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Summary. First, we define in Mizar [5], the Cartesian product of two
filters bases and the Cartesian product of two filters. After comparing the product
of two Fréchet filters on N (F1) with the Fréchet filter on N×N (F2), we compare
limF1 and limF2 for all double sequences in a non empty topological space.

Endou, Okazaki and Shidama formalized in [14] the “convergence in Pring-
sheim’s sense” for double sequence of real numbers. We show some basic corre-
spondences between the p-convergence and the filter convergence in a topological
space. Then we formalize that the double sequence (xm,n = 1

m+1 )(m,n) ∈ N× N
converges in “Pringsheim’s sense” but not in Frechet filter on N× N sense.

In the next section, we generalize some definitions: “is convergent in the first
coordinate”, “is convergent in the second coordinate”, “the lim in the first coor-
dinate of”, “the lim in the second coordinate of” according to [14], in Hausdorff
space.

Finally, we generalize two theorems: (3) and (4) from [14] in the case of
double sequences and we formalize the “iterated limit” theorem (“Double limit”
[7], p. 81, par. 8.5 “Double limite” [6] (TG I,57)), all in regular space. We were
inspired by the exercises (2.11.4), (2.17.5) [17] and the corrections B.10 [18].
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1. Preliminaries

From now on x denotes an object, X, Y, Z denote sets, i, j, k, l, m, n denote
natural numbers, r, s denote real numbers, n1 denotes an element of the ordered
N, and A denotes a subset of N× N.
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Now we state the propositions:

(1) Let us consider a finite subset W of X. If X \W ⊆ Z, then X \ Z is
finite.

(2) If Z ⊆ X and X \ Z is finite, then there exists a finite subset W of X
such that X \W = Z.

(3) Let us consider sets X1, X2, a family S1 of subsets of X1, and a family
S2 of subsets of X2. Then {s, where s is a subset of X1 ×X2 : there exist
sets s1, s2 such that s1 ∈ S1 and s2 ∈ S2 and s = s1 × s2} is a family of
subsets of X1 ×X2.

(4) If x ∈ X × Y, then x is pair.

(5) If 0 < r, then there exists m such that m is not zero and 1
m < r.

(6) Let us consider points x, y of the metric space of real numbers. Then
there exist real numbers x1, y1 such that

(i) x = x1, and

(ii) y = y1, and

(iii) ρ(x, y) = ρR (x, y), and

(iv) ρ(x, y) = ρ1(〈x〉, 〈y〉), and

(v) ρ(x, y) = |x1 − y1|.

(7) Let us consider points x, y of (E1)top. Then there exist points x2, y2 of
the metric space of real numbers and there exist real numbers x1, y1 such
that x2 = x1 and y2 = y1 and x = 〈x1〉 and y = 〈y1〉 and ρ(x2, y2) =
ρR (x1, y1) and ρ(x2, y2) = ρ1(〈x1〉, 〈y1〉) and ρ(x2, y2) = |x1 − y1|.

(8) Let us consider points x, y of E1, and real numbers r, s. If x = 〈r〉 and
y = 〈s〉, then ρ(x, y) = |r − s|. The theorem is a consequence of (7).

One can check that N× N is countable and N× N is denumerable.
Now we state the propositions:

(9) the set of all 〈〈0, n〉〉 where n is a natural number is infinite.
Proof: Define F(object) = 〈〈0, $1〉〉. Consider f being a function such that
dom f = N and for every object x such that x ∈ N holds f(x) = F(x)
from [9, Sch. 3]. f is one-to-one. rng f = the set of all 〈〈0, n〉〉 where n is
a natural number by [9, (3)]. �

(10) If i ¬ k and j ¬ l, then Zi × Zj ⊆ Zk × Zl.
(11) (N \ Zm)× (N \ Zn) ⊆ N× N \ Zm × Zn.

(12) If n = n1 and n ¬ m, then m ∈ ↑n1.

(13) If n = n1 and m ∈ ↑n1, then n ¬ m.

(14) If n = n1, then ↑n1 = N \ Zn.
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Proof: ↑n1 ⊆ N \ Zn by [12, (50)], (13), [1, (44)]. N \ Zn ⊆ ↑n1 by [1,
(44)], [12, (50)]. �

(15) π1(A) = {x, where x is an element of N : there exists an element y of
N such that 〈〈x, y〉〉 ∈ A}.

(16) π2(A) = {y, where y is an element of N : there exists an element x of
N such that 〈〈x, y〉〉 ∈ A}.

(17) Let us consider a finite subset A of N×N. Then there exists m and there
exists n such that A ⊆ Zm × Zn. The theorem is a consequence of (15)
and (16).

(18) Let us consider a non empty set X. Then every filter of X is a proper
filter of 2X⊆ .

(19) Let us consider a non empty set X, and a filter F of X. Then there
exists a filter base B of X such that

(i) B = F , and

(ii) [B) = F .

(20) Let us consider a non empty topological space T , and a filter F of the car-
rier of T . If x ∈ LimFilter(F), then x is a cluster point of F ,T .

(21) Let us consider an element B of the base of Frechet filter. Then there
exists n such that B = N \ Zn. The theorem is a consequence of (14).

(22) Let us consider a subset B of N. Suppose B = N \Zn. Then B is an ele-
ment of the base of Frechet filter. The theorem is a consequence of (14).

2. Cartesian Product of Two Filters

From now on X, Y, X1, X2 denote non empty sets, A1, B1 denote filter bases
of X1, A2, B2 denote filter bases of X2, F1 denotes a filter of X1, F2 denotes
a filter of X2, B3 denotes a generalized basis of F1.

Let X1, X2 be non empty sets, B1 be a filter base of X1, and B2 be a filter
base of X2. The functor B1 × B2 yielding a filter base of X1 ×X2 is defined by
the term

(Def. 1) the set of all B1 ×B2 where B1 is an element of B1, B2 is an element of
B2.

Now we state the propositions:

(23) Suppose F1 = [B1) and F1 = [A1) and F2 = [B2) and F2 = [A2). Then
[B1 × B2) = [A1 ×A2).

(24) If B3 = B1, then [B1] = F1.
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(25) There exists B1 such that [B1) = F1. The theorem is a consequence of
(24).

Let X1, X2 be non empty sets, F1 be a filter of X1, and F2 be a filter of X2.
The functor 〈F1,F2) yielding a filter of X1 ×X2 is defined by

(Def. 2) there exists a filter base B1 of X1 and there exists a filter base B2 of X2

such that [B1) = F1 and [B2) = F2 and it = [B1 × B2).

Let B1 be a generalized basis of F1 and B2 be a generalized basis of F2. The
functor B1 × B2 yielding a generalized basis of 〈F1,F2) is defined by

(Def. 3) there exists a filter base B3 of X1 and there exists a filter base B4 of X2

such that B1 = B3 and B2 = B4 and it = B3 × B4.

Let n be a natural number. The functor ↑2(n) yielding a subset of N× N is
defined by

(Def. 4) for every element x of N× N, x ∈ it iff there exist natural numbers n1,
n2 such that n1 = (x)1 and n2 = (x)2 and n ¬ n1 and n ¬ n2.

Now we state the proposition:

(26) 〈〈n, n〉〉 ∈↑2(n).

Let us consider n. One can check that ↑2(n) is non empty.
Now we state the propositions:

(27) If 〈〈i, j〉〉 ∈↑2(n), then 〈〈i+ k, j〉〉, 〈〈i, j + l〉〉 ∈↑2(n).

(28) ↑2 (n) is an infinite subset of N × N. The theorem is a consequence of
(17).

(29) If n1 = n, then ↑2(n) = ↑n1×↑n1. The theorem is a consequence of (12)
and (13).

(30) If m = n− 1, then ↑2(n) ⊆ N× N \ Segm× Segm.
Proof: Reconsider y = x as an element of N× N. Consider n1, n2 being
natural numbers such that n1 = (y)1 and n2 = (y)2 and n ¬ n1 and
n ¬ n2. x /∈ Segm× Segm by [3, (1)]. �

(31) ↑2(n) ⊆ N× N \ Zn × Zn.
Proof: Reconsider y = x as an element of N× N. Consider n1, n2 being
natural numbers such that n1 = (y)1 and n2 = (y)2 and n ¬ n1 and
n ¬ n2. x /∈ Zn × Zn by [16, (10)]. �

(32) ↑2(n) = (N \ Zn) × (N \ Zn). The theorem is a consequence of (14) and
(29).

(33) There exists n such that ↑2 (n) ⊆ (N \ Zi) × (N \ Zj). The theorem is
a consequence of (4).

(34) If n = max(i, j), then ↑2(n) ⊆ (↑2(i)) ∩ (↑2(j)).
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Let n be a natural number. The functor ↓2(n) yielding a subset of N× N is
defined by

(Def. 5) for every element x of N× N, x ∈ it iff there exist natural numbers n1,
n2 such that n1 = (x)1 and n2 = (x)2 and n1 < n and n2 < n.

Now we state the propositions:

(35) ↓2(n) = Zn × Zn.
Proof: ↓2(n) ⊆ Zn × Zn by [1, (44)]. Consider y2, y1 being objects such
that y2 ∈ Zn and y1 ∈ Zn and x = 〈〈y2, y1〉〉. �

(36) Let us consider a finite subset A of N×N. Then there exists n such that
A ⊆↓2(n).
Proof: Considerm, n such thatA ⊆ Zm×Zn. Reconsiderm1 = max(m,n)
as a natural number. A ⊆↓2(m1) by [1, (39)], [11, (96)], (35). �

(37) ↓2(n) is a finite subset of N× N. The theorem is a consequence of (35).

3. Comparison between Cartesian Product of Frechet Filter on N
and the Frechet Filter of N× N

Let us consider an element x of (the base of Frechet filter) × (the base of
Frechet filter). Now we state the propositions:

(38) There exists i and there exists j such that x = (N \ Zi)× (N \ Zj). The
theorem is a consequence of (21).

(39) There exists n such that ↑2 (n) ⊆ x. The theorem is a consequence of
(38) and (33).

(40) (The base of Frechet filter) × (the base of Frechet filter) is a filter base
of N× N.

(41) There exists a generalized basis B of FrechetFilter(N) such that

(i) B = the base of Frechet filter, and

(ii) B × B is a generalized basis of 〈FrechetFilter(N), FrechetFilter(N)).

The functor ↑2N yielding a filter base of N× N is defined by the term

(Def. 6) the set of all ↑2(n) where n is a natural number.

Now we state the propositions:

(42) ↑2N and (the base of Frechet filter)× (the base of Frechet filter) are equ-
ivalent generators. The theorem is a consequence of (22), (32), and (39).

(43) [(the base of Frechet filter)×(the base of Frechet filter)) = 〈FrechetFilter
(N),FrechetFilter(N)). The theorem is a consequence of (41).

(44) [↑2N) = 〈FrechetFilter(N),FrechetFilter(N)).
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(45) 〈FrechetFilter(N), FrechetFilter(N)) is finer than FrechetFilter(N × N).
The theorem is a consequence of (17), (11), (22), and (43).

(46) (i) N×N\the set of all 〈〈0, n〉〉 where n is a natural number ∈ 〈Frechet
Filter(N),FrechetFilter(N)), and

(ii) N× N \ the set of all 〈〈0, n〉〉 where n is a natural number /∈ Frechet
Filter(N× N).

Proof: Set X = N×N\the set of all 〈〈0, n〉〉 where n is a natural number.
↑2(1) ⊆ X by (32), [1, (44)]. X /∈ FrechetFilter(N × N) by [12, (51)], [15,
(5)], (9). �

(47) FrechetFilter(N× N) 6= 〈FrechetFilter(N),FrechetFilter(N)).

4. Topological Space and Double Sequence

In the sequel T denotes a non empty topological space, s denotes a function
from N × N into the carrier of T , M denotes a subset of the carrier of T , and
F1, F2 denote filters of the carrier of T . Now we state the propositions:

(48) If F2 is finer than F1, then LimFilter(F1) ⊆ LimFilter(F2).

(49) Let us consider a function f from X into Y, and filters F1, F2 of X.
Suppose F2 is finer than F1. Then the image of filter F2 under f is finer
than the image of filter F1 under f .

(50) s−1(M) ∈ FrechetFilter(N×N) if and only if there exists a finite subset
A of N× N such that s−1(M) = N× N \A.

(51) s−1(M) ∈ 〈FrechetFilter(N),FrechetFilter(N)) if and only if there exists
n such that ↑2(n) ⊆ s−1(M). The theorem is a consequence of (43), (39),
and (42).

(52) The image of filter FrechetFilter(N × N) under s = {M , where M is
a subset of the carrier of T : there exists a finite subset A of N× N such
that s−1(M) = N× N \A}. The theorem is a consequence of (50).

(53) The image of filter 〈FrechetFilter(N),FrechetFilter(N)) under s = {M ,
where M is a subset of the carrier of T : there exists a natural number n
such that ↑2(n) ⊆ s−1(M)}. The theorem is a consequence of (51).

Let us consider a point x of T . Now we state the propositions:

(54) x ∈ limFrechetFilter(N×N) s if and only if for every neighbourhood A of x,
there exists a finite subset B of N×N such that s−1(A) = N×N \B. The
theorem is a consequence of (52).

(55) x ∈ limFrechetFilter(N×N) s if and only if for every neighbourhood A of x,
N × N \ s−1(A) is finite. The theorem is a consequence of (54), (1), and
(2).
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(56) x ∈ lim〈FrechetFilter(N),FrechetFilter(N)) s if and only if for every neighbour-
hood A of x, there exists a natural number n such that ↑2(n) ⊆ s−1(A).
The theorem is a consequence of (53).

Let us consider a point x of T and a generalized basis B of BooleanFilter
ToFilter(the neighborhood system of x). Now we state the propositions:

(57) x ∈ lim〈FrechetFilter(N),FrechetFilter(N)) s if and only if for every element B
of B, there exists a natural number n such that ↑2 (n) ⊆ s−1(B). The
theorem is a consequence of (56).

(58) x ∈ limFrechetFilter(N×N) s if and only if for every element B of B, there
exists a finite subset A of N × N such that s−1(B) = N × N \ A. The
theorem is a consequence of (54), (1), and (55).

(59) x ∈ lim〈FrechetFilter(N),FrechetFilter(N)) s if and only if for every element B of
B, there exists a natural number n such that s◦(↑2(n)) ⊆ B. The theorem
is a consequence of (57).

(60) x ∈ limFrechetFilter(N×N) s if and only if for every element B of B, there
exists a finite subset A of N× N such that s◦(N× N \A) ⊆ B.
Proof: For every neighbourhood A of x, N × N \ s−1(A) is finite by [4,
(2)], [19, (143)], [9, (76)]. �

(61) x ∈ limFrechetFilter(N×N) s if and only if for every element B of B, there
exists n and there exists m such that s◦(N × N \ Zn × Zm) ⊆ B. The
theorem is a consequence of (60) and (17).

(62) x ∈ s◦(↑2(n)) if and only if there exists i and there exists j such that
n ¬ i and n ¬ j and x = s(i, j).

(63) x ∈ s◦(N× N \ Zi × Zj) if and only if there exist natural numbers n, m
such that (i ¬ n or j ¬ m) and x = s(n,m).
Proof: Consider n, m being natural numbers such that i ¬ n or j ¬ m

and x = s(n,m). 〈〈n, m〉〉 /∈ Zi × Zj by [1, (44)]. �

Let us consider a point x of T and a generalized basis B of BooleanFilter
ToFilter(the neighborhood system of x). Now we state the propositions:

(64) x ∈ lim〈FrechetFilter(N),FrechetFilter(N)) s if and only if for every element B
of B, there exists a natural number n such that for every natural numbers
n1, n2 such that n ¬ n1 and n ¬ n2 holds s(n1, n2) ∈ B. The theorem is
a consequence of (62) and (59).

(65) x ∈ limFrechetFilter(N×N) s if and only if for every element B of B, there
exists i and there exists j such that for every m and n such that i ¬ m or
j ¬ n holds s(m,n) ∈ B. The theorem is a consequence of (61).

(66) limFrechetFilter(N×N) s ⊆ lim[↑2N) s. The theorem is a consequence of (42),
(43), (45), (48), and (49).
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5. Metric Space and Double Sequence

Now we state the propositions:

(67) Let us consider a non empty metric space M , a point p of M , a point x
of Mtop, and a function s from N×N into Mtop. Suppose x = p. Then x ∈
lim〈FrechetFilter(N),FrechetFilter(N)) s if and only if for every non zero natural
number m, there exists a natural number n such that for every natural
numbers n1, n2 such that n ¬ n1 and n ¬ n2 holds s(n1, n2) ∈ {q, where
q is a point of M : ρ(p, q) < 1

m}.
Proof: x ∈ lim〈FrechetFilter(N),FrechetFilter(N)) s iff for every non zero natural
number m, there exists a natural number n such that for every natural
numbers n1, n2 such that n ¬ n1 and n ¬ n2 holds s(n1, n2) ∈ {q, where
q is a point of M : ρ(p, q) < 1

m} by [13, (6)], (64). �

(68) Let us consider a non empty metric space M , a point p of M , a point x of
Mtop, a function s from N×N into Mtop, and a function s2 from N×N into
M . Suppose x = p and s = s2. Then x ∈ lim〈FrechetFilter(N),FrechetFilter(N)) s

if and only if for every non zero natural number m, there exists a natural
number n such that for every natural numbers n1, n2 such that n ¬ n1

and n ¬ n2 holds s2(n1, n2) ∈ {q, where q is a point of M : ρ(p, q) < 1
m}.

6. One-dimensional Euclidean Metric Space and Double Sequence

In the sequel R denotes a function from N× N into R.
Now we state the proposition:

(69) Let us consider a point x of (E1)top, a point y of E1, a generalized basis B
of BooleanFilterToFilter(the neighborhood system of x), and an element b
of B. Suppose x = y and B = Ballsx. Then there exists a natural number
n such that b = {q, where q is an element of E1 : ρ(y, q) < 1

n}.
Let s be a function from N× N into R. The functor # s yielding a function

from N× N into R1 is defined by the term

(Def. 7) s.

Now we state the propositions:

(70) Let us consider a function s from N × N into (E1)top, and a point y of
E1. Then s◦(↑2(n)) ⊆ {q, where q is an element of E1 : ρ(y, q) < 1

m} if and
only if for every object x such that x ∈ s◦(↑2(n)) there exist real numbers
r1, r2 such that x = 〈r1〉 and y = 〈r2〉 and |r2 − r1| < 1

m . The theorem is
a consequence of (8).

(71) r ∈ lim〈FrechetFilter(N),FrechetFilter(N)) #R if and only if for every non zero
natural number m, there exists a natural number n such that for every
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natural numbers n1, n2 such that n ¬ n1 and n ¬ n2 holds |R(n1, n2)−r| <
1
m .
Proof: Reconsider p = r as a point of the metric space of real numbers.
for every non zero natural number m, there exists a natural number n
such that for every natural numbers n1, n2 such that n ¬ n1 and n ¬
n2 holds R(n1, n2) ∈ {q, where q is a point of the metric space of real
numbers : ρ(p, q) < 1

m} iff for every non zero natural number m, there
exists a natural number n such that for every natural numbers n1, n2 such
that n ¬ n1 and n ¬ n2 holds |R(n1, n2)− r| < 1

m by (6), [8, (60)]. �

7. Basic Relations Convergence in Pringsheim’s Sense and Filter
Convergence

Now we state the propositions:

(72) Suppose lim〈FrechetFilter(N),FrechetFilter(N)) #R 6= ∅. Then there exists a re-
al number x such that lim〈FrechetFilter(N),FrechetFilter(N)) #R = {x}.

(73) If R is P-convergent, then P-limR ∈ lim〈FrechetFilter(N),FrechetFilter(N)) #R.
The theorem is a consequence of (71).

(74) R is P-convergent if and only if lim〈FrechetFilter(N),FrechetFilter(N)) #R 6= ∅.
The theorem is a consequence of (71) and (5).

(75) Suppose R is P-convergent. Then {P-limR} =
lim〈FrechetFilter(N),FrechetFilter(N)) #R. The theorem is a consequence of (73)
and (72).

(76) Suppose lim〈FrechetFilter(N),FrechetFilter(N)) #R is not empty. Then

(i) R is P-convergent, and

(ii) {P-limR} = lim〈FrechetFilter(N),FrechetFilter(N)) #R.

8. Example: Double Sequence Converges in Pringsheim’s Sense but
not in Frechet Filter of N× N Sense

The functor DblSeq-ex1 yielding a function from N×N into R is defined by

(Def. 8) for every natural numbers m, n, it(m,n) = 1
m+1 .

Now we state the propositions:

(77) Let us consider a non zero natural number m. Then there exists a natural
number n such that for every natural numbers n1, n2 such that n ¬ n1

and n ¬ n2 holds |(DblSeq-ex1)(n1, n2)− 0| < 1
m .

(78) 0 ∈ lim〈FrechetFilter(N),FrechetFilter(N)) # DblSeq-ex1.
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(79) limFrechetFilter(N×N) # DblSeq-ex1 = ∅. The theorem is a consequence of
(66), (42), (43), (72), (78), and (65).

(80) lim〈FrechetFilter(N),FrechetFilter(N)) # DblSeq-ex1 6=
limFrechetFilter(N×N) # DblSeq-ex1.

9. Correspondence with some Definitions from [14]

Let X1, X2 be non empty sets, F1 be a filter of X1, Y be a Hausdorff, non
empty topological space, and f be a function from X1 ×X2 into Y. Assume for
every element x of X2, limF1 curry′(f, x) 6= ∅. The functor lim1(f,F1) yielding
a function from X2 into Y is defined by

(Def. 9) for every element x of X2, {it(x)} = limF1 curry′(f, x).

Let F2 be a filter ofX2. Assume for every element x ofX1, limF2 curry(f, x) 6=
∅. The functor lim2(f,F2) yielding a function from X1 into Y is defined by

(Def. 10) for every element x of X1, {it(x)} = limF2 curry(f, x).

Now we state the propositions:

(81) Every function from X into R is a function from X into R1.
(82) Every sequence of R is a function from N into R1.

From now on f denotes a function from Ωthe ordered N into R1 and s1 denotes
a function from N into R.

Now we state the propositions:

(83) Suppose f = s1 and LimF(f) 6= ∅. Then

(i) s1 is convergent, and

(ii) there exists a real number z such that z ∈ LimF(f) and for every real
number p such that 0 < p there exists a natural number n such that
for every natural number m such that n ¬ m holds |s1(m)− z| < p.

Proof: Consider x being an object such that x ∈ LimF(f). Reconsider
y = x as a point of (the metric space of real numbers)top. Reconsider
z = y as a real number. Consider y1 being a point of the metric space
of real numbers such that y1 = y and Balls y = {Ball(y1,

1
n), where n is

a natural number : n 6= 0}. For every real number p such that 0 < p there
exists a natural number n such that for every natural number m such that
n ¬ m holds |s1(m)− z| < p by (5), [12, (84), (50)], [2, (18)]. �

(84) If f = s1 and LimF(f) 6= ∅, then LimF(f) = {lim s1}.
Proof: Consider x being an object such that x ∈ LimF(f). Consider u
being an object such that LimF(f) = {u}. LimF(f) = {lim s1} by (83),
[11, (3)]. �
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(85) Let us consider a function f from Ωα into T , and a sequence s of T . If
f = s, then LimF(f) = LimF(s), where α is the ordered N.

(86) Let us consider a function f from Ωα into T , and a function g from N
into T . If f = g, then LimF(f) = LimF(g), where α is the ordered N.

(87) Let us consider a function f from N into R1. Suppose f = s1 and
LimF(f) 6= ∅. Then LimF(f) = {lim s1}. The theorem is a consequen-
ce of (84).

(88) for every element x of N, limFrechetFilter(N) curry′(#R, x) 6= ∅ if and only
if R is convergent in the first coordinate. The theorem is a consequence of
(5).

(89) for every element x of N, limFrechetFilter(N) curry(#R, x) 6= ∅ if and only
if R is convergent in the second coordinate. The theorem is a consequence
of (5).

Let us consider an element t of N, a function f from N × N into R1, and
a function s1 from N× N into R. Now we state the propositions:

(90) Suppose f = s1 and for every element x of N, limFrechetFilter(N) curry(f, x)
6= ∅. Then limFrechetFilter(N) curry(f, t) = {lim curry(s1, t)}. The theorem is
a consequence of (87).

(91) Suppose f = s1 and for every element x of N, limFrechetFilter(N) curry′(f, x)
6= ∅. Then limFrechetFilter(N) curry′(f, t) = {lim curry′(s1, t)}. The theorem
is a consequence of (87).

(92) Let us consider a Hausdorff, non empty topological space Y, and a func-
tion f from N×N into Y. Suppose for every element x of N, limFrechetFilter(N)

curry′(f, x) 6= ∅ and f = R and Y = R1. Then lim1(f,FrechetFilter(N)) =
the lim in the first coordinate of R. The theorem is a consequence of (91).

(93) Let us consider a non empty, Hausdorff topological space Y, and a func-
tion f from N×N into Y. Suppose for every element x of N, limFrechetFilter(N)

curry(f, x) 6= ∅ and f = R and Y = R1. Then lim2(f,FrechetFilter(N)) =
the lim in the second coordinate of R. The theorem is a consequence of
(90).

10. Regular Space, Double Limit and Iterated Limit

From now on Y denotes a non empty topological space, x denotes a point
of Y, and f denotes a function from X1 ×X2 into Y.

Now we state the proposition:

(94) Suppose x ∈ lim〈F1,F2) f and [B1) = F1 and [B2) = F2. Let us consider
a subset V of Y. Suppose V is open and x ∈ V . Then there exists an ele-
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ment B1 of B1 and there exists an element B2 of B2 such that f◦(B1 ×
B2) ⊆ V .

Let us consider a neighbourhood U of x. Now we state the propositions:

(95) Suppose x ∈ lim〈F1,F2) f and [B1) = F1 and [B2) = F2. Then suppose U
is closed. Then there exists an element B1 of B1 and there exists an element
B2 of B2 such that f◦(B1 ×B2) ⊆ IntU .

(96) Suppose x ∈ lim〈F1,F2) f and [B1) = F1 and [B2) = F2. Then suppose U
is closed. Then there exists an element B1 of B1 and there exists an element
B2 of B2 such that for every element y of B1, f◦({y} × B2) ⊆ IntU . The
theorem is a consequence of (95).

(97) Suppose x ∈ lim〈F1,F2) f and [B1) = F1 and [B2) = F2. Then suppose U
is closed. Then there exists an element B1 of B1 and there exists an element
B2 of B2 such that for every element z of X1 for every element y of Y such
that z ∈ B1 and y ∈ limF2 curry(f, z) holds y ∈ IntU .
Proof: Consider B1 being an element of B1, B2 being an element of B2

such that f◦(B1 × B2) ⊆ IntU . For every element y of B1, f◦({y} ×
B2) ⊆ IntU by [11, (95)], [19, (125)]. For every element z of B1 and for
every element y of Y such that y ∈ limF2 curry(f, z) holds the image of
filter F2 under curry(f, z) is a proper filter of 2ΩY

⊆ and IntU ∈ the image of
filter F2 under curry(f, z) and y is a cluster point of the image of filter F2

under curry(f, z),Y by (18), [19, (132)], [10, (95)], (20). For every element
z of B1 and for every element y of Y such that y ∈ limF2 curry(f, z) holds
y ∈ IntU by [4, (25)]. �

(98) Suppose x ∈ lim〈F1,F2) f and [B1) = F1 and [B2) = F2. Then suppose U
is closed. Then there exists an element B1 of B1 and there exists an element
B2 of B2 such that for every element z of X2 for every element y of Y such
that z ∈ B2 and y ∈ limF1 curry′(f, z) holds y ∈ IntU .
Proof: Consider B1 being an element of B1, B2 being an element of B2

such that f◦(B1×B2) ⊆ IntU . For every element y of B2, f◦(B1×{y}) ⊆
IntU by [11, (95)], [19, (125)]. For every element z of B2 and for every
element y of Y such that y ∈ limF1 curry′(f, z) holds the image of filter
F1 under curry′(f, z) is a proper filter of 2ΩY

⊆ and IntU ∈ the image of
filter F1 under curry′(f, z) and y is a cluster point of the image of filter F1

under curry′(f, z),Y by (18), [19, (132)], [10, (95)], (20). For every element
z of B2 and for every element y of Y such that y ∈ limF1 curry′(f, z) holds
y ∈ IntU by [4, (25)]. �

Let us consider a Hausdorff, regular, non empty topological space Y and
a function f from X1 ×X2 into Y. Now we state the propositions:

(99) Suppose for every element x ofX2, limF1 curry′(f, x) 6= ∅. Then lim〈F1,F2)
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f ⊆ limF2 lim1(f,F1). The theorem is a consequence of (19) and (98).

(100) Suppose for every element x of X1, limF2 curry(f, x) 6= ∅. Then lim〈F1,F2)
f ⊆ limF1 lim2(f,F2). The theorem is a consequence of (19) and (97).

Let us consider non empty sets X1, X2, a filter F1 of X1, a filter F2 of X2,
a Hausdorff, regular, non empty topological space Y, and a function f from
X1 ×X2 into Y. Now we state the propositions:

(101) Suppose lim〈F1,F2) f 6= ∅ and for every element x of X1, limF2 curry(f, x)
6= ∅. Then lim〈F1,F2) f = limF1 lim2(f,F2). The theorem is a consequence
of (100).

(102) Suppose lim〈F1,F2) f 6= ∅ and for every element x of X2, limF1 curry′(f, x)
6= ∅. Then lim〈F1,F2) f = limF2 lim1(f,F1). The theorem is a consequence
of (99).

(103) Suppose lim〈F1,F2) f 6= ∅ and for every element x of X1, limF2 curry(f, x)
6= ∅ and for every element x of X2, limF1 curry′(f, x) 6= ∅. Then limF1 lim2

(f,F2) = limF2 lim1(f,F1). The theorem is a consequence of (102) and
(101).
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