Double Sequences and Iterated Limits in Regular Space

Roland Coghetto
Rue de la Brasserie 5
7100 La Louvière, Belgium

Abstract

Summary. First, we define in Mizar [5], the Cartesian product of two filters bases and the Cartesian product of two filters. After comparing the product of two Fréchet filters on $\mathbb{N}\left(\mathcal{F}_{1}\right)$ with the Fréchet filter on $\mathbb{N} \times \mathbb{N}\left(\mathcal{F}_{2}\right)$, we compare $\lim _{\mathcal{F}_{1}}$ and $\lim _{\mathcal{F}_{2}}$ for all double sequences in a non empty topological space.

Endou, Okazaki and Shidama formalized in [14] the "convergence in Pringsheim's sense" for double sequence of real numbers. We show some basic correspondences between the p-convergence and the filter convergence in a topological space. Then we formalize that the double sequence $\left(x_{m, n}=\frac{1}{m+1}\right)_{(m, n)} \in \mathbb{N} \times \mathbb{N}$ converges in "Pringsheim's sense" but not in Frechet filter on $\mathbb{N} \times \mathbb{N}$ sense.

In the next section, we generalize some definitions: "is convergent in the first coordinate", "is convergent in the second coordinate", "the lim in the first coordinate of", "the lim in the second coordinate of" according to [14], in Hausdorff space.

Finally, we generalize two theorems: (3) and (4) from 14 in the case of double sequences and we formalize the "iterated limit" theorem ("Double limit" [7], p. 81, par. 8.5 "Double limite" 6] (TG I,57)), all in regular space. We were inspired by the exercises (2.11.4), (2.17.5) [17] and the corrections B. 10 [18.

MSC: 54A20 40A05 40B05 03B35
Keywords: filter; double limits; Pringsheim convergence; iterated limits; regular space

MML identifier: CARDFIL4 version: 8.1.05 5.37.1275

1. Preliminaries

From now on x denotes an object, X, Y, Z denote sets, i, j, k, l, m, n denote natural numbers, r, s denote real numbers, n_{1} denotes an element of the ordered \mathbb{N}, and A denotes a subset of $\mathbb{N} \times \mathbb{N}$.

Now we state the propositions:
(1) Let us consider a finite subset W of X. If $X \backslash W \subseteq Z$, then $X \backslash Z$ is finite.
(2) If $Z \subseteq X$ and $X \backslash Z$ is finite, then there exists a finite subset W of X such that $X \backslash W=Z$.
(3) Let us consider sets X_{1}, X_{2}, a family S_{1} of subsets of X_{1}, and a family S_{2} of subsets of X_{2}. Then $\left\{s\right.$, where s is a subset of $X_{1} \times X_{2}$: there exist sets s_{1}, s_{2} such that $s_{1} \in S_{1}$ and $s_{2} \in S_{2}$ and $\left.s=s_{1} \times s_{2}\right\}$ is a family of subsets of $X_{1} \times X_{2}$.
(4) If $x \in X \times Y$, then x is pair.
(5) If $0<r$, then there exists m such that m is not zero and $\frac{1}{m}<r$.
(6) Let us consider points x, y of the metric space of real numbers. Then there exist real numbers x_{1}, y_{1} such that
(i) $x=x_{1}$, and
(ii) $y=y_{1}$, and
(iii) $\rho(x, y)=\rho_{\mathbb{R}}(x, y)$, and
(iv) $\rho(x, y)=\rho^{1}(\langle x\rangle,\langle y\rangle)$, and
(v) $\rho(x, y)=\left|x_{1}-y_{1}\right|$.
(7) Let us consider points x, y of $\left(\mathcal{E}^{1}\right)_{\text {top }}$. Then there exist points x_{2}, y_{2} of the metric space of real numbers and there exist real numbers x_{1}, y_{1} such that $x_{2}=x_{1}$ and $y_{2}=y_{1}$ and $x=\left\langle x_{1}\right\rangle$ and $y=\left\langle y_{1}\right\rangle$ and $\rho\left(x_{2}, y_{2}\right)=$ $\rho_{\mathbb{R}}\left(x_{1}, y_{1}\right)$ and $\rho\left(x_{2}, y_{2}\right)=\rho^{1}\left(\left\langle x_{1}\right\rangle,\left\langle y_{1}\right\rangle\right)$ and $\rho\left(x_{2}, y_{2}\right)=\left|x_{1}-y_{1}\right|$.
(8) Let us consider points x, y of \mathcal{E}^{1}, and real numbers r, s. If $x=\langle r\rangle$ and $y=\langle s\rangle$, then $\rho(x, y)=|r-s|$. The theorem is a consequence of (7).
One can check that $\mathbb{N} \times \mathbb{N}$ is countable and $\mathbb{N} \times \mathbb{N}$ is denumerable.
Now we state the propositions:
(9) the set of all $\langle 0, n\rangle$ where n is a natural number is infinite.

Proof: Define \mathcal{F} (object) $=\left\langle 0, \$_{1}\right\rangle$. Consider f being a function such that $\operatorname{dom} f=\mathbb{N}$ and for every object x such that $x \in \mathbb{N}$ holds $f(x)=\mathcal{F}(x)$ from [9, Sch. 3]. f is one-to-one. rng $f=$ the set of all $\langle 0, n\rangle$ where n is a natural number by [9, (3)].
(10) If $i \leqslant k$ and $j \leqslant l$, then $\mathbb{Z}_{i} \times \mathbb{Z}_{j} \subseteq \mathbb{Z}_{k} \times \mathbb{Z}_{l}$.
(11) $\left(\mathbb{N} \backslash \mathbb{Z}_{m}\right) \times\left(\mathbb{N} \backslash \mathbb{Z}_{n}\right) \subseteq \mathbb{N} \times \mathbb{N} \backslash \mathbb{Z}_{m} \times \mathbb{Z}_{n}$.
(12) If $n=n_{1}$ and $n \leqslant m$, then $m \in \uparrow n_{1}$.
(13) If $n=n_{1}$ and $m \in \uparrow n_{1}$, then $n \leqslant m$.
(14) If $n=n_{1}$, then $\uparrow n_{1}=\mathbb{N} \backslash \mathbb{Z}_{n}$.

Proof: $\uparrow n_{1} \subseteq \mathbb{N} \backslash \mathbb{Z}_{n}$ by [12, (50)], (13), [1, (44)]. $\mathbb{N} \backslash \mathbb{Z}_{n} \subseteq \uparrow n_{1}$ by [1, (44)], [12, (50)].
(15) $\pi_{1}(A)=\{x$, where x is an element of \mathbb{N} : there exists an element y of \mathbb{N} such that $\langle x, y\rangle \in A\}$.
(16) $\pi_{2}(A)=\{y$, where y is an element of \mathbb{N} : there exists an element x of \mathbb{N} such that $\langle x, y\rangle \in A\}$.
(17) Let us consider a finite subset A of $\mathbb{N} \times \mathbb{N}$. Then there exists m and there exists n such that $A \subseteq \mathbb{Z}_{m} \times \mathbb{Z}_{n}$. The theorem is a consequence of (15) and (16).
(18) Let us consider a non empty set X. Then every filter of X is a proper filter of $2 \underset{\subseteq}{X}$.
(19) Let us consider a non empty set X, and a filter \mathcal{F} of X. Then there exists a filter base \mathcal{B} of X such that
(i) $\mathcal{B}=\mathcal{F}$, and
(ii) $[\mathcal{B})=\mathcal{F}$.
(20) Let us consider a non empty topological space T, and a filter \mathcal{F} of the carrier of T. If $x \in \operatorname{LimFilter}(\mathcal{F})$, then x is a cluster point of \mathcal{F}, T.
(21) Let us consider an element B of the base of Frechet filter. Then there exists n such that $B=\mathbb{N} \backslash \mathbb{Z}_{n}$. The theorem is a consequence of (14).
(22) Let us consider a subset B of \mathbb{N}. Suppose $B=\mathbb{N} \backslash \mathbb{Z}_{n}$. Then B is an element of the base of Frechet filter. The theorem is a consequence of (14).

2. Cartesian Product of Two Filters

From now on X, Y, X_{1}, X_{2} denote non empty sets, $\mathcal{A}_{1}, \mathcal{B}_{1}$ denote filter bases of $X_{1}, \mathcal{A}_{2}, \mathcal{B}_{2}$ denote filter bases of X_{2}, \mathcal{F}_{1} denotes a filter of X_{1}, \mathcal{F}_{2} denotes a filter of X_{2}, \mathcal{B}_{3} denotes a generalized basis of \mathcal{F}_{1}.

Let X_{1}, X_{2} be non empty sets, \mathcal{B}_{1} be a filter base of X_{1}, and \mathcal{B}_{2} be a filter base of X_{2}. The functor $\mathcal{B}_{1} \times \mathcal{B}_{2}$ yielding a filter base of $X_{1} \times X_{2}$ is defined by the term
(Def. 1) the set of all $B_{1} \times B_{2}$ where B_{1} is an element of \mathcal{B}_{1}, B_{2} is an element of \mathcal{B}_{2}.
Now we state the propositions:
(23) Suppose $\mathcal{F}_{1}=\left[\mathcal{B}_{1}\right)$ and $\mathcal{F}_{1}=\left[\mathcal{A}_{1}\right)$ and $\mathcal{F}_{2}=\left[\mathcal{B}_{2}\right)$ and $\mathcal{F}_{2}=\left[\mathcal{A}_{2}\right)$. Then $\left[\mathcal{B}_{1} \times \mathcal{B}_{2}\right)=\left[\mathcal{A}_{1} \times \mathcal{A}_{2}\right)$.
(24) If $\mathcal{B}_{3}=\mathcal{B}_{1}$, then $\left[\mathcal{B}_{1}\right]=\mathcal{F}_{1}$.
(25) There exists \mathcal{B}_{1} such that $\left[\mathcal{B}_{1}\right)=\mathcal{F}_{1}$. The theorem is a consequence of (24).

Let X_{1}, X_{2} be non empty sets, \mathcal{F}_{1} be a filter of X_{1}, and \mathcal{F}_{2} be a filter of X_{2}. The functor $\left\langle\mathcal{F}_{1}, \mathcal{F}_{2}\right.$) yielding a filter of $X_{1} \times X_{2}$ is defined by
(Def. 2) there exists a filter base \mathcal{B}_{1} of X_{1} and there exists a filter base \mathcal{B}_{2} of X_{2} such that $\left[\mathcal{B}_{1}\right)=\mathcal{F}_{1}$ and $\left[\mathcal{B}_{2}\right)=\mathcal{F}_{2}$ and it $=\left[\mathcal{B}_{1} \times \mathcal{B}_{2}\right)$.
Let \mathcal{B}_{1} be a generalized basis of \mathcal{F}_{1} and \mathcal{B}_{2} be a generalized basis of \mathcal{F}_{2}. The functor $\mathcal{B}_{1} \times \mathcal{B}_{2}$ yielding a generalized basis of $\left\langle\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ is defined by
(Def. 3) there exists a filter base \mathcal{B}_{3} of X_{1} and there exists a filter base \mathcal{B}_{4} of X_{2} such that $\mathcal{B}_{1}=\mathcal{B}_{3}$ and $\mathcal{B}_{2}=\mathcal{B}_{4}$ and it $=\mathcal{B}_{3} \times \mathcal{B}_{4}$.
Let n be a natural number. The functor $\uparrow^{2}(n)$ yielding a subset of $\mathbb{N} \times \mathbb{N}$ is defined by
(Def. 4) for every element x of $\mathbb{N} \times \mathbb{N}, x \in i t$ iff there exist natural numbers n_{1}, n_{2} such that $n_{1}=(x)_{1}$ and $n_{2}=(x)_{2}$ and $n \leqslant n_{1}$ and $n \leqslant n_{2}$.
Now we state the proposition:
(26) $\langle n, n\rangle \in \uparrow^{2}(n)$.

Let us consider n. One can check that $\uparrow^{2}(n)$ is non empty.
Now we state the propositions:
(27) If $\langle i, j\rangle \in \uparrow^{2}(n)$, then $\langle i+k, j\rangle,\langle i, j+l\rangle \in \uparrow^{2}(n)$.
(28) $\uparrow^{2}(n)$ is an infinite subset of $\mathbb{N} \times \mathbb{N}$. The theorem is a consequence of (17).
(29) If $n_{1}=n$, then $\uparrow^{2}(n)=\uparrow n_{1} \times \uparrow n_{1}$. The theorem is a consequence of (12) and (13).
(30) If $m=n-1$, then $\uparrow^{2}(n) \subseteq \mathbb{N} \times \mathbb{N} \backslash \operatorname{Seg} m \times \operatorname{Seg} m$.

Proof: Reconsider $y=x$ as an element of $\mathbb{N} \times \mathbb{N}$. Consider n_{1}, n_{2} being natural numbers such that $n_{1}=(y)_{1}$ and $n_{2}=(y)_{2}$ and $n \leqslant n_{1}$ and $n \leqslant n_{2} . x \notin \operatorname{Seg} m \times \operatorname{Seg} m$ by [3, (1)].
(31) $\quad \uparrow^{2}(n) \subseteq \mathbb{N} \times \mathbb{N} \backslash \mathbb{Z}_{n} \times \mathbb{Z}_{n}$.

Proof: Reconsider $y=x$ as an element of $\mathbb{N} \times \mathbb{N}$. Consider n_{1}, n_{2} being natural numbers such that $n_{1}=(y)_{1}$ and $n_{2}=(y)_{2}$ and $n \leqslant n_{1}$ and $n \leqslant n_{2} . x \notin \mathbb{Z}_{n} \times \mathbb{Z}_{n}$ by [16, (10)].
(32) $\quad \uparrow^{2}(n)=\left(\mathbb{N} \backslash \mathbb{Z}_{n}\right) \times\left(\mathbb{N} \backslash \mathbb{Z}_{n}\right)$. The theorem is a consequence of (14) and (29).
(33) There exists n such that $\uparrow^{2}(n) \subseteq\left(\mathbb{N} \backslash \mathbb{Z}_{i}\right) \times\left(\mathbb{N} \backslash \mathbb{Z}_{j}\right)$. The theorem is a consequence of (4).
(34) If $n=\max (i, j)$, then $\uparrow^{2}(n) \subseteq\left(\uparrow^{2}(i)\right) \cap\left(\uparrow^{2}(j)\right)$.

Let n be a natural number. The functor $\downarrow^{2}(n)$ yielding a subset of $\mathbb{N} \times \mathbb{N}$ is defined by
(Def. 5) for every element x of $\mathbb{N} \times \mathbb{N}, x \in i t$ iff there exist natural numbers n_{1}, n_{2} such that $n_{1}=(x)_{1}$ and $n_{2}=(x)_{\mathbf{2}}$ and $n_{1}<n$ and $n_{2}<n$.
Now we state the propositions:
(35) $\quad \downarrow^{2}(n)=\mathbb{Z}_{n} \times \mathbb{Z}_{n}$.

Proof: $\downarrow^{2}(n) \subseteq \mathbb{Z}_{n} \times \mathbb{Z}_{n}$ by [11, (44)]. Consider y_{2}, y_{1} being objects such that $y_{2} \in \mathbb{Z}_{n}$ and $y_{1} \in \mathbb{Z}_{n}$ and $x=\left\langle y_{2}, y_{1}\right\rangle$.
(36) Let us consider a finite subset A of $\mathbb{N} \times \mathbb{N}$. Then there exists n such that $A \subseteq \downarrow^{2}(n)$.
Proof: Consider m, n such that $A \subseteq \mathbb{Z}_{m} \times \mathbb{Z}_{n}$. Reconsider $m_{1}=\max (m, n)$ as a natural number. $A \subseteq \downarrow^{2}\left(m_{1}\right)$ by [1, (39)], [11, (96)], (35).
(37) $\downarrow^{2}(n)$ is a finite subset of $\mathbb{N} \times \mathbb{N}$. The theorem is a consequence of (35).

3. Comparison between Cartesian Product of Frechet Filter on \mathbb{N} and the Frechet Filter of $\mathbb{N} \times \mathbb{N}$

Let us consider an element x of (the base of Frechet filter) \times (the base of Frechet filter). Now we state the propositions:
(38) There exists i and there exists j such that $x=\left(\mathbb{N} \backslash \mathbb{Z}_{i}\right) \times\left(\mathbb{N} \backslash \mathbb{Z}_{j}\right)$. The theorem is a consequence of (21).
(39) There exists n such that $\uparrow^{2}(n) \subseteq x$. The theorem is a consequence of (38) and (33).
(40) (The base of Frechet filter) \times (the base of Frechet filter) is a filter base of $\mathbb{N} \times \mathbb{N}$.
(41) There exists a generalized basis \mathcal{B} of $\operatorname{FrechetFilter}(\mathbb{N})$ such that
(i) $\mathcal{B}=$ the base of Frechet filter, and
(ii) $\mathcal{B} \times \mathcal{B}$ is a generalized basis of $\langle\operatorname{FrechetFilter}(\mathbb{N})$, FrechetFilter $(\mathbb{N}))$.

The functor $\uparrow_{\mathbb{N}}^{2}$ yielding a filter base of $\mathbb{N} \times \mathbb{N}$ is defined by the term
(Def. 6) the set of all $\uparrow^{2}(n)$ where n is a natural number.
Now we state the propositions:
(42) $\uparrow_{\mathbb{N}}^{2}$ and (the base of Frechet filter) \times (the base of Frechet filter) are equivalent generators. The theorem is a consequence of (22), (32), and (39).
(43) $\quad[($ the base of Frechet filter $) \times($ the base of Frechet filter $))=\langle$ FrechetFilter (\mathbb{N}), FrechetFilter $(\mathbb{N}))$. The theorem is a consequence of (41).
(44) $\left[\uparrow_{\mathbb{N}}^{2}\right)=\langle\operatorname{FrechetFilter}(\mathbb{N})$, $\operatorname{FrechetFilter}(\mathbb{N}))$.
(45) $\langle\operatorname{FrechetFilter}(\mathbb{N})$, FrechetFilter $(\mathbb{N}))$ is finer than FrechetFilter $(\mathbb{N} \times \mathbb{N})$. The theorem is a consequence of $(17),(11),(22)$, and (43).
(46) (i) $\mathbb{N} \times \mathbb{N} \backslash$ the set of all $\langle 0, n\rangle$ where n is a natural number $\in\langle$ Frechet $\operatorname{Filter}(\mathbb{N})$, $\operatorname{FrechetFilter}(\mathbb{N}))$, and
(ii) $\mathbb{N} \times \mathbb{N} \backslash$ the set of all $\langle 0, n\rangle$ where n is a natural number \notin Frechet Filter $(\mathbb{N} \times \mathbb{N})$.
Proof: Set $X=\mathbb{N} \times \mathbb{N} \backslash$ the set of all $\langle 0, n\rangle$ where n is a natural number. $\uparrow^{2}(1) \subseteq X$ by $(32),[1,(44)] . X \notin \operatorname{FrechetFilter}(\mathbb{N} \times \mathbb{N})$ by [12, (51)], [15, (5)], (9).
(47) $\operatorname{FrechetFilter}(\mathbb{N} \times \mathbb{N}) \neq\langle\operatorname{FrechetFilter}(\mathbb{N}), \operatorname{FrechetFilter}(\mathbb{N}))$.

4. Topological Space and Double Sequence

In the sequel T denotes a non empty topological space, s denotes a function from $\mathbb{N} \times \mathbb{N}$ into the carrier of T, M denotes a subset of the carrier of T, and $\mathcal{F}_{1}, \mathcal{F}_{2}$ denote filters of the carrier of T. Now we state the propositions:
(48) If \mathcal{F}_{2} is finer than \mathcal{F}_{1}, then $\operatorname{LimFilter}\left(\mathcal{F}_{1}\right) \subseteq \operatorname{LimFilter}\left(\mathcal{F}_{2}\right)$.
(49) Let us consider a function f from X into Y, and filters $\mathcal{F}_{1}, \mathcal{F}_{2}$ of X. Suppose \mathcal{F}_{2} is finer than \mathcal{F}_{1}. Then the image of filter \mathcal{F}_{2} under f is finer than the image of filter \mathcal{F}_{1} under f.
(50) $s^{-1}(M) \in \operatorname{FrechetFilter}(\mathbb{N} \times \mathbb{N})$ if and only if there exists a finite subset A of $\mathbb{N} \times \mathbb{N}$ such that $s^{-1}(M)=\mathbb{N} \times \mathbb{N} \backslash A$.
(51) $\quad s^{-1}(M) \in\langle\operatorname{FrechetFilter}(\mathbb{N})$, FrechetFilter $(\mathbb{N}))$ if and only if there exists n such that $\uparrow^{2}(n) \subseteq s^{-1}(M)$. The theorem is a consequence of (43), (39), and (42).
(52) The image of filter FrechetFilter $(\mathbb{N} \times \mathbb{N})$ under $s=\{M$, where M is a subset of the carrier of T : there exists a finite subset A of $\mathbb{N} \times \mathbb{N}$ such that $\left.s^{-1}(M)=\mathbb{N} \times \mathbb{N} \backslash A\right\}$. The theorem is a consequence of (50).
(53) The image of filter $\langle\operatorname{FrechetFilter}(\mathbb{N})$, $\operatorname{FrechetFilter}(\mathbb{N})$) under $s=\{M$, where M is a subset of the carrier of T : there exists a natural number n such that $\left.\uparrow^{2}(n) \subseteq s^{-1}(M)\right\}$. The theorem is a consequence of (51).
Let us consider a point x of T. Now we state the propositions:
(54) $\quad x \in \lim _{\text {FrechetFilter }(\mathbb{N} \times \mathbb{N})} s$ if and only if for every neighbourhood A of x, there exists a finite subset B of $\mathbb{N} \times \mathbb{N}$ such that $s^{-1}(A)=\mathbb{N} \times \mathbb{N} \backslash B$. The theorem is a consequence of (52).
(55) $\quad x \in \lim _{\text {FrechetFilter }(\mathbb{N} \times \mathbb{N})} s$ if and only if for every neighbourhood A of x, $\mathbb{N} \times \mathbb{N} \backslash s^{-1}(A)$ is finite. The theorem is a consequence of (54), (1), and (2).
(56) $\quad x \in \lim _{\langle\operatorname{FrechetFilter}(\mathbb{N}), \text { FrechetFilter(N)) }} s$ if and only if for every neighbour$\operatorname{hood} A$ of x, there exists a natural number n such that $\uparrow^{2}(n) \subseteq s^{-1}(A)$. The theorem is a consequence of (53).
Let us consider a point x of T and a generalized basis \mathcal{B} of BooleanFilter
ToFilter(the neighborhood system of x). Now we state the propositions:
(57) $\quad x \in \lim _{\langle\operatorname{FrechetFilter}(\mathbb{N}), F r e c h e t F i l t e r(\mathbb{N}))} s$ if and only if for every element B of \mathcal{B}, there exists a natural number n such that $\uparrow^{2}(n) \subseteq s^{-1}(B)$. The theorem is a consequence of (56).
(58) $\quad x \in \lim _{\text {FrechetFilter }(\mathbb{N} \times \mathbb{N})} s$ if and only if for every element B of \mathcal{B}, there exists a finite subset A of $\mathbb{N} \times \mathbb{N}$ such that $s^{-1}(B)=\mathbb{N} \times \mathbb{N} \backslash A$. The theorem is a consequence of (54), (1), and (55).
(59) $\quad x \in \lim _{\langle\operatorname{FrechetFilter}(\mathbb{N}), \text { FrechetFilter(}(\mathbb{N}))} s$ if and only if for every element B of \mathcal{B}, there exists a natural number n such that $s^{\circ}\left(\uparrow^{2}(n)\right) \subseteq B$. The theorem is a consequence of (57).
(60) $\quad x \in \lim _{\text {FrechetFilter }(\mathbb{N} \times \mathbb{N})} s$ if and only if for every element B of \mathcal{B}, there exists a finite subset A of $\mathbb{N} \times \mathbb{N}$ such that $s^{\circ}(\mathbb{N} \times \mathbb{N} \backslash A) \subseteq B$.
Proof: For every neighbourhood A of $x, \mathbb{N} \times \mathbb{N} \backslash s^{-1}(A)$ is finite by [4, (2)], [19, (143)], [9, (76)].
(61) $\quad x \in \lim _{\operatorname{FrechetFilter}(\mathbb{N} \times \mathbb{N})} s$ if and only if for every element B of \mathcal{B}, there exists n and there exists m such that $s^{\circ}\left(\mathbb{N} \times \mathbb{N} \backslash \mathbb{Z}_{n} \times \mathbb{Z}_{m}\right) \subseteq B$. The theorem is a consequence of (60) and (17).
(62) $x \in s^{\circ}\left(\uparrow^{2}(n)\right)$ if and only if there exists i and there exists j such that $n \leqslant i$ and $n \leqslant j$ and $x=s(i, j)$.
(63) $\quad x \in s^{\circ}\left(\mathbb{N} \times \mathbb{N} \backslash \mathbb{Z}_{i} \times \mathbb{Z}_{j}\right)$ if and only if there exist natural numbers n, m such that $(i \leqslant n$ or $j \leqslant m)$ and $x=s(n, m)$.
Proof: Consider n, m being natural numbers such that $i \leqslant n$ or $j \leqslant m$ and $x=s(n, m) .\langle n, m\rangle \notin \mathbb{Z}_{i} \times \mathbb{Z}_{j}$ by [1, (44)].
Let us consider a point x of T and a generalized basis \mathcal{B} of BooleanFilter ToFilter (the neighborhood system of x). Now we state the propositions:
(64) $x \in \lim _{\langle\operatorname{FrechetFilter}(\mathbb{N}), \text { FrechetFilter(} \mathbb{N}))} s$ if and only if for every element B of \mathcal{B}, there exists a natural number n such that for every natural numbers n_{1}, n_{2} such that $n \leqslant n_{1}$ and $n \leqslant n_{2}$ holds $s\left(n_{1}, n_{2}\right) \in B$. The theorem is a consequence of (62) and (59).
(65) $\quad x \in \lim _{\text {FrechetFilter }(\mathbb{N} \times \mathbb{N})} s$ if and only if for every element B of \mathcal{B}, there exists i and there exists j such that for every m and n such that $i \leqslant m$ or $j \leqslant n$ holds $s(m, n) \in B$. The theorem is a consequence of (61).
(66) $\quad \lim _{\text {FrechetFilter }(\mathbb{N} \times \mathbb{N})} s \subseteq \lim _{\left[\uparrow_{\mathbb{N}}^{2}\right)} s$. The theorem is a consequence of (42), (43), (45), (48), and (49).

5. Metric Space and Double Sequence

Now we state the propositions:
(67) Let us consider a non empty metric space M, a point p of M, a point x of $M_{\text {top }}$, and a function s from $\mathbb{N} \times \mathbb{N}$ into $M_{\text {top }}$. Suppose $x=p$. Then $x \in$ $\lim _{\langle\operatorname{FrechetFilter}(\mathbb{N}), \text { FrechetFilter(}(\mathbb{N}))} s$ if and only if for every non zero natural number m, there exists a natural number n such that for every natural numbers n_{1}, n_{2} such that $n \leqslant n_{1}$ and $n \leqslant n_{2}$ holds $s\left(n_{1}, n_{2}\right) \in\{q$, where q is a point of $\left.M: \rho(p, q)<\frac{1}{m}\right\}$.
Proof: $x \in \lim _{\langle\operatorname{FrechetFilter}(\mathbb{N}), \text { FrechetFilter(}(\mathbb{N}))} s$ iff for every non zero natural number m, there exists a natural number n such that for every natural numbers n_{1}, n_{2} such that $n \leqslant n_{1}$ and $n \leqslant n_{2}$ holds $s\left(n_{1}, n_{2}\right) \in\{q$, where q is a point of $\left.M: \rho(p, q)<\frac{1}{m}\right\}$ by [13, (6)], (64).
(68) Let us consider a non empty metric space M, a point p of M, a point x of $M_{\text {top }}$, a function s from $\mathbb{N} \times \mathbb{N}$ into $M_{\text {top }}$, and a function s_{2} from $\mathbb{N} \times \mathbb{N}$ into M. Suppose $x=p$ and $s=s_{2}$. Then $x \in \lim _{\langle\text {FrechetFilter(} \mathbb{N}) \text {,FrechetFilter(} \mathbb{N} \text {)) }} s$ if and only if for every non zero natural number m, there exists a natural number n such that for every natural numbers n_{1}, n_{2} such that $n \leqslant n_{1}$ and $n \leqslant n_{2}$ holds $s_{2}\left(n_{1}, n_{2}\right) \in\left\{q\right.$, where q is a point of $\left.M: \rho(p, q)<\frac{1}{m}\right\}$.

6. One-dimensional Euclidean Metric Space and Double Sequence

In the sequel R denotes a function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}.
Now we state the proposition:
(69) Let us consider a point x of $\left(\mathcal{E}^{1}\right)_{\text {top }}$, a point y of \mathcal{E}^{1}, a generalized basis \mathcal{B} of BooleanFilterToFilter(the neighborhood system of x), and an element b of \mathcal{B}. Suppose $x=y$ and $\mathcal{B}=\operatorname{Balls} x$. Then there exists a natural number n such that $b=\left\{q\right.$, where q is an element of $\left.\mathcal{E}^{1}: \rho(y, q)<\frac{1}{n}\right\}$.
Let s be a function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}. The functor $\# s$ yielding a function from $\mathbb{N} \times \mathbb{N}$ into $\mathbb{R}^{\mathbf{1}}$ is defined by the term
(Def. 7) s.
Now we state the propositions:
(70) Let us consider a function s from $\mathbb{N} \times \mathbb{N}$ into $\left(\mathcal{E}^{1}\right)_{\text {top }}$, and a point y of \mathcal{E}^{1}. Then $s^{\circ}\left(\uparrow^{2}(n)\right) \subseteq\left\{q\right.$, where q is an element of $\left.\mathcal{E}^{1}: \rho(y, q)<\frac{1}{m}\right\}$ if and only if for every object x such that $x \in s^{\circ}\left(\uparrow^{2}(n)\right)$ there exist real numbers r_{1}, r_{2} such that $x=\left\langle r_{1}\right\rangle$ and $y=\left\langle r_{2}\right\rangle$ and $\left|r_{2}-r_{1}\right|<\frac{1}{m}$. The theorem is a consequence of (8).
(71) $\quad r \in \lim _{\langle\operatorname{FrechetFilter}(\mathbb{N}), \text { FrechetFilter(}(\mathbb{N}))} \# R$ if and only if for every non zero natural number m, there exists a natural number n such that for every
natural numbers n_{1}, n_{2} such that $n \leqslant n_{1}$ and $n \leqslant n_{2}$ holds $\left|R\left(n_{1}, n_{2}\right)-r\right|<$ $\frac{1}{m}$.

Proof: Reconsider $p=r$ as a point of the metric space of real numbers. for every non zero natural number m, there exists a natural number n such that for every natural numbers n_{1}, n_{2} such that $n \leqslant n_{1}$ and $n \leqslant$ n_{2} holds $R\left(n_{1}, n_{2}\right) \in\{q$, where q is a point of the metric space of real numbers : $\left.\rho(p, q)<\frac{1}{m}\right\}$ iff for every non zero natural number m, there exists a natural number n such that for every natural numbers n_{1}, n_{2} such that $n \leqslant n_{1}$ and $n \leqslant n_{2}$ holds $\left|R\left(n_{1}, n_{2}\right)-r\right|<\frac{1}{m}$ by (6), [8, (60)].

7. Basic Relations Convergence in Pringsheim's Sense and Filter Convergence

Now we state the propositions:
(72) \quad Suppose $\lim _{\langle\operatorname{FrechetFilter}(\mathbb{N}), \operatorname{FrechetFilter}(\mathbb{N}))} \# R \neq \emptyset$. Then there exists a real number x such that $\lim _{\langle\operatorname{FrechetFilter}(\mathbb{N}), \operatorname{FrechetFilter}(\mathbb{N}))} \# R=\{x\}$.
(73) If R is P-convergent, then P-lim $R \in \lim _{\langle\operatorname{FrechetFilter}(\mathbb{N}) \text {,FrechetFilter(}(\mathbb{N}))} \# R$. The theorem is a consequence of (71).
(74) $\quad R$ is P-convergent if and only if $\lim _{\langle\operatorname{FrechetFilter(\mathbb {N}),\operatorname {FrechetFilter(\mathbb {N}}))}} \# R \neq \emptyset$. The theorem is a consequence of (71) and (5).
(75) Suppose R is P -convergent. Then $\{\mathrm{P}-\lim R\}=$ $\lim _{\langle\operatorname{FrechetFilter}(\mathbb{N}), \operatorname{FrechetFilter}(\mathbb{N}))} \# R$. The theorem is a consequence of (73) and (72).
(76) $\quad \operatorname{Suppose} \lim _{\langle\operatorname{FrechetFilter}(\mathbb{N}), \operatorname{FrechetFilter}(\mathbb{N}))} \# R$ is not empty. Then
(i) R is P-convergent, and
(ii) $\{\operatorname{P-lim} R\}=\lim _{\langle\operatorname{FrechetFilter}(\mathbb{N}), \operatorname{FrechetFilter}(\mathbb{N}))} \# R$.
8. Example: Double Sequence Converges in Pringsheim's Sense but not in Frechet Filter of $\mathbb{N} \times \mathbb{N}$ Sense

The functor DblSeq-ex1 yielding a function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R} is defined by (Def. 8) for every natural numbers $m, n, i t(m, n)=\frac{1}{m+1}$.

Now we state the propositions:
(77) Let us consider a non zero natural number m. Then there exists a natural number n such that for every natural numbers n_{1}, n_{2} such that $n \leqslant n_{1}$ and $n \leqslant n_{2}$ holds $\mid($ DblSeq-ex1 $)\left(n_{1}, n_{2}\right)-0 \left\lvert\,<\frac{1}{m}\right.$.
(78) $\quad 0 \in \lim _{\langle\operatorname{FrechetFilter(}(\mathbb{N}), F r e c h e t F i l t e r(\mathbb{N}))} \#$ DblSeq-ex1.
(79) $\quad \lim _{\text {FrechetFilter }(\mathbb{N} \times \mathbb{N})} \#$ DblSeq-ex1 $=\emptyset$. The theorem is a consequence of (66), (42), (43), (72), (78), and (65).
(80) $\quad \lim _{\langle\operatorname{FrechetFilter}(\mathbb{N}), F \operatorname{FrechetFilter}(\mathbb{N}))} \#$ DblSeq-ex1 \neq $\lim _{\text {FrechetFilter }(\mathbb{N} \times \mathbb{N})} \#$ DblSeq-ex1.

9. Correspondence with some Definitions from [14]

Let X_{1}, X_{2} be non empty sets, \mathcal{F}_{1} be a filter of X_{1}, Y be a Hausdorff, non empty topological space, and f be a function from $X_{1} \times X_{2}$ into Y. Assume for every element x of $X_{2}, \lim _{\mathcal{F}_{1}} \operatorname{curry}^{\prime}(f, x) \neq \emptyset$. The functor $\lim _{1}\left(f, \mathcal{F}_{1}\right)$ yielding a function from X_{2} into Y is defined by
(Def. 9) for every element x of $X_{2},\{i t(x)\}=\lim _{\mathcal{F}_{1}} \operatorname{curry}^{\prime}(f, x)$.
Let \mathcal{F}_{2} be a filter of X_{2}. Assume for every element x of $X_{1}, \lim _{\mathcal{F}_{2}} \operatorname{curry}(f, x) \neq$ \emptyset. The functor $\lim _{2}\left(f, \mathcal{F}_{2}\right)$ yielding a function from X_{1} into Y is defined by
(Def. 10) for every element x of $X_{1},\{i t(x)\}=\lim _{\mathcal{F}_{2}} \operatorname{curry}(f, x)$.
Now we state the propositions:
(81) Every function from X into \mathbb{R} is a function from X into $\mathbb{R}^{\mathbf{1}}$.
(82) Every sequence of \mathbb{R} is a function from \mathbb{N} into $\mathbb{R}^{\mathbf{1}}$.

From now on f denotes a function from $\Omega_{\text {the ordered } \mathbb{N}}$ into \mathbb{R}^{1} and s_{1} denotes a function from \mathbb{N} into \mathbb{R}.

Now we state the propositions:
(83) Suppose $f=s_{1}$ and $\operatorname{LimF}(f) \neq \emptyset$. Then
(i) s_{1} is convergent, and
(ii) there exists a real number z such that $z \in \operatorname{LimF}(f)$ and for every real number p such that $0<p$ there exists a natural number n such that for every natural number m such that $n \leqslant m$ holds $\left|s_{1}(m)-z\right|<p$.
Proof: Consider x being an object such that $x \in \operatorname{LimF}(f)$. Reconsider $y=x$ as a point of (the metric space of real numbers) $)_{\text {top }}$. Reconsider $z=y$ as a real number. Consider y_{1} being a point of the metric space of real numbers such that $y_{1}=y$ and $\operatorname{Balls} y=\left\{\operatorname{Ball}\left(y_{1}, \frac{1}{n}\right)\right.$, where n is a natural number : $n \neq 0\}$. For every real number p such that $0<p$ there exists a natural number n such that for every natural number m such that $n \leqslant m$ holds $\left|s_{1}(m)-z\right|<p$ by (5), [12, (84), (50)], [2, (18)].
(84) If $f=s_{1}$ and $\operatorname{LimF}(f) \neq \emptyset$, then $\operatorname{LimF}(f)=\left\{\lim s_{1}\right\}$.

Proof: Consider x being an object such that $x \in \operatorname{LimF}(f)$. Consider u being an object such that $\operatorname{LimF}(f)=\{u\} . \operatorname{LimF}(f)=\left\{\lim s_{1}\right\}$ by (83), [11, (3)].
(85) Let us consider a function f from Ω_{α} into T, and a sequence s of T. If $f=s$, then $\operatorname{LimF}(f)=\operatorname{LimF}(s)$, where α is the ordered \mathbb{N}.
(86) Let us consider a function f from Ω_{α} into T, and a function g from \mathbb{N} into T. If $f=g$, then $\operatorname{LimF}(f)=\operatorname{LimF}(g)$, where α is the ordered \mathbb{N}.
(87) Let us consider a function f from \mathbb{N} into $\mathbb{R}^{\mathbf{1}}$. Suppose $f=s_{1}$ and $\operatorname{LimF}(f) \neq \emptyset$. Then $\operatorname{LimF}(f)=\left\{\lim s_{1}\right\}$. The theorem is a consequence of (84).
(88) for every element x of $\mathbb{N}, \lim _{\text {FrechetFilter }(\mathbb{N})} \operatorname{curry}^{\prime}(\# R, x) \neq \emptyset$ if and only if R is convergent in the first coordinate. The theorem is a consequence of (5).
(89) for every element x of $\mathbb{N}, \lim _{\text {FrechetFilter }(\mathbb{N})} \operatorname{curry}(\# R, x) \neq \emptyset$ if and only if R is convergent in the second coordinate. The theorem is a consequence of (5).
Let us consider an element t of \mathbb{N}, a function f from $\mathbb{N} \times \mathbb{N}$ into $\mathbb{R}^{\mathbf{1}}$, and a function s_{1} from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}. Now we state the propositions:
(90) Suppose $f=s_{1}$ and for every element x of \mathbb{N}, $\lim _{\text {FrechetFilter(} \mathbb{N})}$ curry (f, x) $\neq \emptyset$. Then $\lim _{\text {FrechetFilter }(\mathbb{N})} \operatorname{curry}(f, t)=\left\{\lim \operatorname{curry}\left(s_{1}, t\right)\right\}$. The theorem is a consequence of (87).
(91) Suppose $f=s_{1}$ and for every element x of \mathbb{N}, $\lim _{\text {FrechetFilter(} \mathbb{N})} \operatorname{curry}^{\prime}(f, x)$ $\neq \emptyset$. Then $\lim _{\text {FrechetFilter }(\mathbb{N})} \operatorname{curry}^{\prime}(f, t)=\left\{\lim \operatorname{curry}^{\prime}\left(s_{1}, t\right)\right\}$. The theorem is a consequence of (87).
(92) Let us consider a Hausdorff, non empty topological space Y, and a function f from $\mathbb{N} \times \mathbb{N}$ into Y. Suppose for every element x of $\mathbb{N}, \lim _{\text {FrechetFilter }(\mathbb{N})}$ $\operatorname{curry}^{\prime}(f, x) \neq \emptyset$ and $f=R$ and $Y=\mathbb{R}^{\mathbf{1}}$. Then $\lim _{1}(f, \operatorname{FrechetFilter}(\mathbb{N}))=$ the lim in the first coordinate of R. The theorem is a consequence of (91).
(93) Let us consider a non empty, Hausdorff topological space Y, and a function f from $\mathbb{N} \times \mathbb{N}$ into Y. Suppose for every element x of $\mathbb{N}, \lim _{\text {FrechetFilter }(\mathbb{N})}$ $\operatorname{curry}(f, x) \neq \emptyset$ and $f=R$ and $Y=\mathbb{R}^{\mathbf{1}}$. Then $\lim _{2}(f, \operatorname{FrechetFilter}(\mathbb{N}))=$ the lim in the second coordinate of R. The theorem is a consequence of (90).

10. Regular Space, Double Limit and Iterated Limit

From now on Y denotes a non empty topological space, x denotes a point of Y, and f denotes a function from $X_{1} \times X_{2}$ into Y.

Now we state the proposition:
(94) Suppose $x \in \lim _{\left\langle\mathcal{F}_{1}, \mathcal{F}_{2}\right)} f$ and $\left[\mathcal{B}_{1}\right)=\mathcal{F}_{1}$ and $\left[\mathcal{B}_{2}\right]=\mathcal{F}_{2}$. Let us consider a subset V of Y. Suppose V is open and $x \in V$. Then there exists an ele-
ment B_{1} of \mathcal{B}_{1} and there exists an element B_{2} of \mathcal{B}_{2} such that $f^{\circ}\left(B_{1} \times\right.$ $\left.B_{2}\right) \subseteq V$.
Let us consider a neighbourhood U of x. Now we state the propositions:
(95) \quad Suppose $x \in \lim _{\left\langle\mathcal{F}_{1}, \mathcal{F}_{2}\right)} f$ and $\left[\mathcal{B}_{1}\right)=\mathcal{F}_{1}$ and $\left[\mathcal{B}_{2}\right)=\mathcal{F}_{2}$. Then suppose U is closed. Then there exists an element B_{1} of \mathcal{B}_{1} and there exists an element B_{2} of \mathcal{B}_{2} such that $f^{\circ}\left(B_{1} \times B_{2}\right) \subseteq \operatorname{Int} U$.
(96) Suppose $x \in \lim _{\left\langle\mathcal{F}_{1}, \mathcal{F}_{2}\right)} f$ and $\left[\mathcal{B}_{1}\right)=\mathcal{F}_{1}$ and $\left[\mathcal{B}_{2}\right)=\mathcal{F}_{2}$. Then suppose U is closed. Then there exists an element B_{1} of \mathcal{B}_{1} and there exists an element B_{2} of \mathcal{B}_{2} such that for every element y of $B_{1}, f^{\circ}\left(\{y\} \times B_{2}\right) \subseteq \operatorname{Int} U$. The theorem is a consequence of (95).
(97) Suppose $x \in \lim _{\left\langle\mathcal{F}_{1}, \mathcal{F}_{2}\right)} f$ and $\left[\mathcal{B}_{1}\right)=\mathcal{F}_{1}$ and $\left[\mathcal{B}_{2}\right)=\mathcal{F}_{2}$. Then suppose U is closed. Then there exists an element B_{1} of \mathcal{B}_{1} and there exists an element B_{2} of \mathcal{B}_{2} such that for every element z of X_{1} for every element y of Y such that $z \in B_{1}$ and $y \in \lim _{\mathcal{F}_{2}}$ curry (f, z) holds $y \in \overline{\operatorname{Int} U}$.
Proof: Consider B_{1} being an element of \mathcal{B}_{1}, B_{2} being an element of \mathcal{B}_{2} such that $f^{\circ}\left(B_{1} \times B_{2}\right) \subseteq \operatorname{Int} U$. For every element y of $B_{1}, f^{\circ}(\{y\} \times$ $\left.B_{2}\right) \subseteq \operatorname{Int} U$ by [11, (95)], [19, (125)]. For every element z of B_{1} and for every element y of Y such that $y \in \lim _{\mathcal{F}_{2}} \operatorname{curry}(f, z)$ holds the image of filter \mathcal{F}_{2} under curry (f, z) is a proper filter of $2_{\subseteq}^{\Omega_{Y}}$ and $\operatorname{Int} U \in$ the image of filter \mathcal{F}_{2} under curry (f, z) and y is a cluster point of the image of filter \mathcal{F}_{2} under $\operatorname{curry}(f, z), Y$ by (18), [19, (132)], [10, (95)], (20). For every element z of B_{1} and for every element y of Y such that $y \in \lim _{\mathcal{F}_{2}}$ curry (f, z) holds $y \in \overline{\operatorname{Int} U}$ by [4, (25)].
(98) Suppose $x \in \lim _{\left\langle\mathcal{F}_{1}, \mathcal{F}_{2}\right)} f$ and $\left[\mathcal{B}_{1}\right)=\mathcal{F}_{1}$ and $\left[\mathcal{B}_{2}\right)=\mathcal{F}_{2}$. Then suppose U is closed. Then there exists an element B_{1} of \mathcal{B}_{1} and there exists an element B_{2} of \mathcal{B}_{2} such that for every element z of X_{2} for every element y of Y such that $z \in B_{2}$ and $y \in \lim _{\mathcal{F}_{1}}$ curry $^{\prime}(f, z)$ holds $y \in \overline{\operatorname{Int} U}$.
Proof: Consider B_{1} being an element of \mathcal{B}_{1}, B_{2} being an element of \mathcal{B}_{2} such that $f^{\circ}\left(B_{1} \times B_{2}\right) \subseteq \operatorname{Int} U$. For every element y of $B_{2}, f^{\circ}\left(B_{1} \times\{y\}\right) \subseteq$ Int U by [11, (95)], [19, (125)]. For every element z of B_{2} and for every element y of Y such that $y \in \lim _{\mathcal{F}_{1}} \operatorname{curry}^{\prime}(f, z)$ holds the image of filter \mathcal{F}_{1} under $\operatorname{curry}^{\prime}(f, z)$ is a proper filter of $2_{\subseteq}^{\Omega_{Y}}$ and $\operatorname{Int} U \in$ the image of filter \mathcal{F}_{1} under curry (f, z) and y is a cluster point of the image of filter \mathcal{F}_{1} under curry' $(f, z), Y$ by (18), [19, (132)], [10, (95)], (20). For every element z of B_{2} and for every element y of Y such that $y \in \lim _{\mathcal{F}_{1}} \operatorname{curry}^{\prime}(f, z)$ holds $y \in \overline{\operatorname{Int} U}$ by [4, (25)].
Let us consider a Hausdorff, regular, non empty topological space Y and a function f from $X_{1} \times X_{2}$ into Y. Now we state the propositions:
(99) Suppose for every element x of $X_{2}, \lim _{\mathcal{F}_{1}} \operatorname{curry}^{\prime}(f, x) \neq \emptyset$. Then $\lim _{\left\langle\mathcal{F}_{1}, \mathcal{F}_{2}\right)}$
$f \subseteq \lim _{\mathcal{F}_{2}} \lim _{1}\left(f, \mathcal{F}_{1}\right)$. The theorem is a consequence of (19) and (98).
(100) Suppose for every element x of $X_{1}, \lim _{\mathcal{F}_{2}} \operatorname{curry}(f, x) \neq \emptyset$. Then $\lim _{\left\langle\mathcal{F}_{1}, \mathcal{F}_{2}\right)}$ $f \subseteq \lim _{\mathcal{F}_{1}} \lim _{2}\left(f, \mathcal{F}_{2}\right)$. The theorem is a consequence of (19) and (97).
Let us consider non empty sets X_{1}, X_{2}, a filter \mathcal{F}_{1} of X_{1}, a filter \mathcal{F}_{2} of X_{2}, a Hausdorff, regular, non empty topological space Y, and a function f from $X_{1} \times X_{2}$ into Y. Now we state the propositions:
(101) \quad Suppose $\lim _{\left\langle\mathcal{F}_{1}, \mathcal{F}_{2}\right)} f \neq \emptyset$ and for every element x of $X_{1}, \lim _{\mathcal{F}_{2}} \operatorname{curry}(f, x)$ $\neq \emptyset$. Then $\lim _{\left\langle\mathcal{F}_{1}, \mathcal{F}_{2}\right)} f=\lim _{\mathcal{F}_{1}} \lim _{2}\left(f, \mathcal{F}_{2}\right)$. The theorem is a consequence of (100).
(102) \quad Suppose $\lim _{\left\langle\mathcal{F}_{1}, \mathcal{F}_{2}\right)} f \neq \emptyset$ and for every element x of $X_{2}, \lim _{\mathcal{F}_{1}} \operatorname{curry}^{\prime}(f, x)$ $\neq \emptyset$. Then $\lim _{\left\langle\mathcal{F}_{1}, \mathcal{F}_{2}\right)} f=\lim _{\mathcal{F}_{2}} \lim _{1}\left(f, \mathcal{F}_{1}\right)$. The theorem is a consequence of (99).
(103) \quad Suppose $\lim _{\left\langle\mathcal{F}_{1}, \mathcal{F}_{2}\right)} f \neq \emptyset$ and for every element x of $X_{1}, \lim _{\mathcal{F}_{2}} \operatorname{curry}(f, x)$ $\neq \emptyset$ and for every element x of $X_{2}, \lim _{\mathcal{F}_{1}} \operatorname{curry}^{\prime}(f, x) \neq \emptyset$. Then $\lim _{\mathcal{F}_{1}} \lim _{2}$ $\left(f, \mathcal{F}_{2}\right)=\lim _{\mathcal{F}_{2}} \lim _{1}\left(f, \mathcal{F}_{1}\right)$. The theorem is a consequence of (102) and (101).

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps Formalized Mathematics, 6(1):93-107, 1997.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Grzegorz Bancerek, Noboru Endou, and Yuji Sakai. On the characterizations of compactness. Formalized Mathematics, 9(4):733-738, 2001.
[5] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[6] Nicolas Bourbaki. Topologie générale: Chapitres 1 à 4. Eléments de mathématique. Springer Science \& Business Media, 2007.
[7] Nicolas Bourbaki. General Topology: Chapters 1-4. Springer Science and Business Media, 2013.
[8] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[9] Czesław Byliński. Functions and their basic properties Formalized Mathematics, 1(1): 55-65, 1990.
[10] Czesław Byliński. Functions from a set to a set Formalized Mathematics, 1(1):153-164, 1990.
[11] Czesław Byliński. Some basic properties of sets Formalized Mathematics, 1(1):47-53, 1990.
[12] Roland Coghetto. Convergent filter bases. Formalized Mathematics, 23(3):189-203, 2015. doi $10.1515 /$ forma-2015-0016
[13] Roland Coghetto. Summable family in a commutative group. Formalized Mathematics, 23(4):279-288, 2015. doi 10.1515/forma-2015-0022.
[14] Noboru Endou, Hiroyuki Okazaki, and Yasunari Shidama. Double sequences and limits. Formalized Mathematics, 21(3):163-170, 2013. doi 10.2478/forma-2013-0018.
[15] Andrzej Owsieiczuk. Combinatorial Grassmannians. Formalized Mathematics, 15(2):2733, 2007. doi $10.2478 / \mathrm{v} 10037-007-0004-9$.
[16] Karol Pąk. Stirling numbers of the second kind Formalized Mathematics, 13(2):337-345, 2005.
[17] Claude Wagschal. Topologie et analyse fonctionnelle. Hermann, 1995.
[18] Claude Wagschal. Topologie: Exercices et problèmes corrigés. Hermann, 1995.
[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.

Received June 30, 2016

