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Summary. In [21], Marco Riccardi formalized that RN-basis n is a ba-
sis (in the algebraic sense defined in [20]) of &7 and in [20] he has formalized
that £F is second-countable, we build (in the topological sense defined in [23]) a
denumerable base of £F.

Then we introduce the n-dimensional intervals (interval in n-dimensional
Euclidean space, pavé (borné) de R™ [16], semi-intervalle (borné) de R™ [22]).

We conclude with the definition of Chebyshev distance [11].
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1. PRELIMINARIES

From now on n denotes a natural number, 7, s denote real numbers, z, y
denote elements of R", p, ¢ denote points of £}, and e denotes a point of £".
Now we state the propositions:
(1) |z —yl=ly—a
(2) Let us consider a natural number 7. If i € Segn, then |z|(i) € R.
(3) Let us consider elements z, y of R, and extended reals z1, y;. If x < a3
and y < y1, then x +y < z1 + y1.
(4) Let us consider real numbers a, ¢, and an extended real number b. Sup-
pose a < b and [a,b[ C [a,c[. Then b is a real number.

(5) Let us consider a non empty set D, and a non empty subset D; of D.
Then D™ C D™.
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122 ROLAND COGHETTO

(6) Let us consider a non empty set X, and a function f. Suppose f =
Segn —— X. Then f is a non-empty, n-element finite sequence.

Let n be a natural number. The functor R(n) yielding a non-empty, n-
element finite sequence is defined by the term

(Def. 1) Segn+— R.

Now we state the propositions:
7
8
9
(10
(11

R(n) = Segn +— the carrier of RY.

[I(Segn +— R) =R"™.

[IR(n) =R"™

Let us consider a set X. Then [[(Segn — X) = X™.

Let us consider a non empty set D, and an n-tuple  of D. Then = €
DSegn.

(12) Let us consider a subset O of &}, and a subset Oz of (£™)top. If O1 = Oy,
then O; is open iff Os is open.

~— — — ~— ~—

(13) Suppose e = p. Then the set of all OpenHypercube(e, %) where m is
a non zero element of N = the set of all OpenHypercube(p, %) where
m is a non zero element of N.
(14) If g € OpenHypercube(p,r), then p € OpenHypercube(q, 7).
(15) If ¢ € OpenHypercube(p, §),
then OpenHypercube(q, 5) € OpenHypercube(p, ).
Let x be an element of R x R. The functors: (z); and (z)2 yield elements of
R. Let n be a natural number and = be an element of R™ x R"™. The functors:
(z)1 and (x)2 yield elements of R™. Now we state the proposition:
(16) Let us consider an n-element finite sequence f of elements of R x R.
Then there exists an element x of R™ x R"™ such that for every natural
number 7 such that i € Segn holds (x)1(i) = (fi)1 and (x)2(i) = (fi)2-

2. THE SET OF n-TUPLES OF RATIONAL NUMBERS

Let us consider n. The functor Q" yielding a set of finite sequences of Q is
defined by the term

(Def. 2) Q™.
Now we state the proposition:
(17) Q"= {o}.

One can check that QY is trivial.
Let us consider n. One can check that Q" is non empty and every element
of Q" is n-element and Q" is countable.
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Let n be a positive natural number. Let us note that Q" is infinite and Q™
is denumerable.
Now we state the proposition:

(18) Q™ is a dense subset of EF.
Proor: Q" is a subset of R". Reconsider R = Q™ as a subset of £F. For
every subset @ of &F such that @ # () and @ is open holds R meets @ by
[10, (67)], (12), [15, (23)], [13], (39)]. O

Let us consider n. One can check that Q™ is countable and dense as a subset
of £F.

3. A COUNTABLE BASE OF AN n-DIMENSIONAL EUCLIDEAN SPACE

(VERsION 1: [20]):
Let n be a natural number. Let us observe that there exists a basis of &
which is countable.
Let us consider n and e. Note that OpenHypercubes e is countable.
The functor OpenHypercubes-Q(n) yielding a non empty set is defined by
the term
(Def. 3) {OpenHypercubes ¢q, where ¢ is a point of " : ¢ € Q"}.
Let ¢ be an element of Q™. The functor % yielding a point of £ is defined
by the term
(Def. 4) q.

Let ¢ be an object. Assume ¢ € Q™. The functor object2Q(q,n) yielding
an element of Q" is defined by the term

(Def. 5) g.

Let us note that OpenHypercubes-Q(n) is countable
and |J OpenHypercubes-Q(n) is countable.
Now we state the propositions:
(19) U OpenHypercubes-Q(n) is an open family of subsets of £F. The theorem
is a consequence of (12).

(20) Let us consider a non empty, open subset O of £f. Then there exists
an element p of Q™ such that p € O. The theorem is a consequence of
(18).

(21) Let us consider a family B of subsets of £F.

Suppose B = |J OpenHypercubes-Q(n). Then B is quasi basis.
PROOF: F is quasi basis by (12), [15, (23)], [10, (67)], (20). O

Let us consider n. Observe that | OpenHypercubes-Q(n) is non empty.
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The functor OpenHypercubesQUnion(n) yielding a countable, open family
of subsets of £F is defined by the term

(Def. 6) |JOpenHypercubes-Q(n).
Now we state the proposition:
(22) OpenHypercubesQUnion(n) = {OpenHypercube(q, %),
where ¢ is a point of £",m is a positive natural number : ¢ € Q"}.

(VERSION 2):

Let n be a natural number. Observe that there exists a basis of £} which is
countable.

Now we state the propositions:

(23) OpenHypercubesQUnion(n) is a countable basis of Ef.
(24) Let us consider an open subset O of £f. Then there exists a subset Y of
OpenHypercubesQUnion(n) such that
(i) Y is countable, and
(i) 0 =UY-
The theorem is a consequence of (21).
Let us consider an open, non empty subset O of £F. Now we state the
propositions:
(25) There exists a subset Y of OpenHypercubesQUnion(n) such that
(i) Y is not empty, and
(i) O =Y, and
(iii) there exists a function g from N into Y such that for every object x,
x € O iff there exists an object y such that y € N and = € g(y).
The theorem is a consequence of (24).

(26) There exists a sequence s of OpenHypercubesQUnion(n) such that for
every object x, x € O iff there exists an object y such that y € N and
x € s(y). The theorem is a consequence of (25).

(27) There exists a sequence s of OpenHypercubesQUnion(n) such that O =
Us. The theorem is a consequence of (26).

4. THE SET OF ALL LEFT OPEN REAL BOUNDED INTERVALS

The set of all left open real bounded intervals yielding a family of subsets of
R is defined by the term

(Def. 7) the set of all |a, b] where a, b are real numbers.
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Let us note that the set of all left open real bounded intervals is non empty.

Now we state the propositions:

(28) The set of all left open real bounded intervals C {I, where [ is a subset
of R : I is left open interval}.

(29) The set of all left open real bounded intervals is N-closed and \ f,-closed
and has the empty element and countable cover.

(30) The set of all left open real bounded intervals is a semiring of R.

5. THE SET OF ALL RIGHT OPEN REAL BOUNDED INTERVALS

The set of all right open real bounded intervals yielding a family of subsets
of R is defined by the term

(Def. 8) the set of all [a, b] where a, b are real numbers.

Observe that the set of all right open real bounded intervals is non empty.

Now we state the propositions:

(31) The set of all right open real bounded intervals C {I, where [ is a subset
of R: I is right open interval}.

(32) The set of all right open real bounded intervals has the empty element.
(33) (i) the set of all right open real bounded intervals is N-closed, and

(ii) the set of all right open real bounded intervals is \ f,-closed and has
the empty element.

The theorem is a consequence of (31), (32), and (4).

(34) The set of all right open real bounded intervals has countable cover.

PROOF: Define Flobject, object] = $; is an element of N and $5 € the set
of all right open real bounded intervals and there exists a real number x
such that z = $; and $5 = [—x, z[. For every object z such that x € N there
exists an object y such that y € the set of all right open real bounded
intervals and F|z, y]. Consider f being a function such that dom f = N and
rng f C the set of all right open real bounded intervals and for every object
x such that € N holds Flz, f(x)] from [7, Sch. 6]. rng f is countable by
[27, (4)], [14, (58)]. rng f is a cover of R by [2, (2)], [12} (8)], [3, (13)], [17,
(45)]. O

(35) The set of all right open real bounded intervals is a semiring of R.
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6. FINITE ProDUCT OF LEFT OPEN INTERVALS

In the sequel n denotes a non zero natural number.
Let n be a non zero natural number. The functor LeftOpenIntervals(n) yiel-
ding a classical semiring family of R(n) is defined by the term

(Def. 9) Segn —— (the set of all left open real bounded intervals).
Now we state the propositions:

(36) LeftOpenlntervals(n) = Segn —— the set of all |a, b] where a,b are real
numbers.

(37) MeasurableRectangle LeftOpenlIntervals(n) is a semiring of R"™. The the-
orem is a consequence of (8).

Let us consider an object x.
Let us assume that x € MeasurableRectangle LeftOpenlIntervals(n). Now we
state the propositions:

(38) There exists a subset y of R™ such that
(i) z =y, and

(ii) for every natural number i such that i € Segn there exist real num-
bers a, b such that for every element ¢ of R™ such that ¢t € y holds
t(i) € ]a,b].

The theorem is a consequence of (37).

(39) There exists a subset y of R™ and there exists an n-element finite se-
quence f of elements of R x R such that z = y and for every element
t of R™ t € y iff for every natural number i such that ¢ € Segn holds
t(i) € 1(fi)x, (fi)2]-

PRrROOF: MeasurableRectangle LeftOpenlntervals(n) is a family of subsets
of R™. Reconsider y = = as a subset of R". Consider g being a function
such that x = [[g and g € []LeftOpenlntervals(n). Define P[natural

number, set] = there exists an element x of R x R such that $2 = x and
9($1) = ](x)1, (x)2]. For every natural number ¢ such that i € Segn there
exists an element d of R x R such that PJi, d]. There exists a finite sequence
f1 of elements of R x R such that len fi = n and for every natural number
i such that ¢ € Segn holds P[i, f1;] from [25, Sch. 1]. Consider f; being
a finite sequence of elements of R x R such that len f; = n and for every
natural number ¢ such that i € Segn there exists an element x of R x
R such that f1; = = and ¢(i) = |(z)1, (x)2]. For every natural number i
such that ¢ € Segn holds g(i) = |(f1;)1, (f1;)2]. For every element ¢ of
R"™ such that t € y for every natural number ¢ such that ¢ € Segn holds
t(7) € |(f1;)1, (f1;)2]. For every element t of R"™ such that for every natural
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number ¢ such that ¢ € Segn holds (i) € ](f1;)1, (f1;)2] holds t € y by [6),
(93)]. O

(40) There exists a subset y of R™ and there exist elements a, b of R™ such
that = y and for every object s, s € y iff there exists an element ¢ of R"
such that s =t and for every natural number ¢ such that ¢ € Segn holds
t(i) € ]a(i),b(i)]. The theorem is a consequence of (39) and (16).

Now we state the proposition:

(41) Let us consider a set x. Suppose z € MeasurableRectangle LeftOpenInter-
vals(n). Then there exist elements a, b of R™ such that for every element
t of R™ t € x iff for every natural number ¢ such that ¢ € Segn holds
t(i) € Ja(i),b(7)]. The theorem is a consequence of (39) and (16).

7. FINITE PRODUCT OF RIGHT OPEN INTERVALS

Let n be a non zero natural number. The functor RightOpenlIntervals(n)
yielding a classical semiring family of R(n) is defined by the term
(Def. 10) Segn — (the set of all right open real bounded intervals).
From now on n denotes a non zero natural number.
Now we state the propositions:
(42) RightOpenlIntervals(n) = Segn +—— the set of all [a, b] where a,b are
real numbers.
(43) MeasurableRectangle RightOpenlntervals(n) is a semiring of R™. The
theorem is a consequence of (8).
Let us consider an object x.
Let us assume that € MeasurableRectangle RightOpenIntervals(n). Now
we state the propositions:
(44) There exists a subset y of R™ such that
(i) x =y, and
(ii) for every natural number i such that i € Segn there exist real num-
bers a, b such that for every element ¢ of R™ such that ¢t € y holds
t(i) € [a,b].
The theorem is a consequence of (43).
(45) There exists a subset y of R™ and there exists an n-element finite se-
quence f of elements of R x R such that x = y and for every element
t of R™, t € y iff for every natural number ¢ such that ¢ € Segn holds
t() € [(fi)r, (fi)2l-
PROOF: MeasurableRectangle RightOpenIntervals(n) is a family of subsets
of R™. Reconsider y = z as a subset of R". Consider g being a function
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such that x = []g and ¢g € []RightOpenIntervals(n). Define P[natural
number, set] = there exists an element 2 of R x R such that $ = x and
9(%1) = [(x)1, (x)2[. For every natural number ¢ such that i € Segn there
exists an element d of R xR such that P[i, d]|. There exists a finite sequence
f1 of elements of R x R such that len f; = n and for every natural number
i such that ¢ € Segn holds P[i, f1;] from [25, Sch. 1]. Consider f; being
a finite sequence of elements of R x R such that len f{ = n and for every
natural number ¢ such that i € Segn there exists an element x of R x
R such that f1; = x and g(i) = [(z)1, (z)2]. For every natural number i
such that ¢ € Segn holds g(i) = [(f1;)1, (f1;)2[. For every element ¢ of
R™ such that ¢t € y for every natural number ¢ such that ¢ € Segn holds
t(7) € [(f1;)1, (f1;)2[. For every element t of R™ such that for every natural
number ¢ such that ¢ € Segn holds (i) € [(f1;)1, (f1;)2[ holds ¢ € y by [6),
(93)]. O

(46) There exists a subset y of R™ and there exist elements a, b of R™ such
that = y and for every object s, s € y iff there exists an element ¢ of R"
such that s =t and for every natural number 7 such that ¢ € Segn holds
t(i) € [a(7),b(i)[. The theorem is a consequence of (45) and (16).

Now we state the proposition:

(47) Let us consider a set x. Suppose z € MeasurableRectangle RightOpenInter-
vals(n). Then there exist elements a, b of R™ such that for every element
t of R™, t € x iff for every natural number ¢ such that ¢+ € Segn holds
t(7) € [a(i),b(7)[. The theorem is a consequence of (45) and (16).

8. n-DIMENSIONAL PRODUCT OF SUBSET FAMILY

In the sequel n denotes a natural number, X denotes a set, and S denotes
a family of subsets of X.
Let us consider n and X. The functor Product(n, X) yielding a set is defined
by
(Def. 11) for every object f, f € it iff there exists a function g such that f =]]g
and g € [[(Segn — X).
Now we state the propositions:
(48) Product(n, X) C 20U Segn—x))
(49) Product(n, S) is a family of subsets of [[(Segn — X).
PROOF: Reconsider S = Product(n, S) as a subset of
2(UUGegn—s)yiomesn=5) g ol [(Sean—X) py [ (9)], 24, (13), (7)],
[9, (77), (81)]. O

dom(Seg n——X)
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(50) Let us consider a non empty family S of subsets of X. Then Product(n, S) =
the set of all [] f where f is an n-tuple of S.

PROOF: Product(n, S) C the set of all [] f where f is an n-tuple of S by
(10), [6l, (131)]. the set of all ] f where f is an n-tuple of S C Product(n, S)
by [6, (131)], (10). O
(51) Let us consider a non zero natural number n. Then Product(n, X) C
o(lJ x)Ses
Let us consider a non zero natural number n, a non empty set X, and a non
empty family S of subsets of X.
Let us assume that S # {(}}. Now we state the propositions:

(52) Product(n, S) € 2X™*" The theorem is a consequence of (51) and (5).

(53) JProduct(n,S) C X5¢". The theorem is a consequence of (52).

Let n be a natural number and X be a non empty set. Let us note that
Product(n, X) is non empty.
Now we state the proposition:

(54) Let us consider a non empty set X, a non empty family S of subsets
of X, and a subset 2 of X5¢™, Then z is an element of Product(n, S) if
and only if there exists an n-tuple s of S such that for every element t of
XSe8n_for every natural number i such that i € Segn holds (i) € s(i) iff
tewx.

9. THE SET OoF ALL CLOSED REAL BOUNDED INTERVALS

The set of all closed real bounded intervals yielding a family of subsets of R
is defined by the term
(Def. 12) the set of all [a,b] where a, b are real numbers.
Now we state the proposition:
(55) The set of all closed real bounded intervals = {I, where I is a subset of
R : I is closed interval}.
Let us note that the set of all closed real bounded intervals is non empty.
Now we state the propositions:
(56) The set of all closed real bounded intervals is N-closed and has the empty
element and countable cover.
PrOOF: The set of all closed real bounded intervals is N-closed. There
exists a countable subset X of the set of all closed real bounded intervals
such that X is a cover of R by [27, (4)], [14, (58)], [2 (2)], [12} (8)]. O
(57) Let us consider a natural number n. Then Segn —— (the set of all
closed real bounded intervals) is an n-element finite sequence.
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10. THE SET OF ALL OPEN REAL BOUNDED INTERVALS

The set of all open real bounded intervals yielding a family of subsets of R
is defined by the term

(Def. 13) the set of all a, b where a, b are real numbers.
Now we state the proposition:

(58) The set of all open real bounded intervals C {I, where I is a subset of
R : I is open interval}.

Let us observe that the set of all open real bounded intervals is non empty.
Now we state the propositions:

(59) The set of all open real bounded intervals is N-closed and has the empty
element and countable cover.
PRrROOF: The set of all open real bounded intervals is N-closed. There exists
a countable subset X of the set of all open real bounded intervals such
that X is a cover of R by [27, (4)], [I4, (58)], [2 (2)], [12, (8)]. O

(60) Let us consider a natural number n. Then Segn — (the set of all open
real bounded intervals) is an n-element finite sequence.

11. n-DIMENSIONAL SUBSET FAMILY OF R

From now on n denotes a natural number and S denotes a family of subsets
of R.
Now we state the proposition:

(61) Product(n, S) is a family of subsets of R"™. The theorem is a consequence
of (49) and (8).
Let us consider n and S. One can check that the functor Product(n, S) yields
a family of subsets of R". Now we state the propositions:

(62) Let us consider a non empty family S of subsets of R, and a subset x

of R™. Then z is an element of Product(n,S) if and only if there exists
an n-tuple s of .S such that for every element ¢ of R", for every natural
number i such that ¢ € Segn holds t(i) € s(i) iff ¢t € x.
PROOF: If z is an element of Product(n, S), then there exists an n-tuple s
of S such that for every element ¢ of R", for every natural number ¢ such
that ¢ € Segn holds t(i) € s(i) iff ¢ € = by [6, (93)]. If there exists an n-
tuple s of S such that for every element t of R™, for every natural number
i such that ¢ € Segn holds ¢(i) € s(i) iff t € z, then z is an element of
Product(n, S) by [6, (93)]. O
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(63) Let us consider a non zero natural number n, and an n-tuple s of the set

of all closed real bounded intervals. Then there exist elements a, b of R™
such that for every natural number i such that i € Segn holds s(i) =
[a(2), b(3)]-
PROOF: s € (the set of all closed real bounded intervals)®¢&™. Consider f
being a function such that s = f and dom f = Segn and rng f C the set
of all closed real bounded intervals. Define P[object, object] = there exists
an element f of R x R such that f = $9 and s($1) = [(f)1, (f)2]. For every
natural number ¢ such that ¢ € Segn there exists an element d of R x R
such that P[i,d] by [7, (3)]. Consider f being a finite sequence of elements
of R x R such that len f = n and for every natural number ¢ such that
i € Segn holds PJi, f;] from [25, Sch. 1]. Consider z being an element of
R™ x R™ such that for every natural number ¢ such that ¢ € Segn holds
(2)1(4) = (fi)1 and (2)2(i) = (fi)2. Reconsider a = (z)1, b = (2)2 as
an element of R™. For every natural number ¢ such that ¢ € Segn holds
s(i) = [a(2), b(2)]. O

(64) Let us consider a non zero natural number n, and an element x of
Product(n, the set of all closed real bounded intervals). Then there exist
elements a, b of R™ such that for every element ¢ of R", t € z iff for every
natural number ¢ such that i € Segn holds t(i) € [a(i), b(i)]. The theorem
is a consequence of (62) and (63).

Let us consider a non zero natural number n, a subset x of R", and elements
a, b of R™. Now we state the propositions:

(65) Suppose for every element ¢ of R", t € z iff for every natural number

i such that ¢« € Segn holds ¢(i) € [a(i),b(7)]. Then x is an element of
Product(n, the set of all closed real bounded intervals).
PRrROOF: Define Plobject, object] = there exists a natural number n such
that $1 = n and $2 = [a(n),b(n)]. For every natural number i such that
1 € Segn there exists an element d of the set of all closed real bounded
intervals such that P[i, d]. There exists a finite sequence g of elements of
the set of all closed real bounded intervals such that leng = n and for
every natural number ¢ such that i € Segn holds P[i, g;] from [25, Sch. 1].
Consider g being a finite sequence of elements of the set of all closed real
bounded intervals such that len g = n and for every natural number ¢ such
that i € Segn holds P[i, g;]. For every natural number ¢ such that ¢ € Segn
holds g(i) = [a(i),b(7)]. There exists a function g such that z = [[ ¢ and
g € [1(Segn — (the set of all closed real bounded intervals)) by [4, (89)],
24, (13), (7), I, (9)). O

(66) Suppose for every element t of R™, ¢t € z iff for every natural number



132

(67)

ROLAND COGHETTO

i such that ¢ € Segn holds (i) € ]a(i),b(i)]. Then z is an element of
Product(n, the set of all left open real bounded intervals).
PROOF: Define Plobject,object] = there exists a natural number n such
that $1 = n and $2 = Ja(n),b(n)]. For every natural number ¢ such that
1 € Segn there exists an element d of the set of all left open real bounded
intervals such that P[i, d]. There exists a finite sequence g of elements of
the set of all left open real bounded intervals such that leng = n and
for every natural number ¢ such that ¢ € Segn holds PJi, ¢g;] from [25]
Sch. 1]. Consider g being a finite sequence of elements of the set of all
left open real bounded intervals such that len g = n and for every natural
number i such that ¢ € Segn holds PJi, g;|. For every natural number 4
such that ¢ € Segn holds g(i) = Ja(4), b(¢)]. There exists a function g such
that z = [[ g and g € [[(Segn —— (the set of all left open real bounded
intervals)) by [4, (89)], [24, (13), (7)], [1 (9)]. O

Suppose for every element t of R™, t € x iff for every natural number
i such that ¢ € Segn holds ¢(i) € [a(i),b(i)[. Then x is an element of
Product(n, the set of all right open real bounded intervals).
PROOF: Define Plobject, object] = there exists a natural number n such
that $1 = n and $2 = [a(n),b(n)[. For every natural number 7 such that
1 € Segn there exists an element d of the set of all right open real bounded
intervals such that P[i, d]. There exists a finite sequence g of elements of
the set of all right open real bounded intervals such that len g = n and for
every natural number ¢ such that i € Segn holds P[i, g;] from [25, Sch. 1].
Consider g being a finite sequence of elements of the set of all right open
real bounded intervals such that len g = n and for every natural number
i such that i € Segn holds PJi, g;]. For every natural number ¢ such that
i € Segn holds g(i) = [a(i),b(7)[. There exists a function g such that
x = []g and g € [[(Segn —— (the set of all right open real bounded
intervals)) by [4, (89)], 24, (13), (7)], [, (9)]. O

Now we state the propositions:
(68)

Let us consider a non zero natural number n, and an n-tuple s of the set
of all left open real bounded intervals. Then there exist elements a, b
of R™ such that for every natural number ¢ such that ¢ € Segn holds
(i) = Ja(i), b(i))-

PROOF: s € (the set of all left open real bounded intervals)S°8™. Consider f
being a function such that s = f and dom f = Segn and rng f C the set

of all left open real bounded intervals. Define P[object, object] = there
exists an element f of R x R such that f = $2 and s($1) = |(f)1, (f)2]-
For every natural number ¢ such that ¢ € Segn there exists an element d
of R x R such that PJi,d] by [7, (3)]. Consider f being a finite sequence of
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elements of R x R such that len f = n and for every natural number 4 such
that ¢ € Segn holds P[i, f;] from [25, Sch. 1]. Consider z being an element
of R™ x R™ such that for every natural number ¢ such that ¢ € Segn
holds (z)1(¢) = (fi)1 and (2)2(7) = (fi)2. Reconsider a = (2)1, b = (2)2 as
an element of R". For every natural number ¢ such that ¢ € Segn holds
s(i) = |a(i),b(3)]. O

(69) Let us consider a non zero natural number n, and an element x of
Product(n, the set of all left open real bounded intervals). Then there exist
elements a, b of R™ such that for every element ¢ of R", t € x iff for every
natural number i such that i € Segn holds ¢(7) € |a(i), b(7)]. The theorem
is a consequence of (62) and (68).

(70) Let us consider a non zero natural number n, and an n-tuple s of the set

of all right open real bounded intervals. Then there exist elements a, b
of R™ such that for every natural number ¢ such that ¢ € Segn holds
(i) = [a(i), b(i)].
PROOF: s € (the set of all right open real bounded intervals)S¢&". Consider
f being a function such that s = f and dom f = Segn and rng f C the set
of all right open real bounded intervals. Define P[object, object] = there
exists an element f of R X R such that f = $5 and s($1) = [(f)1, (f)2]-
For every natural number ¢ such that i € Segn there exists an element d
of R x R such that PJi,d] by [7, (3)]. Consider f being a finite sequence of
elements of R x R such that len f = n and for every natural number 4 such
that i € Segn holds PJi, f;] from [25 Sch. 1]. Consider z being an element
of R™ x R™ such that for every natural number ¢ such that ¢ € Segn
holds (2)1(i) = (fi)1 and (2)2(i) = (fi)2. Reconsider a = (z)1, b = (2)2 as
an element of R". For every natural number ¢ such that ¢ € Segn holds
s(i) = [a(2),b(d)[. O

(71) Let us consider a non zero natural number n, and an element x of
Product(n, the set of all right open real bounded intervals). Then there
exist elements a, b of R™ such that for every element ¢ of R", t € x iff for
every natural number ¢ such that ¢ € Segn holds ¢(i) € [a(i),b(7)[. The
theorem is a consequence of (62) and (70).

12. CLOSED/OPEN/LEFT-OPEN/RIGHT-OPEN — HYPER INTERVAL

From now on n denotes a natural number and a, b, ¢, d denote elements of
R™.

Let us consider n, a, and b. The functor ClosedHyperInterval(a,b) yielding
a subset of R" is defined by
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(Def. 14) for every object x, x € it iff there exists an element y of R™ such that
x = y and for every natural number ¢ such that i € Segn holds y(i) €
[a (i), b(3)].
The functor OpenHyperInterval(a, b) yielding a subset of R™ is defined by
(Def. 15) for every object z, x € it iff there exists an element y of R™ such that
x = y and for every natural number ¢ such that ¢ € Segn holds y(i) €
Ja(i), b(2)[.
The functor LeftOpenHyperInterval(a, b) yielding a subset of R"™ is defined
by
(Def. 16) for every object z, x € it iff there exists an element y of R™ such that
x = y and for every natural number i such that ¢ € Segn holds y(i) €
Ja(i), b(2)].
The functor RightOpenHyperInterval(a, b) yielding a subset of R"™ is defined
by
(Def. 17) for every object x, @ € it iff there exists an element y of R™ such that
x = y and for every natural number ¢ such that ¢ € Segn holds y(i) €
[a (i), b(D)[-
Now we state the proposition:

(72) ClosedHyperInterval(a,a) = {a}.
ProOF: ClosedHyperInterval(a,a) C {a} by [0, (124)].
{a} C ClosedHyperInterval(a,a). O
Let us consider n and a. Let us observe that ClosedHyperInterval(a,a) is
trivial.
Now we state the proposition:

(73) (i) OpenHyperInterval(a,b) C LeftOpenHyperlnterval(a, b), and
(ii) OpenHyperlnterval(a,b) C RightOpenHyperInterval(a, b), and
(iii) LeftOpenHyperInterval(a,b) C ClosedHyperInterval(a,b), and

(iv) RightOpenHyperlnterval(a,b) C ClosedHyperInterval(a, b).
Let us consider n, a, and b. We say that a < b if and only if
(Def. 18) for every natural number i such that ¢ € Segn holds a(i) < b(i).
One can verify that the predicate is reflexive.
Now we state the propositions:
(74) Ifa<b<c thena<ec.
(75) If a < candd<b,
then ClosedHyperInterval(c, d) C ClosedHyperInterval(a, b).

(76) If a < b, then ClosedHyperInterval(a,b) is not empty. The theorem is
a consequence of (75) and (72).
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Let us consider n, a, and b. We say that a < b if and only if
(Def. 19) for every natural number 7 such that ¢ € Segn holds a(i) < b(i).
Now we state the propositions:
(77) Ifa<b<c, thena<ec.
(78) If b < a and n is not zero, then ClosedHyperInterval(a,b) is empty.
(79) m > ris an element of R™.
PROOF: Set f =n — r. f € R58" by [6] (112), (93)]. O
Let us consider n and r. Note that the functor n — r yields an element of
R™. One can check that the functor (r) yields an element of R'. Now we state
the propositions:
(80) Let us consider a non zero natural number n, and a point e of £". Then
there exists an element a of R™ such that
(i) a =e, and
(ii) OpenHypercube(e,r) = OpenHyperlnterval(a — n +— r,a + n+ r).
PROOF: Reconsider ¢ = e as an element of R"™. Reconsider p = e as
a point of £F. Consider eg being a point of £" such that p = ey and
OpenHypercube(eg, ) = OpenHypercube(p, ). OpenHypercube(e,r) C
OpenHyperlnterval(a — n +— r,a +n — r) by [8 (27)], [6, (57)], [8 (11)],
[18, (4)]. OpenHyperlnterval(a—n +— r,a+n +— 1) C OpenHypercube(e, 1)
by [10, (22)], B, (27)], [6, (57)], [8, (11)]. O
(81) Let us consider a point p of EL. Then there exists an element a of R"”
such that

(i) a =p, and
(ii) ClosedHypercube(p,b) = ClosedHyperInterval(a — b, a + b).
PROOF: Reconsider a = p as an element of R™. ClosedHypercube(p, b) C

ClosedHyperInterval(a—b, a+b) by [10] (22)], [8, (11), (27)]. ClosedHyperInt-
erval(a — b, a +b) C ClosedHypercube(p, b) by [10, (22)], [8, (11), (27)]. O

13. CORRESPONDANCE BETWEEN INTERVAL AND 1-DIMENSIONAL HYPER
INTERVAL

Let us consider a real number z. Now we state the propositions:
(82) x € [r,s] if and only if 1 — z € ClosedHyperInterval({r), (s)).
PROOF: Set a; = (r). Set by = (s). For every real number x such that
x € [r,s] holds 1 — z € ClosedHyperInterval(ai,b1) by [4, (2)], 24, (7)].
For every real number = such that 1 — x € ClosedHyperInterval(ay, b1)
holds = € [r, s] by [24, (7)]. O
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(83) x €]r,s[if and only if 1 — z € OpenHyperInterval((r), (s)).
PROOF: Set a; = (r). Set by = (s). For every real number x such that
x € |r,s] holds 1 — z € OpenHyperlnterval(a,b1) by [4, (2)], [24, (7)].
For every real number z such that 1 — x € OpenHyperlInterval(ay, b1)
holds x € Jr, s[ by [24, (7)]. O

(84) = € |r,s] if and only if 1 — =z € LeftOpenHyperInterval((r), (s)).
PROOF: Set a; = (r). Set by = (s). For every real number x such that
x € |r,s] holds 1 — z € LeftOpenHyperlnterval(ai, b1) by [4} (2)], [24} (7)].
For every real number x such that 1 — x € LeftOpenHyperInterval(ay, b1)
holds = € |r, s] by [24, (7)]. O

(85) x € [r,s]if and only if 1 — = € RightOpenHyperInterval((r), (s)).
PROOF: Set a; = (r). Set by = (s). For every real number z such that z €
[r, s] holds 1 — z € RightOpenHyperInterval(ai,b1) by [, (2)], [24, (7)].
For every real number z such that 1 — x € RightOpenHyperInterval(a, by)
holds = € [r, s[ by [24, (7)]. O

14. CORRESPONDANCE BETWEEN MEASURABLE RECTANGLE AND PRODUCT

From now on n denotes a non zero natural number.
Now we state the propositions:

(86) Let us consider an n-tuple s of the set of all open real bounded intervals.
Then there exist elements a, b of R™ such that for every natural number
i such that i € Segn holds s(i) = Ja(i), b(7)].
PROOF: s € (the set of all open real bounded intervals)>*8". Consider f
being a function such that s = f and dom f = Segn and rng f C the set
of all open real bounded intervals. Define P[object, object] = there exists
an element f of R x R such that f = $2 and s($1) = |(f)1, (f)2[. For every
natural number ¢ such that ¢ € Segn there exists an element d of R x R
such that PJi, d] by [7, (3)]. Consider f being a finite sequence of elements
of R x R such that len f = n and for every natural number ¢ such that
i € Segn holds PJi, f;] from [25, Sch. 1]. Consider z being an element of
R™ x R™ such that for every natural number 7 such that ¢ € Segn holds
(2)1(7) = (fi)1 and (2)2(i) = (fi)2. Reconsider a = (2)1, b = (2)2 as
an element of R". For every natural number ¢ such that ¢ € Segn holds
s(i) =]a(2),b(d)[. O

(87) Let us consider an element = of Product(n,the set of all open real
bounded intervals). Then there exist elements a, b of R™ such that for
every element t of R", t € zx iff for every natural number 7 such that
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i € Segn holds t(i) € Ja(i),b(7)[. The theorem is a consequence of (62)
and (86).

(88) Let us consider an n-tuple s of the set of all left open real bounded

intervals. Then there exist elements a, b of R™ such that for every natural
number ¢ such that i € Segn holds s(i) = Ja(i), b(7)].
PROOF: s € (the set of all left open real bounded intervals)S°8™. Consider f
being a function such that s = f and dom f = Segn and rng f C the set
of all left open real bounded intervals. Define Plobject,object] = there
exists an element f of R X R such that f = $5 and s($1) = [(f)1, (f)2])-
For every natural number ¢ such that i € Segn there exists an element d
of R x R such that PJi,d] by [7, (3)]. Consider f being a finite sequence of
elements of R x R such that len f = n and for every natural number ¢ such
that ¢ € Segn holds P[i, f;] from [25 Sch. 1]. Consider z being an element
of R™ x R™ such that for every natural number ¢ such that ¢ € Segn
holds (2)1(i) = (fi)1 and (2)2(i) = (fi)2. Reconsider a = (z)1, b = (2)2 as
an element of R". For every natural number ¢ such that ¢ € Segn holds
s(i) = |a(i),b(2)]. O

(89) Let us consider an element x of Product(n, the set of all left open real
bounded intervals). Then there exist elements a, b of R™ such that for
every element t of R™, t € x iff for every natural number ¢ such that
i € Segn holds t(i) € Ja(i),b(7)]. The theorem is a consequence of (62)
and (88).

(90) Let us consider an n-tuple s of the set of all right open real bounded

intervals. Then there exist elements a, b of R™ such that for every natural
number 4 such that ¢ € Segn holds s(i) = [a(i), b(7)][.
PROOF: s € (the set of all right open real bounded intervals)¢&™. Consider
f being a function such that s = f and dom f = Segn and rng f C the set
of all right open real bounded intervals. Define P[object, object] = there
exists an element f of R x R such that f = $5 and s($1) = [(f)1, (f)2]-
For every natural number ¢ such that ¢ € Segn there exists an element d
of R x R such that PJi,d] by [7, (3)]. Consider f being a finite sequence of
elements of R x R such that len f = n and for every natural number 4 such
that ¢ € Segn holds P[i, f;] from [25 Sch. 1]. Consider z being an element
of R™ x R™ such that for every natural number ¢ such that ¢ € Segn
holds (2)1(i) = (fi)1 and (2)2(i) = (fi)2. Reconsider a = (2)1, b = (2)2 as
an element of R". For every natural number ¢ such that ¢ € Segn holds
s(i) = [a(2),b(3)[. O

(91) Let us consider an element x of Product(n,the set of all right open
real bounded intervals). Then there exist elements a, b of R™ such that
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for every element t of R", t € x iff for every natural number ¢ such that
i € Segn holds t(i) € [a(i),b(7)[. The theorem is a consequence of (62)
and (90).

(92) MeasurableRectangle LeftOpenlIntervals(n) = Product(n, the set of all
left open real bounded intervals). The theorem is a consequence of (40)
and (66).

(93) MeasurableRectangle RightOpenlntervals(n) = Product(n, the set of all
right open real bounded intervals). The theorem is a consequence of (46)

and (67).

15. CHEBYSHEV DISTANCE

In the sequel n denotes a non zero natural number and z, ¥, z denote elements
of R™.

Let us consider n. The functor D hebyshey Yielding a function from R™ x R"™
into R is defined by

(Def. 20) for every elements z, y of R", it(x,y) = suprng|z — y|.
Now we state the propositions:
(94) (i) the set of all |z(i) — y(i)| where 7 is an element of Segn is real-

membered, and

(ii) the set of all |x(i) —y(i)| where ¢ is an element of Segn = rng|z—y].
PROOF: Set S = the set of all |z(i) — y(i)| where i is an element of Segn.
S C rnglz — y| by [8, (27)], [6l (124)]. For every object ¢ such that ¢ €
rng|x — y| holds ¢ € S by [6, (124)], [8, (27)]. O

(95) There exists an extended real-membered set S such that
(i) S = the set of all |z(i) — y(¢)| where i is an element of Segn, and

(ii) (D%hebyshev)(x) y) =supS.
The theorem is a consequence of (94).
(96) (Dghebyshev)(xa y) = |$ - y|(max_diﬁ_index(xv y))
PROOF: (D ehyshev) (T3 Y) < |z — y|(max-diff-index(z, y)) by [15 (5)]. O
(97)  (Dlpebyshev)(@:y) = 0/if and only if z = y.
PRrOOF: Consider S being an extended real-membered set such that S =
the set of all |z(i) — y(i)| where ¢ is an element of Segn and
(Dghebyshev)(x7y) = sup S. 8= {0} by [197 (2)]7 [37 (53)]7 [47 (1)] [
(98)  (Dnebyshev)(@: ¥) = (Déipepyshey) (¥ ). The theorem is a consequence of

(1).
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(99) (Dghebyshev)('x’ y) < (Dghebyshev)(x> Z) + (Dghebyshev)(’z7 y)'

PROOF: Reconsider s; = suprng|z—y|, s2 = suprng|z—z|, s3 = suprng|z—
y| as a real number. s1 < s2 + s3 by [8, (27)], [B, (56)], [6, (124)], (2). O

(100)  Dfpepyshey 18 @ metric of R™. The theorem is a consequence of (97), (98),
and (99).

(101) (0,0, 1, 1]) = V2.

(102) (D%hebyshev)([()? 0]7 [17 1]) =1
PRrOOF: Consider S being an extended real-membered set such that S =
the set of all |[0,0](¢) — [1,1](¢)| where i is an element of Seg2 and

(D%hebyshev)([ovo]v [17 1]) = SU.pS. S = {‘O - 1’} by [47 (2)7 (44)] O
Let us consider elements z, y of R'. Now we state the propositions:
(103) (D(ljhebyshev)(xa y) = |l‘(1) - y(1)|
PRrROOF: Consider S being an extended real-membered set such that S =
the set of all |z(i) — y(i)| where ¢ is an element of Seg1 and

(DEhebyshey)(#:4) =sup S. § = {|(1) —y(1)[} by [ (2)]. O
(104)  p'(@,y) = |2(1) —y(1)].
Now we state the propositions:
(105) pt = Déhebyshev. The theorem is a consequence of (104) and (103).
(106)  p* # DZpepyshey- The theorem is a consequence of (101) and (102).

Let n be a non zero natural number. The functor Lo (n) yielding a strict
metric space is defined by the term

(Def. 21) <Rn7D8hebyshev>'
Let us observe that Lo (n) is non empty.
The functor €2 (n) yielding a strict real linear topological structure is defined
by
(Def. 22) the topological structure of it = (Loo(n))top and the RLS structure of
it = RpE"™.
Now we state the proposition:
(107) The RLS structure of £} = the RLS structure of £ (n).

Let n be a non zero natural number. Let us note that £ (n) is non empty.
Now we state the propositions:

(108) Let us consider an element x of RY. Then
(i) Intervals(zx,r) is empty, and
(ii) [IIntervals(z,r) = {0}.

(109) If r <0, then []Intervals(z,r) is empty.
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In the sequel p denotes an element of Ly (n).
Let n be a non zero natural number and p be an element of Ly (n). The
functor % yielding an element of R™ is defined by the term

(Def. 23) p.
Now we state the propositions:

(110) Ball(p,r) = []Intervals(“p,r). The theorem is a consequence of (109),
(95), and (96).
(111) Let us consider a point e of £". If e = p, then Ball(p,r) =
OpenHypercube(e, r). The theorem is a consequence of (110).
Let n be a non zero natural number, p be an element of Lo (n), and r be
a negative real number. Let us note that Ball(p,r) is empty.
Now we state the propositions:

(112) Let us consider an object ¢. Then ¢ € Ball(p, r) if and only if there exists
a function f such that ¢t = f and dom f = Segn and for every natural
number 7 such that i € Segn holds f(i) € [(%)(i) — r, (®p)(3) + r]. The
theorem is a consequence of (95).

(113) Let us consider a point p of &Y, and an element ¢ of Lo (n). Suppose
q = p. Then Ball(q, r) = ClosedHypercube(p, n +— 7).

PROOF: For every object x such that x € Ball(g, r) holds

x € ClosedHypercube(p, n +— r) by (112), [6l (57), (93)], [10} (22)]. For eve-
ry object x such that z € ClosedHypercube(p, n + r) holds = € Ball(q,r)
by [I0, (22)], [6, (131), (124), (57)]. O

(114) Ball(p,r) = OpenHyperInterval(®p — n — r,“p + n — r). The theorem
is a consequence of (80) and (110).

(115) Ball(p,r) = ClosedHyperInterval(®p — n ~ 7, % + n ~— 7). The theorem
is a consequence of (81) and (113).
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