
FORMALIZED MATHEMATICS

Vol. 24, No. 2, Pages 121–141, 2016
DOI: 10.1515/forma-2016-0010 degruyter.com/view/j/forma

Chebyshev Distance

Roland Coghetto
Rue de la Brasserie 5

7100 La Louvière, Belgium

Summary. In [21], Marco Riccardi formalized that RN-basis n is a ba-
sis (in the algebraic sense defined in [26]) of EnT and in [20] he has formalized
that EnT is second-countable, we build (in the topological sense defined in [23]) a
denumerable base of EnT .

Then we introduce the n-dimensional intervals (interval in n-dimensional
Euclidean space, pavé (borné) de Rn [16], semi-intervalle (borné) de Rn [22]).

We conclude with the definition of Chebyshev distance [11].
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1. Preliminaries

From now on n denotes a natural number, r, s denote real numbers, x, y
denote elements of Rn, p, q denote points of EnT, and e denotes a point of En.

Now we state the propositions:

(1) |x− y| = |y − x|.
(2) Let us consider a natural number i. If i ∈ Seg n, then |x|(i) ∈ R.

(3) Let us consider elements x, y of R, and extended reals x1, y1. If x ¬ x1
and y ¬ y1, then x+ y ¬ x1 + y1.

(4) Let us consider real numbers a, c, and an extended real number b. Sup-
pose a < b and [a, b[ ⊆ [a, c[. Then b is a real number.

(5) Let us consider a non empty set D, and a non empty subset D1 of D.
Then D1

n ⊆ Dn.
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(6) Let us consider a non empty set X, and a function f . Suppose f =
Seg n 7−→ X. Then f is a non-empty, n-element finite sequence.

Let n be a natural number. The functor R(n) yielding a non-empty, n-
element finite sequence is defined by the term

(Def. 1) Seg n 7−→ R.

Now we state the propositions:

(7) R(n) = Segn 7−→ the carrier of R1.
(8)

∏
(Seg n 7−→ R) = Rn.

(9)
∏

R(n) = Rn.
(10) Let us consider a set X. Then

∏
(Seg n 7−→ X) = Xn.

(11) Let us consider a non empty set D, and an n-tuple x of D. Then x ∈
DSegn.

(12) Let us consider a subset O1 of EnT, and a subset O2 of (En)top. If O1 = O2,
then O1 is open iff O2 is open.

(13) Suppose e = p. Then the set of all OpenHypercube(e, 1m) where m is
a non zero element of N = the set of all OpenHypercube(p, 1m) where
m is a non zero element of N.

(14) If q ∈ OpenHypercube(p, r), then p ∈ OpenHypercube(q, r).

(15) If q ∈ OpenHypercube(p, r2),
then OpenHypercube(q, r2) ⊆ OpenHypercube(p, r).

Let x be an element of R×R. The functors: (x)1 and (x)2 yield elements of
R. Let n be a natural number and x be an element of Rn ×Rn. The functors:
(x)1 and (x)2 yield elements of Rn. Now we state the proposition:

(16) Let us consider an n-element finite sequence f of elements of R × R.
Then there exists an element x of Rn × Rn such that for every natural
number i such that i ∈ Seg n holds (x)1(i) = (fi)1 and (x)2(i) = (fi)2.

2. The Set of n-Tuples of Rational Numbers

Let us consider n. The functor Qn yielding a set of finite sequences of Q is
defined by the term

(Def. 2) Qn.
Now we state the proposition:

(17) Q0 = {0}.
One can check that Q0 is trivial.
Let us consider n. One can check that Qn is non empty and every element

of Qn is n-element and Qn is countable.
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Let n be a positive natural number. Let us note that Qn is infinite and Qn
is denumerable.

Now we state the proposition:

(18) Qn is a dense subset of EnT.
Proof: Qn is a subset of Rn. Reconsider R = Qn as a subset of EnT. For
every subset Q of EnT such that Q 6= ∅ and Q is open holds R meets Q by
[10, (67)], (12), [15, (23)], [13, (39)]. �

Let us consider n. One can check that Qn is countable and dense as a subset
of EnT.

3. A Countable Base of an n-Dimensional Euclidean Space

(Version 1: [20]):
Let n be a natural number. Let us observe that there exists a basis of EnT

which is countable.
Let us consider n and e. Note that OpenHypercubes e is countable.
The functor OpenHypercubes-Q(n) yielding a non empty set is defined by

the term

(Def. 3) {OpenHypercubes q, where q is a point of En : q ∈ Qn}.

Let q be an element of Qn. The functor @q yielding a point of En is defined
by the term

(Def. 4) q.

Let q be an object. Assume q ∈ Qn. The functor object2Q(q, n) yielding
an element of Qn is defined by the term

(Def. 5) q.

Let us note that OpenHypercubes-Q(n) is countable
and
⋃

OpenHypercubes-Q(n) is countable.
Now we state the propositions:

(19)
⋃

OpenHypercubes-Q(n) is an open family of subsets of EnT. The theorem
is a consequence of (12).

(20) Let us consider a non empty, open subset O of EnT. Then there exists
an element p of Qn such that p ∈ O. The theorem is a consequence of
(18).

(21) Let us consider a family B of subsets of EnT.
Suppose B =

⋃
OpenHypercubes-Q(n). Then B is quasi basis.

Proof: F is quasi basis by (12), [15, (23)], [10, (67)], (20). �

Let us consider n. Observe that
⋃

OpenHypercubes-Q(n) is non empty.
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The functor OpenHypercubesQUnion(n) yielding a countable, open family
of subsets of EnT is defined by the term

(Def. 6)
⋃

OpenHypercubes-Q(n).

Now we state the proposition:

(22) OpenHypercubesQUnion(n) = {OpenHypercube(q, 1m),
where q is a point of En,m is a positive natural number : q ∈ Qn}.
(Version 2):
Let n be a natural number. Observe that there exists a basis of EnT which is

countable.
Now we state the propositions:

(23) OpenHypercubesQUnion(n) is a countable basis of EnT.

(24) Let us consider an open subset O of EnT. Then there exists a subset Y of
OpenHypercubesQUnion(n) such that

(i) Y is countable, and

(ii) O =
⋃
Y.

The theorem is a consequence of (21).

Let us consider an open, non empty subset O of EnT. Now we state the
propositions:

(25) There exists a subset Y of OpenHypercubesQUnion(n) such that

(i) Y is not empty, and

(ii) O =
⋃
Y, and

(iii) there exists a function g from N into Y such that for every object x,
x ∈ O iff there exists an object y such that y ∈ N and x ∈ g(y).

The theorem is a consequence of (24).

(26) There exists a sequence s of OpenHypercubesQUnion(n) such that for
every object x, x ∈ O iff there exists an object y such that y ∈ N and
x ∈ s(y). The theorem is a consequence of (25).

(27) There exists a sequence s of OpenHypercubesQUnion(n) such that O =⋃
s. The theorem is a consequence of (26).

4. The Set of All Left Open Real Bounded Intervals

The set of all left open real bounded intervals yielding a family of subsets of
R is defined by the term

(Def. 7) the set of all ]a, b] where a, b are real numbers.
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Let us note that the set of all left open real bounded intervals is non empty.

Now we state the propositions:

(28) The set of all left open real bounded intervals ⊆ {I, where I is a subset
of R : I is left open interval}.

(29) The set of all left open real bounded intervals is ∩-closed and \fp-closed
and has the empty element and countable cover.

(30) The set of all left open real bounded intervals is a semiring of R.

5. The Set of All Right Open Real Bounded Intervals

The set of all right open real bounded intervals yielding a family of subsets
of R is defined by the term

(Def. 8) the set of all [a, b[ where a, b are real numbers.

Observe that the set of all right open real bounded intervals is non empty.

Now we state the propositions:

(31) The set of all right open real bounded intervals ⊆ {I, where I is a subset
of R : I is right open interval}.

(32) The set of all right open real bounded intervals has the empty element.

(33) (i) the set of all right open real bounded intervals is ∩-closed, and

(ii) the set of all right open real bounded intervals is \fp-closed and has
the empty element.

The theorem is a consequence of (31), (32), and (4).

(34) The set of all right open real bounded intervals has countable cover.

Proof: Define F [object, object] ≡ $1 is an element of N and $2 ∈ the set
of all right open real bounded intervals and there exists a real number x
such that x = $1 and $2 = [−x, x[. For every object x such that x ∈ N there
exists an object y such that y ∈ the set of all right open real bounded
intervals and F [x, y]. Consider f being a function such that dom f = N and
rng f ⊆ the set of all right open real bounded intervals and for every object
x such that x ∈ N holds F [x, f(x)] from [7, Sch. 6]. rng f is countable by
[27, (4)], [14, (58)]. rng f is a cover of R by [2, (2)], [12, (8)], [3, (13)], [17,
(45)]. �

(35) The set of all right open real bounded intervals is a semiring of R.
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6. Finite Product of Left Open Intervals

In the sequel n denotes a non zero natural number.
Let n be a non zero natural number. The functor LeftOpenIntervals(n) yiel-

ding a classical semiring family of R(n) is defined by the term

(Def. 9) Seg n 7−→ (the set of all left open real bounded intervals).

Now we state the propositions:

(36) LeftOpenIntervals(n) = Seg n 7−→ the set of all ]a, b] where a, b are real
numbers.

(37) MeasurableRectangle LeftOpenIntervals(n) is a semiring of Rn. The the-
orem is a consequence of (8).

Let us consider an object x.
Let us assume that x ∈ MeasurableRectangle LeftOpenIntervals(n). Now we

state the propositions:

(38) There exists a subset y of Rn such that

(i) x = y, and

(ii) for every natural number i such that i ∈ Seg n there exist real num-
bers a, b such that for every element t of Rn such that t ∈ y holds
t(i) ∈ ]a, b].

The theorem is a consequence of (37).

(39) There exists a subset y of Rn and there exists an n-element finite se-
quence f of elements of R × R such that x = y and for every element
t of Rn, t ∈ y iff for every natural number i such that i ∈ Seg n holds
t(i) ∈ ](fi)1, (fi)2].
Proof: MeasurableRectangle LeftOpenIntervals(n) is a family of subsets
of Rn. Reconsider y = x as a subset of Rn. Consider g being a function
such that x =

∏
g and g ∈

∏
LeftOpenIntervals(n). Define P[natural

number, set] ≡ there exists an element x of R × R such that $2 = x and
g($1) = ](x)1, (x)2]. For every natural number i such that i ∈ Seg n there
exists an element d of R×R such that P[i, d]. There exists a finite sequence
f1 of elements of R×R such that len f1 = n and for every natural number
i such that i ∈ Seg n holds P[i, f1i] from [25, Sch. 1]. Consider f1 being
a finite sequence of elements of R × R such that len f1 = n and for every
natural number i such that i ∈ Seg n there exists an element x of R ×
R such that f1i = x and g(i) = ](x)1, (x)2]. For every natural number i
such that i ∈ Seg n holds g(i) = ](f1i)1, (f1i)2]. For every element t of
Rn such that t ∈ y for every natural number i such that i ∈ Seg n holds
t(i) ∈ ](f1i)1, (f1i)2]. For every element t of Rn such that for every natural
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number i such that i ∈ Seg n holds t(i) ∈ ](f1i)1, (f1i)2] holds t ∈ y by [6,
(93)]. �

(40) There exists a subset y of Rn and there exist elements a, b of Rn such
that x = y and for every object s, s ∈ y iff there exists an element t of Rn
such that s = t and for every natural number i such that i ∈ Seg n holds
t(i) ∈ ]a(i), b(i)]. The theorem is a consequence of (39) and (16).

Now we state the proposition:

(41) Let us consider a set x. Suppose x ∈ MeasurableRectangle LeftOpenInter-
vals(n). Then there exist elements a, b of Rn such that for every element
t of Rn, t ∈ x iff for every natural number i such that i ∈ Seg n holds
t(i) ∈ ]a(i), b(i)]. The theorem is a consequence of (39) and (16).

7. Finite Product of Right Open Intervals

Let n be a non zero natural number. The functor RightOpenIntervals(n)
yielding a classical semiring family of R(n) is defined by the term

(Def. 10) Seg n 7−→ (the set of all right open real bounded intervals).

From now on n denotes a non zero natural number.
Now we state the propositions:

(42) RightOpenIntervals(n) = Seg n 7−→ the set of all [a, b[ where a, b are
real numbers.

(43) MeasurableRectangle RightOpenIntervals(n) is a semiring of Rn. The
theorem is a consequence of (8).

Let us consider an object x.
Let us assume that x ∈ MeasurableRectangle RightOpenIntervals(n). Now

we state the propositions:

(44) There exists a subset y of Rn such that

(i) x = y, and

(ii) for every natural number i such that i ∈ Seg n there exist real num-
bers a, b such that for every element t of Rn such that t ∈ y holds
t(i) ∈ [a, b[.

The theorem is a consequence of (43).

(45) There exists a subset y of Rn and there exists an n-element finite se-
quence f of elements of R × R such that x = y and for every element
t of Rn, t ∈ y iff for every natural number i such that i ∈ Seg n holds
t(i) ∈ [(fi)1, (fi)2[.
Proof: MeasurableRectangle RightOpenIntervals(n) is a family of subsets
of Rn. Reconsider y = x as a subset of Rn. Consider g being a function
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such that x =
∏
g and g ∈

∏
RightOpenIntervals(n). Define P[natural

number, set] ≡ there exists an element x of R × R such that $2 = x and
g($1) = [(x)1, (x)2[. For every natural number i such that i ∈ Seg n there
exists an element d of R×R such that P[i, d]. There exists a finite sequence
f1 of elements of R×R such that len f1 = n and for every natural number
i such that i ∈ Seg n holds P[i, f1i] from [25, Sch. 1]. Consider f1 being
a finite sequence of elements of R × R such that len f1 = n and for every
natural number i such that i ∈ Seg n there exists an element x of R ×
R such that f1i = x and g(i) = [(x)1, (x)2[. For every natural number i
such that i ∈ Seg n holds g(i) = [(f1i)1, (f1i)2[. For every element t of
Rn such that t ∈ y for every natural number i such that i ∈ Seg n holds
t(i) ∈ [(f1i)1, (f1i)2[. For every element t of Rn such that for every natural
number i such that i ∈ Seg n holds t(i) ∈ [(f1i)1, (f1i)2[ holds t ∈ y by [6,
(93)]. �

(46) There exists a subset y of Rn and there exist elements a, b of Rn such
that x = y and for every object s, s ∈ y iff there exists an element t of Rn
such that s = t and for every natural number i such that i ∈ Seg n holds
t(i) ∈ [a(i), b(i)[. The theorem is a consequence of (45) and (16).

Now we state the proposition:

(47) Let us consider a set x. Suppose x ∈ MeasurableRectangle RightOpenInter-
vals(n). Then there exist elements a, b of Rn such that for every element
t of Rn, t ∈ x iff for every natural number i such that i ∈ Seg n holds
t(i) ∈ [a(i), b(i)[. The theorem is a consequence of (45) and (16).

8. n-Dimensional Product of Subset Family

In the sequel n denotes a natural number, X denotes a set, and S denotes
a family of subsets of X.

Let us consider n and X. The functor Product(n,X) yielding a set is defined
by

(Def. 11) for every object f , f ∈ it iff there exists a function g such that f =
∏
g

and g ∈
∏

(Seg n 7−→ X).

Now we state the propositions:

(48) Product(n,X) ⊆ 2(
⋃⋃
(Segn7−→X))dom(Segn 7−→X) .

(49) Product(n, S) is a family of subsets of
∏

(Seg n 7−→ X).
Proof: Reconsider S1 = Product(n, S) as a subset of
2(
⋃⋃
(Segn7−→S))dom(Segn 7−→S) . S1 ⊆ 2

∏
(Segn7−→X) by [1, (9)], [24, (13), (7)],

[9, (77), (81)]. �
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(50) Let us consider a non empty family S of subsets ofX. Then Product(n, S) =
the set of all

∏
f where f is an n-tuple of S.

Proof: Product(n, S) ⊆ the set of all
∏
f where f is an n-tuple of S by

(10), [6, (131)]. the set of all
∏
f where f is an n-tuple of S ⊆ Product(n, S)

by [6, (131)], (10). �

(51) Let us consider a non zero natural number n. Then Product(n,X) ⊆
2(
⋃
X)Segn .

Let us consider a non zero natural number n, a non empty set X, and a non
empty family S of subsets of X.

Let us assume that S 6= {∅}. Now we state the propositions:

(52) Product(n, S) ⊆ 2X
Segn

. The theorem is a consequence of (51) and (5).

(53)
⋃

Product(n, S) ⊆ XSegn. The theorem is a consequence of (52).

Let n be a natural number and X be a non empty set. Let us note that
Product(n,X) is non empty.

Now we state the proposition:

(54) Let us consider a non empty set X, a non empty family S of subsets
of X, and a subset x of XSegn. Then x is an element of Product(n, S) if
and only if there exists an n-tuple s of S such that for every element t of
XSegn, for every natural number i such that i ∈ Seg n holds t(i) ∈ s(i) iff
t ∈ x.

9. The Set of All Closed Real Bounded Intervals

The set of all closed real bounded intervals yielding a family of subsets of R
is defined by the term

(Def. 12) the set of all [a, b] where a, b are real numbers.

Now we state the proposition:

(55) The set of all closed real bounded intervals = {I, where I is a subset of
R : I is closed interval}.

Let us note that the set of all closed real bounded intervals is non empty.
Now we state the propositions:

(56) The set of all closed real bounded intervals is ∩-closed and has the empty
element and countable cover.
Proof: The set of all closed real bounded intervals is ∩-closed. There
exists a countable subset X of the set of all closed real bounded intervals
such that X is a cover of R by [27, (4)], [14, (58)], [2, (2)], [12, (8)]. �

(57) Let us consider a natural number n. Then Seg n 7−→ (the set of all
closed real bounded intervals) is an n-element finite sequence.
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10. The Set of All Open Real Bounded Intervals

The set of all open real bounded intervals yielding a family of subsets of R
is defined by the term

(Def. 13) the set of all ]a, b[ where a, b are real numbers.

Now we state the proposition:

(58) The set of all open real bounded intervals ⊆ {I, where I is a subset of
R : I is open interval}.

Let us observe that the set of all open real bounded intervals is non empty.
Now we state the propositions:

(59) The set of all open real bounded intervals is ∩-closed and has the empty
element and countable cover.
Proof: The set of all open real bounded intervals is ∩-closed. There exists
a countable subset X of the set of all open real bounded intervals such
that X is a cover of R by [27, (4)], [14, (58)], [2, (2)], [12, (8)]. �

(60) Let us consider a natural number n. Then Seg n 7−→ (the set of all open
real bounded intervals) is an n-element finite sequence.

11. n-Dimensional Subset Family of R

From now on n denotes a natural number and S denotes a family of subsets
of R.

Now we state the proposition:

(61) Product(n, S) is a family of subsets of Rn. The theorem is a consequence
of (49) and (8).

Let us consider n and S. One can check that the functor Product(n, S) yields
a family of subsets of Rn. Now we state the propositions:

(62) Let us consider a non empty family S of subsets of R, and a subset x
of Rn. Then x is an element of Product(n, S) if and only if there exists
an n-tuple s of S such that for every element t of Rn, for every natural
number i such that i ∈ Seg n holds t(i) ∈ s(i) iff t ∈ x.
Proof: If x is an element of Product(n, S), then there exists an n-tuple s
of S such that for every element t of Rn, for every natural number i such
that i ∈ Seg n holds t(i) ∈ s(i) iff t ∈ x by [6, (93)]. If there exists an n-
tuple s of S such that for every element t of Rn, for every natural number
i such that i ∈ Seg n holds t(i) ∈ s(i) iff t ∈ x, then x is an element of
Product(n, S) by [6, (93)]. �
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(63) Let us consider a non zero natural number n, and an n-tuple s of the set
of all closed real bounded intervals. Then there exist elements a, b of Rn
such that for every natural number i such that i ∈ Seg n holds s(i) =
[a(i), b(i)].
Proof: s ∈ (the set of all closed real bounded intervals)Segn. Consider f
being a function such that s = f and dom f = Seg n and rng f ⊆ the set
of all closed real bounded intervals. Define P[object, object] ≡ there exists
an element f of R×R such that f = $2 and s($1) = [(f)1, (f)2]. For every
natural number i such that i ∈ Seg n there exists an element d of R × R
such that P[i, d] by [7, (3)]. Consider f being a finite sequence of elements
of R × R such that len f = n and for every natural number i such that
i ∈ Seg n holds P[i, fi] from [25, Sch. 1]. Consider z being an element of
Rn ×Rn such that for every natural number i such that i ∈ Seg n holds
(z)1(i) = (fi)1 and (z)2(i) = (fi)2. Reconsider a = (z)1, b = (z)2 as
an element of Rn. For every natural number i such that i ∈ Seg n holds
s(i) = [a(i), b(i)]. �

(64) Let us consider a non zero natural number n, and an element x of
Product(n, the set of all closed real bounded intervals). Then there exist
elements a, b of Rn such that for every element t of Rn, t ∈ x iff for every
natural number i such that i ∈ Seg n holds t(i) ∈ [a(i), b(i)]. The theorem
is a consequence of (62) and (63).

Let us consider a non zero natural number n, a subset x of Rn, and elements
a, b of Rn. Now we state the propositions:

(65) Suppose for every element t of Rn, t ∈ x iff for every natural number
i such that i ∈ Seg n holds t(i) ∈ [a(i), b(i)]. Then x is an element of
Product(n, the set of all closed real bounded intervals).
Proof: Define P[object, object] ≡ there exists a natural number n such
that $1 = n and $2 = [a(n), b(n)]. For every natural number i such that
i ∈ Seg n there exists an element d of the set of all closed real bounded
intervals such that P[i, d]. There exists a finite sequence g of elements of
the set of all closed real bounded intervals such that len g = n and for
every natural number i such that i ∈ Seg n holds P[i, gi] from [25, Sch. 1].
Consider g being a finite sequence of elements of the set of all closed real
bounded intervals such that len g = n and for every natural number i such
that i ∈ Seg n holds P[i, gi]. For every natural number i such that i ∈ Seg n
holds g(i) = [a(i), b(i)]. There exists a function g such that x =

∏
g and

g ∈
∏

(Seg n 7−→ (the set of all closed real bounded intervals)) by [4, (89)],
[24, (13), (7)], [1, (9)]. �

(66) Suppose for every element t of Rn, t ∈ x iff for every natural number
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i such that i ∈ Seg n holds t(i) ∈ ]a(i), b(i)]. Then x is an element of
Product(n, the set of all left open real bounded intervals).
Proof: Define P[object, object] ≡ there exists a natural number n such
that $1 = n and $2 = ]a(n), b(n)]. For every natural number i such that
i ∈ Seg n there exists an element d of the set of all left open real bounded
intervals such that P[i, d]. There exists a finite sequence g of elements of
the set of all left open real bounded intervals such that len g = n and
for every natural number i such that i ∈ Seg n holds P[i, gi] from [25,
Sch. 1]. Consider g being a finite sequence of elements of the set of all
left open real bounded intervals such that len g = n and for every natural
number i such that i ∈ Seg n holds P[i, gi]. For every natural number i
such that i ∈ Seg n holds g(i) = ]a(i), b(i)]. There exists a function g such
that x =

∏
g and g ∈

∏
(Seg n 7−→ (the set of all left open real bounded

intervals)) by [4, (89)], [24, (13), (7)], [1, (9)]. �

(67) Suppose for every element t of Rn, t ∈ x iff for every natural number
i such that i ∈ Seg n holds t(i) ∈ [a(i), b(i)[. Then x is an element of
Product(n, the set of all right open real bounded intervals).
Proof: Define P[object, object] ≡ there exists a natural number n such
that $1 = n and $2 = [a(n), b(n)[. For every natural number i such that
i ∈ Seg n there exists an element d of the set of all right open real bounded
intervals such that P[i, d]. There exists a finite sequence g of elements of
the set of all right open real bounded intervals such that len g = n and for
every natural number i such that i ∈ Seg n holds P[i, gi] from [25, Sch. 1].
Consider g being a finite sequence of elements of the set of all right open
real bounded intervals such that len g = n and for every natural number
i such that i ∈ Seg n holds P[i, gi]. For every natural number i such that
i ∈ Seg n holds g(i) = [a(i), b(i)[. There exists a function g such that
x =

∏
g and g ∈

∏
(Seg n 7−→ (the set of all right open real bounded

intervals)) by [4, (89)], [24, (13), (7)], [1, (9)]. �

Now we state the propositions:

(68) Let us consider a non zero natural number n, and an n-tuple s of the set
of all left open real bounded intervals. Then there exist elements a, b
of Rn such that for every natural number i such that i ∈ Seg n holds
s(i) = ]a(i), b(i)].
Proof: s ∈ (the set of all left open real bounded intervals)Segn. Consider f
being a function such that s = f and dom f = Seg n and rng f ⊆ the set
of all left open real bounded intervals. Define P[object, object] ≡ there
exists an element f of R × R such that f = $2 and s($1) = ](f)1, (f)2].
For every natural number i such that i ∈ Seg n there exists an element d
of R×R such that P[i, d] by [7, (3)]. Consider f being a finite sequence of



Chebyshev distance 133

elements of R×R such that len f = n and for every natural number i such
that i ∈ Seg n holds P[i, fi] from [25, Sch. 1]. Consider z being an element
of Rn × Rn such that for every natural number i such that i ∈ Seg n
holds (z)1(i) = (fi)1 and (z)2(i) = (fi)2. Reconsider a = (z)1, b = (z)2 as
an element of Rn. For every natural number i such that i ∈ Seg n holds
s(i) = ]a(i), b(i)]. �

(69) Let us consider a non zero natural number n, and an element x of
Product(n, the set of all left open real bounded intervals). Then there exist
elements a, b of Rn such that for every element t of Rn, t ∈ x iff for every
natural number i such that i ∈ Seg n holds t(i) ∈ ]a(i), b(i)]. The theorem
is a consequence of (62) and (68).

(70) Let us consider a non zero natural number n, and an n-tuple s of the set
of all right open real bounded intervals. Then there exist elements a, b
of Rn such that for every natural number i such that i ∈ Seg n holds
s(i) = [a(i), b(i)[.
Proof: s ∈ (the set of all right open real bounded intervals)Segn. Consider
f being a function such that s = f and dom f = Seg n and rng f ⊆ the set
of all right open real bounded intervals. Define P[object, object] ≡ there
exists an element f of R × R such that f = $2 and s($1) = [(f)1, (f)2[.
For every natural number i such that i ∈ Seg n there exists an element d
of R×R such that P[i, d] by [7, (3)]. Consider f being a finite sequence of
elements of R×R such that len f = n and for every natural number i such
that i ∈ Seg n holds P[i, fi] from [25, Sch. 1]. Consider z being an element
of Rn × Rn such that for every natural number i such that i ∈ Seg n
holds (z)1(i) = (fi)1 and (z)2(i) = (fi)2. Reconsider a = (z)1, b = (z)2 as
an element of Rn. For every natural number i such that i ∈ Seg n holds
s(i) = [a(i), b(i)[. �

(71) Let us consider a non zero natural number n, and an element x of
Product(n, the set of all right open real bounded intervals). Then there
exist elements a, b of Rn such that for every element t of Rn, t ∈ x iff for
every natural number i such that i ∈ Seg n holds t(i) ∈ [a(i), b(i)[. The
theorem is a consequence of (62) and (70).

12. Closed/Open/Left-Open/Right-Open – Hyper Interval

From now on n denotes a natural number and a, b, c, d denote elements of
Rn.

Let us consider n, a, and b. The functor ClosedHyperInterval(a, b) yielding
a subset of Rn is defined by
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(Def. 14) for every object x, x ∈ it iff there exists an element y of Rn such that
x = y and for every natural number i such that i ∈ Seg n holds y(i) ∈
[a(i), b(i)].

The functor OpenHyperInterval(a, b) yielding a subset of Rn is defined by

(Def. 15) for every object x, x ∈ it iff there exists an element y of Rn such that
x = y and for every natural number i such that i ∈ Seg n holds y(i) ∈
]a(i), b(i)[.

The functor LeftOpenHyperInterval(a, b) yielding a subset of Rn is defined
by

(Def. 16) for every object x, x ∈ it iff there exists an element y of Rn such that
x = y and for every natural number i such that i ∈ Seg n holds y(i) ∈
]a(i), b(i)].

The functor RightOpenHyperInterval(a, b) yielding a subset of Rn is defined
by

(Def. 17) for every object x, x ∈ it iff there exists an element y of Rn such that
x = y and for every natural number i such that i ∈ Seg n holds y(i) ∈
[a(i), b(i)[.

Now we state the proposition:

(72) ClosedHyperInterval(a, a) = {a}.
Proof: ClosedHyperInterval(a, a) ⊆ {a} by [6, (124)].
{a} ⊆ ClosedHyperInterval(a, a). �

Let us consider n and a. Let us observe that ClosedHyperInterval(a, a) is
trivial.

Now we state the proposition:

(73) (i) OpenHyperInterval(a, b) ⊆ LeftOpenHyperInterval(a, b), and

(ii) OpenHyperInterval(a, b) ⊆ RightOpenHyperInterval(a, b), and

(iii) LeftOpenHyperInterval(a, b) ⊆ ClosedHyperInterval(a, b), and

(iv) RightOpenHyperInterval(a, b) ⊆ ClosedHyperInterval(a, b).

Let us consider n, a, and b. We say that a ¬ b if and only if

(Def. 18) for every natural number i such that i ∈ Seg n holds a(i) ¬ b(i).
One can verify that the predicate is reflexive.

Now we state the propositions:

(74) If a ¬ b ¬ c, then a ¬ c.
(75) If a ¬ c and d ¬ b,

then ClosedHyperInterval(c, d) ⊆ ClosedHyperInterval(a, b).

(76) If a ¬ b, then ClosedHyperInterval(a, b) is not empty. The theorem is
a consequence of (75) and (72).
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Let us consider n, a, and b. We say that a < b if and only if

(Def. 19) for every natural number i such that i ∈ Seg n holds a(i) < b(i).

Now we state the propositions:

(77) If a < b < c, then a < c.

(78) If b < a and n is not zero, then ClosedHyperInterval(a, b) is empty.

(79) n 7→ r is an element of Rn.
Proof: Set f = n 7→ r. f ∈ RSegn by [6, (112), (93)]. �

Let us consider n and r. Note that the functor n 7→ r yields an element of
Rn. One can check that the functor 〈r〉 yields an element of R1. Now we state
the propositions:

(80) Let us consider a non zero natural number n, and a point e of En. Then
there exists an element a of Rn such that

(i) a = e, and

(ii) OpenHypercube(e, r) = OpenHyperInterval(a− n 7→ r, a+ n 7→ r).

Proof: Reconsider a = e as an element of Rn. Reconsider p = e as
a point of EnT. Consider e0 being a point of En such that p = e0 and
OpenHypercube(e0, r) = OpenHypercube(p, r). OpenHypercube(e, r) ⊆
OpenHyperInterval(a− n 7→ r, a+ n 7→ r) by [8, (27)], [6, (57)], [8, (11)],
[18, (4)]. OpenHyperInterval(a−n 7→ r, a+n 7→ r) ⊆ OpenHypercube(e, r)
by [10, (22)], [8, (27)], [6, (57)], [8, (11)]. �

(81) Let us consider a point p of EnT. Then there exists an element a of Rn
such that

(i) a = p, and

(ii) ClosedHypercube(p, b) = ClosedHyperInterval(a− b, a+ b).

Proof: Reconsider a = p as an element of Rn. ClosedHypercube(p, b) ⊆
ClosedHyperInterval(a−b, a+b) by [10, (22)], [8, (11), (27)]. ClosedHyperInt-
erval(a− b, a+ b) ⊆ ClosedHypercube(p, b) by [10, (22)], [8, (11), (27)]. �

13. Correspondance between Interval and 1-Dimensional Hyper
Interval

Let us consider a real number x. Now we state the propositions:

(82) x ∈ [r, s] if and only if 1 7→ x ∈ ClosedHyperInterval(〈r〉, 〈s〉).
Proof: Set a1 = 〈r〉. Set b1 = 〈s〉. For every real number x such that
x ∈ [r, s] holds 1 7→ x ∈ ClosedHyperInterval(a1, b1) by [4, (2)], [24, (7)].
For every real number x such that 1 7→ x ∈ ClosedHyperInterval(a1, b1)
holds x ∈ [r, s] by [24, (7)]. �
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(83) x ∈ ]r, s[ if and only if 1 7→ x ∈ OpenHyperInterval(〈r〉, 〈s〉).
Proof: Set a1 = 〈r〉. Set b1 = 〈s〉. For every real number x such that
x ∈ ]r, s[ holds 1 7→ x ∈ OpenHyperInterval(a1, b1) by [4, (2)], [24, (7)].
For every real number x such that 1 7→ x ∈ OpenHyperInterval(a1, b1)
holds x ∈ ]r, s[ by [24, (7)]. �

(84) x ∈ ]r, s] if and only if 1 7→ x ∈ LeftOpenHyperInterval(〈r〉, 〈s〉).
Proof: Set a1 = 〈r〉. Set b1 = 〈s〉. For every real number x such that
x ∈ ]r, s] holds 1 7→ x ∈ LeftOpenHyperInterval(a1, b1) by [4, (2)], [24, (7)].
For every real number x such that 1 7→ x ∈ LeftOpenHyperInterval(a1, b1)
holds x ∈ ]r, s] by [24, (7)]. �

(85) x ∈ [r, s[ if and only if 1 7→ x ∈ RightOpenHyperInterval(〈r〉, 〈s〉).
Proof: Set a1 = 〈r〉. Set b1 = 〈s〉. For every real number x such that x ∈
[r, s[ holds 1 7→ x ∈ RightOpenHyperInterval(a1, b1) by [4, (2)], [24, (7)].
For every real number x such that 1 7→ x ∈ RightOpenHyperInterval(a1, b1)
holds x ∈ [r, s[ by [24, (7)]. �

14. Correspondance between Measurable Rectangle and Product

From now on n denotes a non zero natural number.
Now we state the propositions:

(86) Let us consider an n-tuple s of the set of all open real bounded intervals.
Then there exist elements a, b of Rn such that for every natural number
i such that i ∈ Seg n holds s(i) = ]a(i), b(i)[.
Proof: s ∈ (the set of all open real bounded intervals)Segn. Consider f
being a function such that s = f and dom f = Seg n and rng f ⊆ the set
of all open real bounded intervals. Define P[object, object] ≡ there exists
an element f of R×R such that f = $2 and s($1) = ](f)1, (f)2[. For every
natural number i such that i ∈ Seg n there exists an element d of R × R
such that P[i, d] by [7, (3)]. Consider f being a finite sequence of elements
of R × R such that len f = n and for every natural number i such that
i ∈ Seg n holds P[i, fi] from [25, Sch. 1]. Consider z being an element of
Rn ×Rn such that for every natural number i such that i ∈ Seg n holds
(z)1(i) = (fi)1 and (z)2(i) = (fi)2. Reconsider a = (z)1, b = (z)2 as
an element of Rn. For every natural number i such that i ∈ Seg n holds
s(i) = ]a(i), b(i)[. �

(87) Let us consider an element x of Product(n, the set of all open real
bounded intervals). Then there exist elements a, b of Rn such that for
every element t of Rn, t ∈ x iff for every natural number i such that
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i ∈ Seg n holds t(i) ∈ ]a(i), b(i)[. The theorem is a consequence of (62)
and (86).

(88) Let us consider an n-tuple s of the set of all left open real bounded
intervals. Then there exist elements a, b of Rn such that for every natural
number i such that i ∈ Seg n holds s(i) = ]a(i), b(i)].

Proof: s ∈ (the set of all left open real bounded intervals)Segn. Consider f
being a function such that s = f and dom f = Seg n and rng f ⊆ the set
of all left open real bounded intervals. Define P[object, object] ≡ there
exists an element f of R × R such that f = $2 and s($1) = ](f)1, (f)2].
For every natural number i such that i ∈ Seg n there exists an element d
of R×R such that P[i, d] by [7, (3)]. Consider f being a finite sequence of
elements of R×R such that len f = n and for every natural number i such
that i ∈ Seg n holds P[i, fi] from [25, Sch. 1]. Consider z being an element
of Rn × Rn such that for every natural number i such that i ∈ Seg n
holds (z)1(i) = (fi)1 and (z)2(i) = (fi)2. Reconsider a = (z)1, b = (z)2 as
an element of Rn. For every natural number i such that i ∈ Seg n holds
s(i) = ]a(i), b(i)]. �

(89) Let us consider an element x of Product(n, the set of all left open real
bounded intervals). Then there exist elements a, b of Rn such that for
every element t of Rn, t ∈ x iff for every natural number i such that
i ∈ Seg n holds t(i) ∈ ]a(i), b(i)]. The theorem is a consequence of (62)
and (88).

(90) Let us consider an n-tuple s of the set of all right open real bounded
intervals. Then there exist elements a, b of Rn such that for every natural
number i such that i ∈ Seg n holds s(i) = [a(i), b(i)[.

Proof: s ∈ (the set of all right open real bounded intervals)Segn. Consider
f being a function such that s = f and dom f = Seg n and rng f ⊆ the set
of all right open real bounded intervals. Define P[object, object] ≡ there
exists an element f of R × R such that f = $2 and s($1) = [(f)1, (f)2[.
For every natural number i such that i ∈ Seg n there exists an element d
of R×R such that P[i, d] by [7, (3)]. Consider f being a finite sequence of
elements of R×R such that len f = n and for every natural number i such
that i ∈ Seg n holds P[i, fi] from [25, Sch. 1]. Consider z being an element
of Rn × Rn such that for every natural number i such that i ∈ Seg n
holds (z)1(i) = (fi)1 and (z)2(i) = (fi)2. Reconsider a = (z)1, b = (z)2 as
an element of Rn. For every natural number i such that i ∈ Seg n holds
s(i) = [a(i), b(i)[. �

(91) Let us consider an element x of Product(n, the set of all right open
real bounded intervals). Then there exist elements a, b of Rn such that
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for every element t of Rn, t ∈ x iff for every natural number i such that
i ∈ Seg n holds t(i) ∈ [a(i), b(i)[. The theorem is a consequence of (62)
and (90).

(92) MeasurableRectangle LeftOpenIntervals(n) = Product(n, the set of all
left open real bounded intervals). The theorem is a consequence of (40)
and (66).

(93) MeasurableRectangle RightOpenIntervals(n) = Product(n, the set of all
right open real bounded intervals). The theorem is a consequence of (46)
and (67).

15. Chebyshev Distance

In the sequel n denotes a non zero natural number and x, y, z denote elements
of Rn.

Let us consider n. The functor DnChebyshev yielding a function from Rn×Rn
into R is defined by

(Def. 20) for every elements x, y of Rn, it(x, y) = sup rng|x− y|.
Now we state the propositions:

(94) (i) the set of all |x(i) − y(i)| where i is an element of Seg n is real-
membered, and

(ii) the set of all |x(i)−y(i)| where i is an element of Seg n = rng|x−y|.
Proof: Set S = the set of all |x(i)− y(i)| where i is an element of Seg n.
S ⊆ rng|x − y| by [8, (27)], [6, (124)]. For every object t such that t ∈
rng|x− y| holds t ∈ S by [6, (124)], [8, (27)]. �

(95) There exists an extended real-membered set S such that

(i) S = the set of all |x(i)− y(i)| where i is an element of Seg n, and

(ii) (DnChebyshev)(x, y) = supS.

The theorem is a consequence of (94).

(96) (DnChebyshev)(x, y) = |x− y|(max-diff-index(x, y)).
Proof: (DnChebyshev)(x, y) ¬ |x− y|(max-diff-index(x, y)) by [15, (5)]. �

(97) (DnChebyshev)(x, y) = 0 if and only if x = y.
Proof: Consider S being an extended real-membered set such that S =
the set of all |x(i)− y(i)| where i is an element of Seg n and
(DnChebyshev)(x, y) = supS. S = {0} by [19, (2)], [3, (53)], [4, (1)]. �

(98) (DnChebyshev)(x, y) = (DnChebyshev)(y, x). The theorem is a consequence of
(1).
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(99) (DnChebyshev)(x, y) ¬ (DnChebyshev)(x, z) + (DnChebyshev)(z, y).
Proof: Reconsider s1 = sup rng|x−y|, s2 = sup rng|x−z|, s3 = sup rng|z−
y| as a real number. s1 ¬ s2 + s3 by [8, (27)], [5, (56)], [6, (124)], (2). �

(100) DnChebyshev is a metric of Rn. The theorem is a consequence of (97), (98),
and (99).

(101) ρ2([0, 0], [1, 1]) =
√

2.

(102) (D2Chebyshev)([0, 0], [1, 1]) = 1.
Proof: Consider S being an extended real-membered set such that S =
the set of all |[0, 0](i)− [1, 1](i)| where i is an element of Seg 2 and
(D2Chebyshev)([0, 0], [1, 1]) = supS. S = {|0− 1|} by [4, (2), (44)]. �

Let us consider elements x, y of R1. Now we state the propositions:

(103) (D1Chebyshev)(x, y) = |x(1)− y(1)|.
Proof: Consider S being an extended real-membered set such that S =
the set of all |x(i)− y(i)| where i is an element of Seg 1 and
(D1Chebyshev)(x, y) = supS. S = {|x(1)− y(1)|} by [4, (2)]. �

(104) ρ1(x, y) = |x(1)− y(1)|.
Now we state the propositions:

(105) ρ1 = D1Chebyshev. The theorem is a consequence of (104) and (103).

(106) ρ2 6= D2Chebyshev. The theorem is a consequence of (101) and (102).

Let n be a non zero natural number. The functor L∞(n) yielding a strict
metric space is defined by the term

(Def. 21) 〈Rn, DnChebyshev〉.
Let us observe that L∞(n) is non empty.
The functor En∞(n) yielding a strict real linear topological structure is defined

by

(Def. 22) the topological structure of it = (L∞(n))top and the RLS structure of
it = RSegnR .

Now we state the proposition:

(107) The RLS structure of EnT = the RLS structure of En∞(n).

Let n be a non zero natural number. Let us note that En∞(n) is non empty.
Now we state the propositions:

(108) Let us consider an element x of R0. Then

(i) Intervals(x, r) is empty, and

(ii)
∏

Intervals(x, r) = {∅}.

(109) If r ¬ 0, then
∏

Intervals(x, r) is empty.
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In the sequel p denotes an element of L∞(n).
Let n be a non zero natural number and p be an element of L∞(n). The

functor @p yielding an element of Rn is defined by the term

(Def. 23) p.

Now we state the propositions:

(110) Ball(p, r) =
∏

Intervals(@p, r). The theorem is a consequence of (109),
(95), and (96).

(111) Let us consider a point e of En. If e = p, then Ball(p, r) =
OpenHypercube(e, r). The theorem is a consequence of (110).

Let n be a non zero natural number, p be an element of L∞(n), and r be
a negative real number. Let us note that Ball(p, r) is empty.

Now we state the propositions:

(112) Let us consider an object t. Then t ∈ Ball(p, r) if and only if there exists
a function f such that t = f and dom f = Seg n and for every natural
number i such that i ∈ Seg n holds f(i) ∈ [(@p)(i) − r, (@p)(i) + r]. The
theorem is a consequence of (95).

(113) Let us consider a point p of EnT, and an element q of L∞(n). Suppose
q = p. Then Ball(q, r) = ClosedHypercube(p, n 7→ r).
Proof: For every object x such that x ∈ Ball(q, r) holds
x ∈ ClosedHypercube(p, n 7→ r) by (112), [6, (57), (93)], [10, (22)]. For eve-
ry object x such that x ∈ ClosedHypercube(p, n 7→ r) holds x ∈ Ball(q, r)
by [10, (22)], [6, (131), (124), (57)]. �

(114) Ball(p, r) = OpenHyperInterval(@p − n 7→ r,@p + n 7→ r). The theorem
is a consequence of (80) and (110).

(115) Ball(p, r) = ClosedHyperInterval(@p− n 7→ r,@p+ n 7→ r). The theorem
is a consequence of (81) and (113).
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