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Summary. First, we define in Mizar [5], the Cartesian product of two
filters bases and the Cartesian product of two filters. After comparing the product
of two Fréchet filters on N (F;) with the Fréchet filter on Nx N (F2), we compare
limz, and limz, for all double sequences in a non empty topological space.

Endou, Okazaki and Shidama formalized in [I4] the “convergence in Pring-
sheim’s sense” for double sequence of real numbers. We show some basic corre-
spondences between the p-convergence and the filter convergence in a topological
%H)(m»") €ENxN
converges in “Pringsheim’s sense” but not in Frechet filter on N x N sense.

space. Then we formalize that the double sequence (T, =

In the next section, we generalize some definitions: “is convergent in the first
coordinate”, “is convergent in the second coordinate”, “the lim in the first coor-
dinate of”, “the lim in the second coordinate of” according to [I4], in Hausdorff
space.

Finally, we generalize two theorems: (3) and (4) from [I4] in the case of
double sequences and we formalize the “iterated limit” theorem (“Double limit”
[7], p. 81, par. 8.5 “Double limite” [6] (TG 1,57)), all in regular space. We were
inspired by the exercises (2.11.4), (2.17.5) [17] and the corrections B.10 [18].
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1. PRELIMINARIES

From now on x denotes an object, X, Y, Z denote sets, 1, j, k, [, m, n denote
natural numbers, 7, s denote real numbers, ny denotes an element of the ordered
N, and A denotes a subset of N x N.
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Now we state the propositions:

(1) Let us consider a finite subset W of X. If X \ W C Z, then X \ Z is
finite.

(2) If ZC X and X \ Z is finite, then there exists a finite subset W of X
such that X \ W = Z.

(3) Let us consider sets X1, Xo, a family Sy of subsets of X1, and a family
Ss of subsets of Xo. Then {s, where s is a subset of X; x X5 : there exist
sets s1, s2 such that s; € S; and s € So and s = s1 X sa} is a family of
subsets of X7 x Xs.

(4) If x € X xY, then x is pair.

(5) If 0 <r, then there exists m such that m is not zero and = < r.

(6) Let us consider points x, y of the metric space of real numbers. Then
there exist real numbers x1, y; such that

(i) =1, and

(ii) y = y1, and
(iii) p(z,y) = pr (2,y), and
(iv) p(z,y) = p'((2), (y)), and
(v) p(z,y) = |21 — .

(7) Let us consider points z, y of (€!)top. Then there exist points xa, y» of
the metric space of real numbers and there exist real numbers x1, y; such
that 2o = @1 and y2 = y; and x = (z1) and y = (y1) and p(x2,y2) =
pr (21, 91) and p(a2,y2) = p'((x1), (y1)) and p(z2,y2) = |21 — 1.

(8) Let us consider points z, y of £!, and real numbers r, s. If z = (r) and
y = (s), then p(z,y) = |r — s|. The theorem is a consequence of (7).
One can check that N x N is countable and N x N is denumerable.
Now we state the propositions:

(9) the set of all (0, n) where n is a natural number is infinite.
PRrROOF: Define F(object) = (0, $;). Consider f being a function such that
dom f = N and for every object x such that x € N holds f(z) = F(z)
from [9, Sch. 3]. f is one-to-one. rng f = the set of all (0, n) where n is
a natural number by [9] (3)]. O

Ifi<kandj<l,thenZiijQkaZl.
(N\Zp,) x (N\Zyp) CN XN\ Zyp, X Zy,.
If n =n; and n < m, then m € Tny.

If n =n; and m € Tny, then n < m.

If n = nq, then Tny =N\ Z,.

A~ o~~~
—_
[\)
NN N N
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PRrROOF: Tny € N\ Z,, by [12 (50)], (13), [1, (44)]. N\ Z,, C Tny by [I,
(44)], [12} (50)]. O

(15) 71 (A) = {x, where z is an element of N : there exists an element y of
N such that (z, y) € A}.

(16) m2(A) = {y, where y is an element of N : there exists an element = of
N such that (z, y) € A}.

(17) Let us consider a finite subset A of N x N. Then there exists m and there
exists n such that A C Z,, X Z,. The theorem is a consequence of (15)
and (16).

(18) Let us consider a non empty set X. Then every filter of X is a proper
filter of 2.

(19) Let us consider a non empty set X, and a filter F of X. Then there
exists a filter base B of X such that
(i) B=F, and
(ii) [B) = F.
(20) Let us consider a non empty topological space T', and a filter F of the car-
rier of T. If z € LimFilter(F), then x is a cluster point of F,T.

(21) Let us consider an element B of the base of Frechet filter. Then there
exists n such that B = N\ Z,,. The theorem is a consequence of (14).

(22) Let us consider a subset B of N. Suppose B = N\ Z,,. Then B is an ele-
ment of the base of Frechet filter. The theorem is a consequence of (14).

2. CARTESIAN PropucT OF TwoO FILTERS

From now on X, Y, X1, X5 denote non empty sets, A;, By denote filter bases
of X1, Ay, By denote filter bases of X5, F; denotes a filter of Xy, F5 denotes
a filter of X5, B3 denotes a generalized basis of F.

Let X7, X5 be non empty sets, By be a filter base of X1, and Bs be a filter
base of X5. The functor By x Bs yielding a filter base of X; x X5 is defined by
the term

(Def. 1) the set of all By x By where Bj is an element of By, By is an element of
Bs.
Now we state the propositions:
(23) Suppose Fi = [By) and F; = [A1) and F3 = [B2) and F2 = [Az). Then
[81 X Bg) = [./41 X AZ)
(24) If By = B1, then [Bl] = Fi.
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(25) There exists By such that [B1) = F;. The theorem is a consequence of
(24).
Let X1, X5 be non empty sets, F1 be a filter of X1, and F3 be a filter of X5.
The functor (Fi, Fs) yielding a filter of X; x X5 is defined by
(Def. 2) there exists a filter base By of X; and there exists a filter base By of Xy
such that [By) = F1 and [B2) = F2 and it = [By X Ba).
Let By be a generalized basis of F; and By be a generalized basis of F5. The
functor By x Bs yielding a generalized basis of (Fj, F2) is defined by
(Def. 3) there exists a filter base B3 of X; and there exists a filter base B4 of Xo
such that By = Bg and By = By and it = B3 x By.
Let n be a natural number. The functor 12(n) yielding a subset of N x N is
defined by
(Def. 4) for every element x of N x N, z € it iff there exist natural numbers nq,
ng such that n; = (x)1 and ng = (z)2 and n < ny and n < no.
Now we state the proposition:
(26) (n, n) €1*(n).
Let us consider n. One can check that 12(n) is non empty.
Now we state the propositions:
(27) If (i, j) €1%(n), then (i + k&, j), (i, j +1) €1*(n).
(28) 12%(n) is an infinite subset of N x N. The theorem is a consequence of
(17).
(29) If ny = n, then 1%(n) = Tny x Tni. The theorem is a consequence of (12)
and (13).
(30) If m =n—1, then 12(n) C N x N\ Segm x Segm.
PROOF: Reconsider y = = as an element of N x N. Consider ny, no being
natural numbers such that ny = (y)1 and ny = (y)2 and n < n; and
n < ng. x ¢ Segm x Segm by [3, (1)]. O
(31) 12(n) CNx N\ Zy, x Zy,.
PROOF: Reconsider y = x as an element of N x N. Consider ni, ny being
natural numbers such that n; = (y)1 and ny = (y)2 and n < ny and
n < ng. x & Ly X Ly by [16, (10)]. O
(32) 1%(n) = (N\ Z,) x (N\ Zj,). The theorem is a consequence of (14) and
(29).
(33) There exists n such that 12(n) C (N\ Z;) x (N\ Z;). The theorem is
a consequence of (4).
(34) If n = max(4, ), then 1*(n) C (1%(2)) N (1%(5))-
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Let n be a natural number. The functor |%(n) yielding a subset of N x N is
defined by

(Def. 5) for every element z of N x N, z € it iff there exist natural numbers nq,
ng such that ny = ()1 and ny = (z)2 and ny < n and ng < n.
Now we state the propositions:
(35) 1%(n) = Zy, X Zy,.
PrOOF: |%(n) C Z,, x Z, by [1} (44)]. Consider ys, y1 being objects such
that yo € Z,, and y; € Z,, and = = (y2, y1). U

(36) Let us consider a finite subset A of N x N. Then there exists n such that
A Cl2%(n).
PRrOOF: Consider m, n such that A C Z,,, xZ,,. Reconsider m; = max(m,n)
as a natural number. A C|%(mq) by [I, (39)], [L1}, (96)], (35). O

(37) 13(n) is a finite subset of N x N. The theorem is a consequence of (35).

3. COMPARISON BETWEEN CARTESIAN PRODUCT OF FRECHET FILTER ON N
AND THE FRECHET FILTER OF N x N

Let us consider an element x of (the base of Frechet filter) x (the base of
Frechet filter). Now we state the propositions:

(38) There exists ¢ and there exists j such that z = (N'\ Z;) x (N\ Z;). The
theorem is a consequence of (21).

(39) There exists n such that 12(n) C x. The theorem is a consequence of
(38) and (33).

(40) (The base of Frechet filter) x (the base of Frechet filter) is a filter base
of N x N.

(41) There exists a generalized basis B of FrechetFilter(N) such that
(i) B = the base of Frechet filter, and
(ii) B x B is a generalized basis of (FrechetFilter(N), FrechetFilter(N)).
The functor 1% yielding a filter base of N x N is defined by the term

(Def. 6) the set of all 1%(n) where n is a natural number.
Now we state the propositions:

(42) 1% and (the base of Frechet filter) x (the base of Frechet filter) are equ-
ivalent generators. The theorem is a consequence of (22), (32), and (39).

(43) [(the base of Frechet filter) x (the base of Frechet filter)) = (FrechetFilter
(N), FrechetFilter(N)). The theorem is a consequence of (41).

(44) [1%) = (FrechetFilter(N), FrechetFilter(N)).
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(45) (FrechetFilter(N), FrechetFilter(N)) is finer than FrechetFilter(N x N).
The theorem is a consequence of (17), (11), (22), and (43).
(46) (i) NxN\the set of all (0, n) where n is a natural number € (Frechet
Filter(N), FrechetFilter(N)), and
(ii) N x N\ the set of all (0, n) where n is a natural number ¢ Frechet
Filter(N x N).
PRrROOF: Set X = Nx N\ the set of all (0, n) where n is a natural number.
T2(1) € X by (32), [1, (44)]. X ¢ FrechetFilter(N x N) by [12, (51)], [15]
()], (9). O
(47)  FrechetFilter(N x N) # (FrechetFilter(N), FrechetFilter(N)).

4. TOPOLOGICAL SPACE AND DOUBLE SEQUENCE

In the sequel T" denotes a non empty topological space, s denotes a function
from N x N into the carrier of T, M denotes a subset of the carrier of 7', and
Fi1, Fo denote filters of the carrier of T. Now we state the propositions:

(48) If F; is finer than Fi, then LimFilter(F;) C LimFilter(F2).

(49) Let us consider a function f from X into Y, and filters Fi, F2 of X.
Suppose F is finer than Fj. Then the image of filter F» under f is finer
than the image of filter F; under f.

(50) s71(M) € FrechetFilter(N x N) if and only if there exists a finite subset
A of N x N such that s7}(M) =N x N\ A.

(51) s~Y(M) € (FrechetFilter(N), FrechetFilter(N)) if and only if there exists
n such that 72(n) C s~!(M). The theorem is a consequence of (43), (39),
and (42).

(52) The image of filter FrechetFilter(N x N) under s = {M, where M is
a subset of the carrier of T : there exists a finite subset A of N x N such
that s~1(M) = N x N\ A}. The theorem is a consequence of (50).

(53) The image of filter (FrechetFilter(N), FrechetFilter(N)) under s = {M,
where M is a subset of the carrier of T : there exists a natural number n
such that 1%(n) C s71(M)}. The theorem is a consequence of (51).

Let us consider a point x of T'. Now we state the propositions:

(54) = € limpyechetrilter(nx) S if and only if for every neighbourhood A of z,
there exists a finite subset B of N x N such that s71(4) = N x N\ B. The
theorem is a consequence of (52).

(55)  x € limpyechetrilter(vxi) § if and only if for every neighbourhood A of z,
N x N\ s71(A) is finite. The theorem is a consequence of (54), (1), and

(2).
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(56) @ € lim (prechetFilter(N),FrechetFilter(n)) 8 if and only if for every neighbour-
hood A of z, there exists a natural number n such that 12(n) C s~1(A).
The theorem is a consequence of (53).

Let us consider a point  of T and a generalized basis B of BooleanFilter
ToFilter(the neighborhood system of x). Now we state the propositions:
(57)  x € lim prechetFilter(N),FrechetFilter(N)) S if and only if for every element B
of B, there exists a natural number n such that 1?(n) C s~!(B). The

theorem is a consequence of (56).

(58) = € limpechetrilter(vxny) S if and only if for every element B of B, there
exists a finite subset A of N x N such that s71(B) = N x N\ A. The
theorem is a consequence of (54), (1), and (55).

(59) = € im prechetFilter(N),FrechetFilter(N)) § if and only if for every element B of
B, there exists a natural number n such that s°(7%(n)) C B. The theorem
is a consequence of (57).

(60) z € limpyechetFilter(Nxiy) S if and only if for every element B of B, there
exists a finite subset A of N x N such that s°(N x N\ A) C B.

PROOF: For every neighbourhood A of 2, N x N\ s71(A) is finite by [4
(2)], [19, (143)], [9, (76)]. O

(61) = € limpechetrilter(vxny) S if and only if for every element B of B, there
exists n and there exists m such that s°(N x N\ Z,, x Z,,) € B. The
theorem is a consequence of (60) and (17).

(62) x € s°(1%(n)) if and only if there exists i and there exists j such that
n<iandn <jand x = s(i,j).

(63) x € s°(NxN\Z; xZj) if and only if there exist natural numbers n, m
such that (i <nor j < m) and x = s(n,m).

PRroor: Consider n, m being natural numbers such that : < n or j < m
and z = s(n,m). (n, m) ¢ Z; x Z; by [1, (44)]. O
Let us consider a point z of T and a generalized basis B of BooleanFilter
ToFilter(the neighborhood system of x). Now we state the propositions:

(64) @ € limmechetFilter(N),FrechetFilter(N)) S if and only if for every element B
of B, there exists a natural number n such that for every natural numbers
ni, ng such that n < ny and n < ng holds s(ny,ny) € B. The theorem is
a consequence of (62) and (59).

(65) = € limpechetrilter(vxn) S if and only if for every element B of B, there
exists ¢ and there exists j such that for every m and n such that ¢ < m or
j < n holds s(m,n) € B. The theorem is a consequence of (61).

(66) limpyechetrilter(Nx) 8 lim[Té ys. The theorem is a consequence of (42),
(43), (45), (48), and (49).

179
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5. METRIC SPACE AND DOUBLE SEQUENCE

Now we state the propositions:

(67) Let us consider a non empty metric space M, a point p of M, a point z
of Miop, and a function s from N x N into Mi,p,. Suppose = p. Then x €
lim (FrechetFilter (N),FrechetFilter(N)) $ if and only if for every non zero natural
number m, there exists a natural number n such that for every natural
numbers nj, ng such that n < n; and n < ng holds s(n1,n2) € {q, where
q is a point of M : p(p,q) < %}
PROOF: z € lim FyechetFilter(N),FrechetFilter(N)) § iff for every non zero natural
number m, there exists a natural number n such that for every natural
numbers nj, ng such that n < ny and n < ng holds s(n1,n2) € {q, where
q is a point of M : p(p,q) < £} by [13, (6)], (64). O

(68) Let us consider a non empty metric space M, a point p of M, a point = of
Miop, a function s from Nx N into Miep, and a function sp from Nx N into
M. Suppose z = p and s = sg. Then z € hm(FrechetFilter(N),FrechetFilter(N)) s
if and only if for every non zero natural number m, there exists a natural
number n such that for every natural numbers ni, no such that n < ng
and n < ng holds s3(n1,n2) € {q, where ¢ is a point of M : p(p,q) < %}

6. ONE-DIMENSIONAL EUCLIDEAN METRIC SPACE AND DOUBLE SEQUENCE

In the sequel R denotes a function from N x N into R.
Now we state the proposition:

(69) Let us consider a point z of (€!)tep, a point y of !, a generalized basis B
of BooleanFilterToFilter(the neighborhood system of x), and an element b
of B. Suppose x = y and B = Ballsz. Then there exists a natural number
n such that b = {q, where ¢ is an element of £ : p(y,q) < %}

Let s be a function from N x N into R. The functor # s yielding a function
from N x N into R! is defined by the term
(Def. 7)  s.
Now we state the propositions:

(70) Let us consider a function s from N x N into (€!)ep, and a point y of
EL. Then s°(1%(n)) C {q, where ¢ is an element of £! : p(y,q) < %} if and
only if for every object = such that z € s°(7%(n)) there exist real numbers
r1, o such that z = (r1) and y = (ro) and |ro — r1| < . The theorem is
a consequence of (8).

(T1) 7 € W pyechetiteer() Frechetriter() # 1 if and only if for every non zero
natural number m, there exists a natural number n such that for every
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natural numbers n1, ng such that n < ny and n < ng holds |R(ny, ne)—r| <
1

gROOF: Reconsider p = r as a point of the metric space of real numbers.
for every non zero natural number m, there exists a natural number n
such that for every natural numbers ni, ng such that n < ny and n <
ny holds R(ni,ng2) € {q, where ¢ is a point of the metric space of real
numbers : p(p,q) < %} iff for every non zero natural number m, there
exists a natural number n such that for every natural numbers nq, no such
that n < ny and n < ny holds [R(n1,n2) — 7| < = by (6), [8, (60)]. O

7. BAsic RELATIONS CONVERGENCE IN PRINGSHEIM’S SENSE AND FILTER
CONVERGENCE

Now we state the propositions:

(72) Suppose liHl(FrechetFilter(N)7FrechetFilter(N)) #R 7é (. Then there exists a re-
al number x such that lim grechetFilter(N), FrechetFilter(N)) # 12 = {7}

(73) If R is P-convergent, then P-lim R € IiIn(FrechetFilter(N),Fr(x:hetFilter(N)) # R.
The theorem is a consequence of (71).

(74) R is P-convergent if and only if lim pyechetFilter(W) FrechetFilter(n)) # 1 7 0.
The theorem is a consequence of (71) and (5).

(75) Suppose R is P-convergent. Then {P-lim R} =
im (RrechetTilter(N), FrechetFilter(N)) # f2- The theorem is a consequence of (73)
and (72).

(76) Suppose liIn(F‘rechetFilter(N),F‘rechetFilter(N)) # R is not empty. Then

(i) R is P-convergent, and

(i) {P-lim R} = lim prechetFilter(N) FrechetFilter (N)) 7 12-

8. EXAMPLE: DOUBLE SEQUENCE CONVERGES IN PRINGSHEIM’S SENSE BUT
NOT IN FRECHET FILTER OF N x N SENSE

The functor DblSeg-ex1 yielding a function from N x N into R is defined by

(Def. 8) for every natural numbers m, n, it(m,n) = #H

Now we state the propositions:

(77) Let us consider a non zero natural number m. Then there exists a natural
number n such that for every natural numbers ni, no such that n < ny
and n < ng holds |(DblSeq-ex1)(ny,n2) — 0 < L.

(78) 0e hm(FreChetFilter(N),FrechetFilter(N)) # DblSeq-exl1.
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(79)  limpyechetrilter(Nx) # DblSeq-ex1 = ). The theorem is a consequence of
(66), (42), (43), (72), (78), and (65).

(80)  limFrechetFilter(N),FrechetFilter(N)) # DblSeq-ex1 7
limgyechetFilter(NxN) 7 DblSeqg-ex1.

9. CORRESPONDENCE WITH SOME DEFINITIONS FROM [14]

Let X1, X2 be non empty sets, 71 be a filter of X, Y be a Hausdorff, non
empty topological space, and f be a function from X; x X5 into Y. Assume for
every element  of Xo, limz, curry’(f,z) # 0. The functor lim; (f, ;) yielding
a function from X5 into Y is defined by

(Def. 9) for every element = of Xy, {it(z)} = limg, curry’(f, ).

Let F; be a filter of Xo. Assume for every element z of X1, limz, curry(f, z) #
(). The functor limy(f, F2) yielding a function from X; into Y is defined by

(Def. 10) for every element z of X, {it(x)} = limz, curry(f, z).
Now we state the propositions:
(81) Every function from X into R is a function from X into RY.
(82) Every sequence of R is a function from N into R1.
From now on f denotes a function from Q¢he ordered v into R and s; denotes

a function from N into R.
Now we state the propositions:

(83) Suppose f = s; and LimF(f) # (). Then
(i) s1 is convergent, and

(ii) there exists a real number z such that z € LimF(f) and for every real
number p such that 0 < p there exists a natural number n such that
for every natural number m such that n < m holds |s;(m) — z| < p.

PRrROOF: Consider x being an object such that x € LimF(f). Reconsider
y = x as a point of (the metric space of real numbers);o,. Reconsider
z = y as a real number. Consider y; being a point of the metric space
of real numbers such that y; = y and Ballsy = {Ball(y, %), where n is
a natural number : n # 0}. For every real number p such that 0 < p there
exists a natural number n such that for every natural number m such that
n < m holds [s1(m) — z| < p by (5), [12, (84), (50)], [2, (18)]. O
(84) If f = s1 and LimF(f) # 0, then LimF(f) = {lim s1}.

PRroOOF: Consider z being an object such that x € LimF(f). Consider u
being an object such that LimF(f) = {u}. LimF(f) = {lims;} by (83),
[11, (3)]. O
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(85) Let us consider a function f from Q, into T', and a sequence s of T. If
f =s, then LimF(f) = LimF(s), where « is the ordered N.
(86) Let us consider a function f from €, into 7', and a function g from N
into T. If f = g, then LimF(f) = LimF(g), where « is the ordered N.
(87) Let us consider a function f from N into R. Suppose f = s; and
LimF(f) # (. Then LimF(f) = {lims;}. The theorem is a consequen-
ce of (84).

(88) for every element x of N, limpyechetritter(y) Curry’ (# R, z) # () if and only
if R is convergent in the first coordinate. The theorem is a consequence of
().

(89) for every element x of N, limpechetriter(y) CUrry (# R, ) # 0 if and only
if R is convergent in the second coordinate. The theorem is a consequence
of (5).

Let us consider an element ¢ of N, a function f from N x N into R, and
a function s; from N x N into R. Now we state the propositions:

(90) Suppose f = s1 and for every element x of N, limgyechetFitter(v) CUrry(f, =)
# (0. Then limpyecpetpitter(ny) Curry(f, t) = {lim curry(s1,t)}. The theorem is
a consequence of (87).

(91) Suppose f = s1 and for every element  of N, limpyechetilter(n) curry’(f, =)
# 0. Then limpyechetritery) Curry’ (f, t) = {limcurry’(s1,¢)}. The theorem
is a consequence of (87).

(92) Let us consider a Hausdorff, non empty topological space Y, and a func-
tion f from NxNinto Y. Suppose for every element x of N, limgyechetFilter(l)
curry’(f,z) # 0 and f = R and Y = RL. Then lim; (f, FrechetFilter(N)) =
the lim in the first coordinate of R. The theorem is a consequence of (91).

(93) Let us consider a non empty, Hausdorff topological space Y, and a func-
tion f from NxNinto Y. Suppose for every element x of N, limgyechetFilter(l)
curry(f,z) # 0 and f = R and Y = R!. Then lima(f, FrechetFilter(N)) =
the lim in the second coordinate of R. The theorem is a consequence of
(90).

10. REGULAR SPACE, DOUBLE LIMIT AND ITERATED LIMIT

From now on Y denotes a non empty topological space, x denotes a point
of Y, and f denotes a function from X; x X5 into Y.
Now we state the proposition:
(94) Suppose x € limr, 7, f and [B1) = F; and [Bz) = F2. Let us consider
a subset V' of Y. Suppose V is open and x € V. Then there exists an ele-



184 ROLAND COGHETTO

ment B; of By and there exists an element By of By such that f°(By X
By) C V.
Let us consider a neighbourhood U of . Now we state the propositions:
(95) Suppose z € limz, 7,y f and [B1) = F1 and [Bz) = Fa. Then suppose U

is closed. Then there exists an element B; of B and there exists an element
By of By such that f°(B; x Bg) C IntU.

(96) Suppose z € limz, 7,y f and [B1) = F1 and [Bz) = F2. Then suppose U
is closed. Then there exists an element By of By and there exists an element
By of By such that for every element y of By, f°({y} x Bs) C IntU. The
theorem is a consequence of (95).

(97) Suppose z € limz, 7,y f and [B1) = F1 and [Bz) = F2. Then suppose U
is closed. Then there exists an element By of B1 and there exists an element
By of By such that for every element z of X for every element y of Y such
that z € By and y € limg, curry(f, z) holds y € Int U.
PRrROOF: Consider By being an element of B1, By being an element of Bs
such that f°(B; x By) C IntU. For every element y of By, f°({y} x
By) C IntU by [11, (95)], [19, (125)]. For every element z of B; and for
every element y of Y such that y € limg, curry(f, z) holds the image of
filter 5 under curry(f, z) is a proper filter of 22Y and Int U € the image of
filter F» under curry(f,z) and y is a cluster point of the image of filter F»
under curry(f, z),Y by (18), [19, (132)], [10, (95)], (20). For every element
z of By and for every element y of Y such that y € limg, curry(f, z) holds
y € IntU by 4, (25)]. O

(98) Suppose z € limz, 7,y f and [B1) = F1 and [Bz) = Fa. Then suppose U
is closed. Then there exists an element B; of B and there exists an element
By of By such that for every element z of X5 for every element y of Y such
that 2z € By and y € limg, curry’(f, z) holds y € Int U.
PRrooOF: Consider By being an element of By, Bs being an element of Bo
such that f°(B; x Bg) C Int U. For every element y of By, f°(B1 x {y}) C
Int U by [11L (95)], [19, (125)]. For every element z of By and for every
element y of Y such that y € limg, curry’(f, z) holds the image of filter
Fy under curry’(f, z) is a proper filter of 28’/ and Int U € the image of
filter F; under curry’(f,z) and y is a cluster point of the image of filter F;
under curry’(f, z),Y by (18), [19, (132)], [10, (95)], (20). For every element
z of By and for every element y of Y such that y € limz, curry’(f, z) holds
y € IntU by [4, (25)]. O

Let us consider a Hausdorff, regular, non empty topological space ¥ and
a function f from X7 x X5 into Y. Now we state the propositions:

(99) Suppose for every element x of Xo, limz, curry’(f,x) # 0. Then limz, )
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f Climg, lim; (f, F1). The theorem is a consequence of (19) and (98).

(100) Suppose for every element x of X1, limg, curry(f, z) # (. Then lim r, 7,
f Climg, lima(f, F2). The theorem is a consequence of (19) and (97).

Let us consider non empty sets X1, Xo, a filter F; of Xy, a filter F5 of Xs,
a Hausdorff, regular, non empty topological space Y, and a function f from
X1 x X5 into Y. Now we state the propositions:

(101) Suppose lim(z, 7,y f # 0 and for every element x of X1, limz, curry(f, z)
# 0. Then limz, 7,y f = limg, lima(f, F2). The theorem is a consequence
of (100).

(102) Suppose lim z, 7,) f # () and for every element x of X, limz, curry’(f, x)
# 0. Then limz, 7,y f = limg, lim; (f, 71). The theorem is a consequence
of (99).

(103)  Suppose limr, z,) f # 0 and for every element = of X1, limg, curry(f, x)
# () and for every element z of Xo, limz, curry’(f, z) # 0. Then limz, limy
(f,F2) = limg, lim; (f, 1). The theorem is a consequence of (102) and
(101).
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