number i such that i ∈ Seg 3 and x = M�,i.

2. Grassmann-Plücker Relation

Now we state the propositions:

(27) 〈|p, q, r|〉 = (p)1 · (q)2 · (r)3 − (p)3 · (q)2 · (r)1 − (p)1 · (q)3 · (r)2 + (p)2 ·
(q)3 · (r)1 − (p)2 · (q)1 · (r)3 + (p)3 · (q)1 · (r)2.

(28) Grassmannn-Plücker-Relation in rank 3:
〈|p, q, r|〉 · 〈|p, s, t|〉 − 〈|p, q, s|〉 · 〈|p, r, t|〉 + 〈|p, q, t|〉 · 〈|p, r, s|〉 = 0. The
theorem is a consequence of (27).

(29) 〈|p, q, r|〉 = −〈|p, r, q|〉. The theorem is a consequence of (27).

(30) 〈|p, q, r|〉 = −〈|q, p, r|〉. The theorem is a consequence of (27).

(31) 〈|a · p, q, r|〉 = a · 〈|p, q, r|〉. The theorem is a consequence of (27).

(32) 〈|p, a · q, r|〉 = a · 〈|p, q, r|〉. The theorem is a consequence of (30) and
(31).

(33) 〈|p, q, a · r|〉 = a · 〈|p, q, r|〉. The theorem is a consequence of (29) and
(32).

(34) SupposeM = 〈〈(p)1, (q)1, (r)1〉, 〈(p)2, (q)2, (r)2〉, 〈(p)3, (q)3, (r)3〉〉. Then
〈|p, q, r|〉 = DetM . The theorem is a consequence of (22).

(35) SupposeM = 〈〈(p)1, (p)2, (p)3〉, 〈(q)1, (q)2, (q)3〉, 〈(r)1, (r)2, (r)3〉〉. Then
〈|p, q, r|〉 = DetM .

Let us consider a square matrix M over RF of dimension k. Now we state
the propositions:

(36) DetM = 0RF if and only if rk(M) < k.
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(37) rk(M) < k if and only if lines(M) is linearly dependent or M is not
without repeated line.

(38) Let us consider a matrix M over RF of dimension k×m. Then Mx2Tran
(M) is a function from RLSp2RVSp(EkT) into RLSp2RVSp(EmT ).

(39) Let us consider a square matrixM over RF of dimension k. Then Mx2Tra-
n(M) is a linear transformation from RLSp2RVSp(EkT) to RLSp2RVSp(EkT).
Proof: ReconsiderM1 = Mx2Tran(M) as a function from RLSp2RVSp(EkT)
into RLSp2RVSp(EkT). For every elements x, y of RLSp2RVSp(EkT), M1(x+
y) = M1(x) +M1(y) by [15, (22)]. For every scalar a of RF and for every
vector x of RLSp2RVSp(EkT), M1(a · x) = a ·M1(x) by [15, (23)]. �

(40) Suppose M = 〈〈(p)1, (p)2, (p)3〉, 〈(q)1, (q)2, (q)3〉, 〈(r)1, (r)2, (r)3〉〉 and
rk(M) < 3. Then there exists a and there exists b and there exists c such
that a · p+ b · q + c · r = 0E3T and (a 6= 0 or b 6= 0 or c 6= 0). The theorem
is a consequence of (37), (25), (24), (39), and (7).

(41) If a ·p+b ·q+c ·r = 0E3T and (a 6= 0 or b 6= 0 or c 6= 0), then 〈|p, q, r|〉 = 0.
The theorem is a consequence of (14) and (30).

(42) Suppose 〈|p, q, r|〉 = 0. Then there exists a and there exists b and there
exists c such that a · p + b · q + c · r = 0E3T and (a 6= 0 or b 6= 0 or c 6= 0).
The theorem is a consequence of (19), (35), (36), and (40).

(43) p, q and r are lineary dependent if and only if 〈|p, q, r|〉 = 0. The theorem
is a consequence of (41) and (42).

3. Some Properties about the Cross Product

Now we state the propositions:

(44) |(p, p× q)| = 0.

(45) |(p, q × p)| = 0.

(46) (i) 〈|o, p, (o× p)× (q × r)|〉 = 0, and

(ii) 〈|q, r, (o× p)× (q × r)|〉 = 0.
The theorem is a consequence of (44) and (45).

(47) (i) o, p and (o× p)× (q × r) are lineary dependent, and

(ii) q, r and (o× p)× (q × r) are lineary dependent.
The theorem is a consequence of (46) and (43).

(48) (i) 0E3T × p = 0E3T , and

(ii) p× 0E3T = 0E3T .
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(49) 〈|p, q, 0E3T |〉 = 0. The theorem is a consequence of (48).

(50) If p× q = 0E3T and r = [1, 1, 1], then p, q and r are lineary dependent.

Proof: Reconsider r = [1, 1, 1] as an element of E3T. 〈|p, q, r|〉 = 0 by [8,
(2)], (27). �

(51) If p is not zero and q is not zero and p × q = 0E3T , then p and q are
proportional.

(52) Let us consider non zero points p, q, r, s of E3T. Suppose (p× q)× (r× s)
is zero. Then

(i) p and q are proportional, or

(ii) r and s are proportional, or

(iii) p× q and r × s are proportional.

The theorem is a consequence of (51).

(53) 〈|p, q, p× q|〉 = |(q, q)| · |(p, p)| − |(q, p)| · |(p, q)|.
(54) |(p× q, p× q)| = |(q, q)| · |(p, p)| − |(q, p)| · |(p, q)|.
(55) If p is not zero and |(p, q)| = 0 and |(p, r)| = 0 and |(p, s)| = 0, then
〈|q, r, s|〉 = 0. The theorem is a consequence of (13) and (27).

(56) 〈|p, q, p× q|〉 = |p× q|2. The theorem is a consequence of (53) and (54).

(57) The projective space over E3T is a projective plane defined in terms of
collinearity.
Proof: Set P = the projective space over E3T. There exist elements u, v,
w1 of E3T such that for every real numbers a, b, c such that a·u+b·v+c·w1 =
0E3T holds a = 0 and b = 0 and c = 0 by [6, (22)], [8, (4)], [11, (39)], [8,
(2)]. For every elements p, p1, q, q1 of P , there exists an element r of P
such that p, p1 and r are collinear and q, q1 and r are collinear by [9, (26)],
(52), [9, (22)], [18, (2)]. �

4. Real Projective Plane and Homography

Let us consider elements u, v, w, x of E3T. Now we state the propositions:

(58) Suppose u is not zero and x is not zero and the direction of u = the direct-
ion of x. Then 〈|u, v, w|〉 = 0 if and only if 〈|x, v, w|〉 = 0. The theorem is
a consequence of (31).

(59) Suppose v is not zero and x is not zero and the direction of v = the direct-
ion of x. Then 〈|u, v, w|〉 = 0 if and only if 〈|u, x, w|〉 = 0. The theorem is
a consequence of (32).
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(60) Suppose w is not zero and x is not zero and the direction of w =
the direction of x. Then 〈|u, v, w|〉 = 0 if and only if 〈|u, v, x|〉 = 0. The
theorem is a consequence of (33).

(61) (i) (1R matrix(3))(1) = e1, and

(ii) (1R matrix(3))(2) = e2, and

(iii) (1R matrix(3))(3) = e3.

(62) (i) the base finite sequence of 3 and 1 = e1, and

(ii) the base finite sequence of 3 and 2 = e2, and

(iii) the base finite sequence of 3 and 3 = e3.

(63) Let us consider a finite sequence p2 of elements of D. Suppose len p2 = 3.
Then

(i) 〈p2〉�,1 = 〈p2(1)〉, and

(ii) 〈p2〉�,2 = 〈p2(2)〉, and

(iii) 〈p2〉�,3 = 〈p2(3)〉.

The theorem is a consequence of (3).

(64) (i) 〈e1〉�,1 = 〈1〉, and

(ii) 〈e1〉�,2 = 〈0〉, and

(iii) 〈e1〉�,3 = 〈0〉.
The theorem is a consequence of (63).

(65) (i) 〈e2〉�,1 = 〈0〉, and

(ii) 〈e2〉�,2 = 〈1〉, and

(iii) 〈e2〉�,3 = 〈0〉.
The theorem is a consequence of (63).

(66) (i) 〈e3〉�,1 = 〈0〉, and

(ii) 〈e3〉�,2 = 〈0〉, and

(iii) 〈e3〉�,3 = 〈1〉.
The theorem is a consequence of (63).

(67) (i) (I3×3RF )�,1 = 〈1, 0, 0〉, and

(ii) (I3×3RF )�,2 = 〈0, 1, 0〉, and

(iii) (I3×3RF )�,3 = 〈0, 0, 1〉.
The theorem is a consequence of (1) and (15).

(68) (i) Line(I3×3RF , 1) = 〈1, 0, 0〉, and

(ii) Line(I3×3RF , 2) = 〈0, 1, 0〉, and
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(iii) Line(I3×3RF , 3) = 〈0, 0, 1〉.
The theorem is a consequence of (1).

(69) (i) 〈e1〉T = 〈〈1〉, 〈0〉, 〈0〉〉, and

(ii) 〈e2〉T = 〈〈0〉, 〈1〉, 〈0〉〉, and

(iii) 〈e3〉T = 〈〈0〉, 〈0〉, 〈1〉〉.
The theorem is a consequence of (64), (65), and (66).

From now on p1 denotes a finite sequence of elements of D.
Now we state the propositions:

(70) Let us consider a finite sequence p1 of elements of D. If k ∈ dom p1, then
〈p1〉1,k = p1(k).

(71) If k ∈ dom p1, then 〈p1〉�,k = 〈p1(k)〉. The theorem is a consequence of
(70).

(72) Let us consider an element p2 of R3. Suppose p1 = p2. Then (R →
RF) ColVec2Mx(p2) = 〈p1〉T. The theorem is a consequence of (71).

In the sequel P denotes a square matrix over RF of dimension 3.
Now we state the propositions:

(73) Suppose P = 〈〈(p)1, (p)2, (p)3〉, 〈(q)1, (q)2, (q)3〉, 〈(r)1, (r)2, (r)3〉〉. Then

(i) Line(P, 1) = p, and

(ii) Line(P, 2) = q, and

(iii) Line(P, 3) = r.

(74) Suppose P = 〈〈(p)1, (p)2, (p)3〉, 〈(q)1, (q)2, (q)3〉, 〈(r)1, (r)2, (r)3〉〉. Then

(i) P�,1 = 〈(p)1, (q)1, (r)1〉, and

(ii) P�,2 = 〈(p)2, (q)2, (r)2〉, and

(iii) P�,3 = 〈(p)3, (q)3, (r)3〉.
(75) width〈p1〉 = len p1.

(76) Suppose len p1 = 3. Then

(i) Line(〈p1〉T, 1) = 〈p1(1)〉, and

(ii) Line(〈p1〉T, 2) = 〈p1(2)〉, and

(iii) Line(〈p1〉T, 3) = 〈p1(3)〉.
The theorem is a consequence of (75) and (63).

(77) If len p1 = 3, then 〈p1〉T = 〈〈p1(1)〉, 〈p1(2)〉, 〈p1(3)〉〉. The theorem is
a consequence of (76).

Let us consider D. Let p be a finite sequence of elements of D. Assume
len p = 3. The functor F2M(p) yielding a finite sequence of elements of D1 is
defined by the term



Homography in RP2 247

(Def. 1) 〈〈p(1)〉, 〈p(2)〉, 〈p(3)〉〉.
Let us consider a finite sequence p of elements of R. Now we state the

propositions:

(78) If len p = 3, then len F2M(p) = 3.

(79) If len p = 3, then p is a 3-element finite sequence of elements of R.

(80) If p = [0, 0, 0], then F2M(p) = 〈〈0〉, 〈0〉, 〈0〉〉.
(81) Suppose len p1 = 3. Then 〈〈p1〉�,1, 〈p1〉�,2, 〈p1〉�,3〉 = F2M(p1). The the-

orem is a consequence of (63).

Let us consider D. Let p be a finite sequence of elements of D1. Assume
len p = 3. The functor M2F(p) yielding a finite sequence of elements of D is
defined by the term

(Def. 2) 〈p(1)(1), p(2)(1), p(3)(1)〉.
Now we state the proposition:

(82) Let us consider a finite sequence p of elements of R1. Suppose len p = 3.
Then M2F(p) is a point of E3T.

Let p be a finite sequence of elements of R1 and a be a real number. Assume
len p = 3. The functor a ·p yielding a finite sequence of elements of R1 is defined
by

(Def. 3) there exist real numbers p1, p2, p3 such that p1 = p(1)(1) and p2 =
p(2)(1) and p3 = p(3)(1) and it = 〈〈a · p1〉, 〈a · p2〉, 〈a · p3〉〉.

Let us consider a finite sequence p of elements of R1. Now we state the
propositions:

(83) If len p = 3, then M2F(a · p) = a ·M2F(p).

(84) If len p = 3, then 〈〈p(1)(1)〉, 〈p(2)(1)〉, 〈p(3)(1)〉〉 = p.

(85) If len p = 3, then F2M(M2F(p)) = p. The theorem is a consequence of
(84).

(86) Let us consider a finite sequence p of elements of R. If len p = 3, then
M2F(F2M(p)) = p.

(87) (i) 〈e1〉T = F2M(e1), and

(ii) 〈e2〉T = F2M(e2), and

(iii) 〈e3〉T = F2M(e3).
The theorem is a consequence of (69).

(88) Let us consider a finite sequence p of elements of D. If len p = 3, then
〈p〉T = F2M(p). The theorem is a consequence of (77).

(89) Line(〈p1〉, 1) = p1.

(90) Let us consider a matrix M over D of dimension 3×1. Then
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(i) Line(M, 1) = 〈M1,1〉, and

(ii) Line(M, 2) = 〈M2,1〉, and

(iii) Line(M, 3) = 〈M3,1〉.
From now on R denotes a ring.
Now we state the propositions:

(91) Let us consider a square matrix N over R of dimension 3, and a finite
sequence p of elements of R. If len p = 3, then N · 〈p〉T is 3,1-size.

(92) Let us consider a finite sequence p1 of elements of R, and a square matrix
N over R of dimension 3. Suppose len p1 = 3. Then

(i) Line(N · 〈p1〉T, 1) = 〈(N · 〈p1〉T)1,1〉, and

(ii) Line(N · 〈p1〉T, 2) = 〈(N · 〈p1〉T)2,1〉, and

(iii) Line(N · 〈p1〉T, 3) = 〈(N · 〈p1〉T)3,1〉.
The theorem is a consequence of (91) and (90).

(93) (〈p1〉T)�,1 = p1. The theorem is a consequence of (89).

(94) Let us consider finite sequences p1, q1, r1 of elements of RF. Suppose
p = p1 and q = q1 and r = r1 and 〈|p, q, r|〉 6= 0. Then there exists
a square matrix M over RF of dimension 3 such that

(i) M is invertible, and

(ii) M · p1 = F2M(e1), and

(iii) M · q1 = F2M(e2), and

(iv) M · r1 = F2M(e3).

Proof: Reconsider P = 〈〈(p)1, (p)2, (p)3〉, 〈(q)1, (q)2, (q)3〉, 〈(r)1, (r)2,
(r)3〉〉 as a square matrix over RF of dimension 3. 〈|p, q, r|〉 = DetP .
Consider N being a square matrix over RF of dimension 3 such that N
is inverse of PT. N · 〈p1〉T is a matrix over RF of dimension 3×1 and
N · 〈q1〉T is a matrix over RF of dimension 3×1 and N · 〈r1〉T is a matrix
over RF of dimension 3×1. N · 〈p1〉T = F2M(e1) by (78), [3, (91), (45),
(1)]. N · 〈q1〉T = F2M(e2) by (78), [3, (91), (45), (1)]. N · 〈r1〉T = F2M(e3)
by (78), [3, (91), (45), (1)]. �

(95) Let us consider finite sequences p1, q1, r1 of elements of RF, and finite
sequences p2, q2, r2 of elements of R1. Suppose P = 〈〈(p)1, (q)1, (r)1〉,
〈(p)2, (q)2, (r)2〉, 〈(p)3, (q)3, (r)3〉〉 and p = p1 and q = q1 and r = r1 and
p2 = M · p1 and q2 = M · q1 and r2 = M · r1. Then (M · P )T = 〈M2F(p2),
M2F(q2),M2F(r2)〉.
Proof: PT = 〈〈(p)1, (p)2, (p)3〉, 〈(q)1, (q)2, (q)3〉, 〈(r)1, (r)2, (r)3〉〉.
widthM = len〈p1〉T and widthM = len〈q1〉T and widthM = len〈r1〉T by
(75), [11, (50)]. len p2 = 3 and len q2 = 3 and len r2 = 3. �
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(96) Let us consider finite sequences p2, q2, r2 of elements of R1. Suppose
M = 〈M2F(p2),M2F(q2),M2F(r2)〉 and DetM = 0 and M2F(p2) = p

and M2F(q2) = q and M2F(r2) = r. Then 〈|p, q, r|〉 = 0. The theorem is
a consequence of (35).

(97) Let us consider points p3, q3, r3 of E3T, finite sequences p2, q2, r2 of
elements of R1, and finite sequences p1, q1, r1 of elements of RF. Suppose
M is invertible and p = p1 and q = q1 and r = r1 and p2 = M · p1 and
q2 = M · q1 and r2 = M · r1 and M2F(p2) = p3 and M2F(q2) = q3 and
M2F(r2) = r3. Then 〈|p, q, r|〉 = 0 if and only if 〈|p3, q3, r3|〉 = 0. The
theorem is a consequence of (19), (23), (95), and (35).

(98) If 0 < m, then every matrix over RF of dimension m×1 is a finite sequ-
ence of elements of R1.
Proof: Consider s being a finite sequence such that s ∈ rngM and len s =
1. Consider n being a natural number such that for every object x such that
x ∈ rngM there exists a finite sequence s such that s = x and len s = n.
Consider s1 being a finite sequence such that s1 = s and len s1 = n.
rngM ⊆ R1 by [5, (132)]. �

(99) Let us consider a finite sequence u1 of elements of RF. Suppose lenu1 = 3.
Then 〈u1〉T = I3×3RF · 〈u1〉

T. The theorem is a consequence of (77), (91),
(2), (68), (7), and (93).

(100) Let us consider an element u of E3T, and a finite sequence u1 of elements
of RF. Suppose u = u1 and 〈u1〉T = 〈〈0〉, 〈0〉, 〈0〉〉. Then u = 0E3T . The
theorem is a consequence of (77).

(101) Let us consider an invertible square matrix N over RF of dimension 3,
elements u, µ of E3T, a finite sequence u1 of elements of RF, and a finite
sequence u2 of elements of R1. Suppose u is not zero and u = u1 and u2 =
N ·u1 and µ = M2F(u2). Then µ is not zero. The theorem is a consequence
of (75), (85), (80), (8), (99), and (100).

Let N be an invertible square matrix over RF of dimension 3. The homogra-
phy of N yielding a function from the projective space over E3T into the projective
space over E3T is defined by

(Def. 4) for every point x of the projective space over E3T, there exist elements u,
v of E3T and there exists a finite sequence u1 of elements of RF and there
exists a finite sequence p of elements of R1 such that x = the direction of
u and u is not zero and u = u1 and p = N · u1 and v = M2F(p) and v is
not zero and it(x) = the direction of v.

Now we state the proposition:

(102) Let us consider an invertible square matrix N over RF of dimension 3,
and points p, q, r of the projective space over E3T. Then p, q and r are
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collinear if and only if (the homography of N)(p), (the homography of
N)(q) and (the homography of N)(r) are collinear.

Proof: If p, q and r are collinear, then (the homography ofN)(p), (the ho-
mography of N)(q) and (the homography of N)(r) are collinear by [10,
(23)], (43), [9, (22), (1)]. If (the homography of N)(p), (the homography
of N)(q) and (the homography of N)(r) are collinear, then p, q and r are
collinear. �
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