FORMALIZED MATHEMATICS "™ DE GRUYTER
Vol. 24, No. 2, Pages 107-119, 2016 (: OPEN

T
DOI: 10.1515/forma-2016-0009 degruyter.com/view/j/forma

Cousin’s Lemma

Roland Coghetto
Rue de la Brasserie 5
7100 La Louviere, Belgium

Summary. We formalize, in two different ways, that “the n-dimensional
Euclidean metric space is a complete metric space” (version 1. with the results
obtained in [13], [26], [25] and version 2., the results obtained in [13], [14], (regi-
strations) [24]).

With the Cantor’s theorem - in complete metric space (proof by Karol Pak
in [22]), we formalize “The Nested Intervals Theorem in 1-dimensional Euclidean
metric space”.

Pierre Cousin’s proof in 1892 [I§] the lemma, published in 1895 [9] states
that:

“Soit, sur le plan YOX, une aire connexe S limitée par un contour
fermé simple ou complexe; on suppose qu’a chaque point de S ou
de son périmetre correspond un cercle, de rayon non nul, ayant ce
point pour centre : il est alors toujours possible de subdiviser S en
régions, en nombre fini et assez petites pour que chacune d’elles soit
complétement intérieure au cercle correspondant & un point conve-
nablement choisi dans S ou sur son périmetre.”

(In the plane YOX let S be a connected area bounded by a closed contour, simple
or complex; one supposes that at each point of S or its perimeter there is a circle,
of non-zero radius, having this point as its centre; it is then always possible to
subdivide S into regions, finite in number and sufficiently small for each one of
them to be entirely inside a circle corresponding to a suitably chosen point in S
or on its perimeter) [23].

Cousin’s Lemma, used in Henstock and Kurzweil integral [29] (generalized
Riemann integral), state that: “for any gauge 0, there exists at least one J-fine
tagged partition”. In the last section, we formalize this theorem. We use the
suggestions given to the Cousin’s Theorem p.11 in [5] and with notations: [4],
[29], [19], |28] and [12].
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1. PRELIMINARIES

Now we state the proposition:

(1) Let us consider non empty, increasing finite sequences p, ¢ of elements
of R. Suppose p(lenp) < ¢(1). Then p ™ ¢ is a non empty, increasing finite
sequence of elements of R.

Let us consider real numbers a, b. Now we state the propositions:

(2) Ifl<aand0<b<1,thenlog,b<0.
(3) If 1 <aandl<b,then 0 < log, b.

Let us consider a finite sequence p and a natural number 7.

Let us assume that ¢ € dom p. Now we state the propositions:
(4) (i) i=1,or
(i) 1 <.
(5) (i) i =lenp, or
(ii) ¢ < lenp.
Now we state the propositions:

(6) Let us consider an object x. Then [[({z}) = {(z)}.

(7) Let us consider an element = of R'. Then there exists a real number r3
such that z = (r3).

(8) Let us consider a real number a. Then (a) is a point of €.

(9) Let us consider real numbers a, b. If a < b, then a < “TH’ <b.
(10) Let us consider real numbers a, b, c. If a < b < ¢, then a < &<,
Let us consider real numbers a, b. Now we state the propositions:

(11) If a <b, then % <b.
(12) If a < b, then [a,b] is a non empty, compact subset of R.

(13) Let us consider a finite sequence f. Suppose 2 < len f.
Then f)i(len f1) = f(len f).
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2. €™ 1S COMPLETE - PROOF VERSION 1

From now on n denotes a natural number, s; denotes a sequence of £", and
s2 denotes a sequence of (E", - ||).
Now we state the propositions:
(14) Let us consider elements z, y of £", and points g, h of (E™,||-||). Ifz =g
and y = h, then p(z,y) = |lg — h].
(15) (i) s1 is a sequence of (€™, -|), and
(ii) s2 is a sequence of £™.
PROOF: s is a sequence of (", - ||) by [10, (67), (22)]. s2 is a sequence
of & by [10, (22), (67)]. O
Let us assume that s; = so. Now we state the propositions:

(16) sp is Cauchy if and only if s9 is Cauchy sequence by norm. The theorem
is a consequence of (14).

(17) s; is convergent if and only if s is convergent. The theorem is a conse-
quence of (14).

(18) Let us consider a sequence S; of £™. If S; is Cauchy, then S; is conver-
gent. The theorem is a consequence of (15), (16), and (17).

(19) &™ is complete.

3. £™ 1S COMPLETE - PROOF VERSION 2

Now we state the propositions:
(20) The distance by norm of (£, || - ||) = p". The theorem is a consequence
of (14).
(21) MetricSpaceNorm(E™, || - ||) = £™. The theorem is a consequence of (20).
(22) &™ is complete. The theorem is a consequence of (21).

Let n be a natural number. Let us note that £™ is complete.

4. THE NESTED INTERVALS THEOREM (1-DIMENSIONAL EUCLIDEAN SPACE)

Let a, b be sequences of real numbers. The functor IntervalSeq(a, b) yielding
a sequence of subsets of R! is defined by

(Def. 1) for every natural number 4, it(i) = [[([a(7), b(7)]).
Now we state the propositions:

(23) Let us consider sequences a, b of real numbers, and a natural number i.
Then (IntervalSeq(a,b))(i) = [1{[a(7), b(7)]).
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(24) Let us consider sequences a, b of real numbers. Then IntervalSeq(a, b) is
a sequence of subsets of £1.

(25) TI(R) =R

(26) Let us consider real numbers a, b, and points x1, 22 of £'. Suppose
x1 = (a) and z9 = (b). Then p(x1,x2) = |a — b|.

(27) Let us consider real numbers a, b, and a subset S of £'. Suppose a < b
and S = [[{[a,b]). Let us consider points z, y of £L. If x, y € S, then
p(z,y) <b—a.

PROOF: Set s = [[([a,b]). For every points z, y of £! such that z, y € s
holds p(z,y) < b—a by (6), [10, (67), (22)], (7). O

(28) Let us consider real numbers a, b, and a subset S of £L. If a < b and

S =[I([a,b]), then S is bounded.
PROOF: Set s = []([a,b]). There exists a real number r such that 0 < r
and for every points z, y of £! such that x, y € s holds p(z,y) < r by (6),
[0, (67), (22)], (7). O
Let us consider sequences a, b of real numbers.
Let us assume that for every natural number 4, a(i) < b(7) and a(i) < a(i+1)
and b(i + 1) < b(z). Now we state the propositions:

(29) IntervalSeq(a,b) is a non-empty, pointwise bounded, closed sequence of
subsets of .
PROOF: Reconsider s = IntervalSeq(a,b) as a sequence of subsets of £1.
s is non-empty by (23), [I, (26)], [3, (2)]. s is pointwise bounded by (23),
(6), [10, (67), (22)]. s is closed by (23), [10, (67), (22)], (25). O

(30) IntervalSeq(a,b) is non ascending. The theorem is a consequence of (23).

(31) Let us consider real numbers a, b, z. If a < z < b, then (z) € [[{[a,b]).
PROOF: Reconsider P = (z) as a point of €. There exists a function g
such that ¢ = P and dom g = dom([a, b]) and for every object y such that
y € dom([a, b]) holds g(y) € ([a,b])(y) by [3, (2)]. T

(32) Let us consider real numbers a, b, and a subset S of £L. If a < b and
S = TI{([a, b]), then @S = b — a. The theorem is a consequence of (28),
(31), (27), (8), and (26).

(33) Let us consider sequences a, b of real numbers. Suppose for every natural
number 4, a(i) < b(i) and a is non-decreasing and b is non-increasing. Then

(i) a is convergent, and
(ii) b is convergent.

(34) Let us consider sequences a, b of real numbers. Suppose a(0) < b(0) and
for every natural number i, a(i + 1) = a(i) and b(z + 1) = “(Z) b(@) op
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a(i+1) = M and b(i + 1) = b(7). Let us consider a natural number
i. Then a(7) < b(37).

PRrROOF: Define Plobject] = there exists a natural number ¢ such that
$1 =i and a(7) < b(i). For every natural number k such that P[k] holds
P[k + 1]. For every natural number k, P[k] from [2 Sch. 2]. O

Let us consider sequences a, b of real numbers, a sequence S of subsets of
E', and a natural number i. Now we state the propositions:
(35) Suppose a(0) < b(0) and S = IntervalSeq(a,b) and for every natural
number i, a(i+1) = a(i) and b(i +1) = M ora(i+1)= M and
b(i + 1) = b(i). Then
(i) a(i) < b(i), and
(i) a(i) < a(i+1), and
(iii) b(i + 1) < b(i), and

(iv) (@9)(i) = b(i) — a(i).
The theorem is a consequence of (34), (9), (24), (23), and (32).

(36) Suppose a(0) = b(0) and S = IntervalSeq(a,b) and for every natural
number 7, a(i+1) = a(i) and b(i+ 1) = M ora(i+1)= M and

b(i + 1) = b(i). Then

(i) a(i) = a(0), and

(ii) b(7) = b(0), and
(iii) (@S)(i) = 0.
PROOF: Define P[natural number] = a($1) = a(0) and b($;) = b(0). For
every natural number k such that P[k] holds P[k + 1]. For every natural
number k, P[k] from [2, Sch. 2]. O

(37) Let us consider sequences a, b of real numbers. Suppose for every natural
number 7, a(i+1) = a(i) and b(i + 1) = M ora(i+1)= M and
b(i + 1) = b(7). Let us consider a natural number i, and a real number r.
If r = 2t and r # 0, then b(i) — a(i) < M.
PROOF: Define Plobject] = there exists a natural number ¢ and there
exists a real number r such that $ = 4 and r = 2° and r # 0 and
b(i) —a(i) < M. P[0] by [17, (4)]. For every natural number k such

that P[k] holds P[k+1] by [17, (87), (6)]. For every natural number k, P[k]
from [2, Sch. 2]. Consider ¢; being a natural number, r; being a real number

such that i = iy and 71 = 2 and r1 # 0 and b(i1) — a(i1) < %la(o). O
(38) Let us consider sequences a, b of real numbers, and a sequence S of
subsets of 1. Suppose a(0) < b(0) and S = IntervalSeq(a, b) and for every
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natural number 4, a(i + 1) = a(i) and b(i + 1) = M or a(i+1) =
a@F0 and b(i + 1) = b(i). Then
(i) @S is convergent, and

(ii) lim @S = 0.
The theorem is a consequence of (36), (35), (34), (33), (3), and (37).

(39) Let us consider sequences a, b of real numbers. Suppose a(0) < b(0) and
for every natural number i, a(i + 1) = a(i) and b(i + 1) = M or
a(i +1) = M and b(i + 1) = b(¢). Then () IntervalSeq(a,b) is not
empty. The theorem is a consequence of (24), (35), (29), (30), and (38).

(40) Let us consider a real number r, and sequences a, b of real numbers.
Suppose 0 < r and a(0) < b(0) and for every natural number i, a(i + 1) =
a(i) and b(i4+1) = M ora(i+1) = M and b(i+1) = b(7). Then
there exists a real number ¢ such that
(i) for every natural number j, a(j) < ¢ < b(j), and
(ii) there exists a natural number k such that c—r < a(k) and b(k) < c+r.

The theorem is a consequence of (39), (23), (24), (35), (29), and (38).

5. TAGGED PARTITION

Now we state the propositions:
(41) Let us consider a non empty, closed interval subset I of R. Then there
exist real numbers a, b such that
(i) a < b, and
(ii) I = [a,b].
(42) Let us consider non empty, closed interval subsets I7, Iy of R. Suppose
sup I; = inf Is. Then there exist real numbers a, b, ¢ such that
(i) a<c<b,and
(ii) I = [a,c], and
(i) Iy = [c, b].
The theorem is a consequence of (41).

Let A be a non empty, closed interval subset of R and D be a partition of
A. The set of tagged partitions of D yielding a subset of R* is defined by
(Def. 2) for every object =, z € it iff there exists a non empty, non-decreasing
finite sequence s of elements of R such that z = s and dom s = dom D and
for every natural number ¢ such that i € dom s holds s(i) € divset(D, 7).
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Now we state the propositions:

(43) Let us consider a non empty, closed interval subset A of R, and a partition
D of A. Then D € the set of tagged partitions of D.
PROOF: For every natural number i such that ¢ € dom D holds D(i) €
divset(D, ) by [15, (19)], (4). O

(44) Let us consider real numbers a, b, and a non empty, closed interval subset
Iy of R. If Iy = [a, b], then (b) is a partition of I4.
PROOF: (b) is a partition of Iy by [3, (39)], [15, (19)]. O

Let I be a non empty, closed interval subset of R and ¢ be a positive yielding
function from I into R.
A tagged partition of I and ¢ is defined by

(Def. 3) there exists a partition D of I and there exists an element T' of the set
of tagged partitions of D such that it = (D, T').
Let T7 be a tagged partition of I and ¢. We say that T is d-fine if and only
if
(Def. 4) there exists a partition D of I and there exists an element T of the set

of tagged partitions of D such that 77 = (D, T') and for every natural
number 4 such that ¢ € dom D holds vol(divset(D, 1)) < ¢(T(i)).

6. PARTITION COMPOSITION

Let us consider a real number r. Now we state the propositions:
(45) (i) sup{r} =r, and
(ii) inf{r} =r.
(46) wvol({r}) = 0. The theorem is a consequence of (45).
(47) Let us consider non empty, closed interval subsets I1, I of R, and a po-
sitive yielding function ¢ from I; into R. Suppose Io C I;. Then @[l is
a positive yielding function from I into R.
(48) Let us consider a non empty, closed interval subset I of R, and a real
number c. Suppose ¢ € I. Then
(i) [inf I,¢] is a non empty, closed interval subset of R, and
(ii) [e,sup ] is a non empty, closed interval subset of R, and
(iii) sup[inf I, c] = inf|e,sup I].
The theorem is a consequence of (41).

Let I5, I be non empty, closed interval subsets of R, D4 be a partition of
I5, and Dg be a partition of Ig. Assume sup I5 < inf I. The functor Dy - Dg
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yielding a non empty, increasing finite sequence of elements of R is defined by
the term
(Det. 5) { Dy~ Dy, if D(1) # sup I,
Dy ™ Dg|;, otherwise.
Now we state the propositions:

(49) Let us consider non empty, closed interval subsets I5, Is of R, a partition
Dy of I, and a partition Dg of Ig. Suppose sup Is = inf I and len Dg = 1
and D6(1) = inf 16. Then D4 . D6 = D4.

(50) Let us consider non empty, closed interval subsets Iy, I, I of R. Suppose
supl; < inf Iy and inf I < inf I1 and sup Iy < sup /. Then I; Ul C I.
(51) Let us consider non empty, closed interval subsets I, I, I of R, a par-
tition Dy of I, and a partition Dy of Is. Suppose sup I; < inf Is and
I = [inf I}, sup I5]. Then D; - D5 is a partition of I. The theorem is a con-

sequence of (50).

(52) Let us consider a non empty, closed interval subset I of R, and a partition
D of I. Then the set of tagged partitions of D is not empty.

(53) Let us consider a non empty, increasing finite sequence s of elements of
R, and a real number 7. Suppose s(len s) < r. Then s~ (r) is a non empty,
increasing finite sequence of elements of R. The theorem is a consequence
of (1).

(54) Let us consider non empty, increasing finite sequences s, so of elements
of R, and a real number r. Suppose si(lens;) < r < s3(1). Then (s °
(ry) ~ so is a non empty, increasing finite sequence of elements of R. The
theorem is a consequence of (53) and (1).

(55) Let us consider non empty, closed interval subsets Iy, I5, I of R. Suppose
supl; = inf Is and I = I; U I>. Then

(i) inf I =infI;, and
(ii) sup I = sup Is.

(56) Let us consider a non empty, closed interval subset I of R, and a partition
D of I. Then

(i) divset(D,1) = [inf I, D(1)], and
(ii) for every natural number j such that j € dom D and j # 1 holds
divset(D,j) = [D(j — 1), D(j)].
PROOF: For every natural number j such that j € dom D and j # 1 holds
divset(D, ) = [D(j — 1), D(j)] by [1Z, (4)]. O
(57) Let us consider a real number r, and finite sequences p, ¢ of elements of
R. Then len((p ™~ (r)) ~q) =lenp +leng + 1.
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(58) Let us consider a non empty, closed interval subset I of R, and a partition
D of I. Then every element of the set of tagged partitions of D is not
empty. The theorem is a consequence of (43).

(59) Let us consider a non empty, closed interval subset I of R, a partition
D of I, and an element T of the set of tagged partitions of D. Then
rng T C R. The theorem is a consequence of (43).

Let I be a non empty, closed interval subset of R, ¢ be a positive yielding
function from I into R, and 7T} be a tagged partition of I and ¢. The functor
Ti-partition yielding a partition of I is defined by

(Def. 6) there exists a partition D of I and there exists an element 7" of the set
of tagged partitions of D such that it = D and Ty = (D, T').

7. EXAMPLES OF PARTITIONS

In the sequel r, s denote real numbers.
Now we state the proposition:
(60) Let us consider a function ¢ from [r,s]| into ]0,4o00[. Suppose r < s.
Then the set of all |z — p(x),x + ¢(x)[ N [r, s] where z is an element of
[r, s] is a family of subsets of [r, s]T.
Let us consider a function ¢ from [r, s] into |0, +o0o[ and a family S of subsets
of [r, s]T.
Let us assume that r < s and S = the set of all |z — ¢(z),z + @(z)[ N
[r, s] where x is an element of [r, s]. Now we state the propositions:
(61) S is a cover of [r, s]r.
PROOF: [r,s] CJS by [8, (3)]. O
(62) S is open.
PROOF: For every subset P of [r, s]p such that P € S holds P is open by
[T, (17)], [20, (35)], [I1, (15), (9), (10)]. O
(63) Suppose S = the set of all |x—p(z), z+p(z)[N[r, s] where z is an element
of [r, s]. Then S is connected.
PROOF: For every subset X of [r, s|t such that X € S holds X is connected
by [16] (43)]. O
(64) Let us consider a function ¢ from [r, s] into |0, +oc[, and a family S of
subsets of [r, s|7. Suppose r < s and S = the set of all |z—p(z), z+¢(x)[N
[r, s] where z is an element of [r, s|. Let us consider an interval cover I of
S. Then

(i) I is a finite sequence of elements of 2%, and

(ii) gl C S, and
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(iii) Urng I = [r, s], and

(iv) for every natural number n such that 1 < n holds if n < lenI, then
I, is not empty and if n + 1 < lenl/, then inf [, < inf[l,;; and
sup I, < sup I,4+1 and inf I,,;; < supl, and if n + 2 < len I, then
sup I, < inf I, 49, and

(v) if [r,s] € S, then I = ([r, s]), and

]

(vi) if [r,s] ¢ S, then there exists a real number p such that r < p < s
and I(1) = [r, p| and there exists a real number p such that r <p < s
and I(lenI) = |p, s| and for every natural number n such that 1 <
n < len I there exist real numbers p, ¢ such that »r < p < ¢ < s and

I(n) =1p,ql.
The theorem is a consequence of (61), (62), and (63).
(65) Let us consider real numbers 7, s, ¢, . Then
(i)ifr<z—tand z+¢t<s, then |z —t,x+t[N[r,s] =]z —t,x+t,
and
(ii) if r<x—tand s <z +t, then |x —t,x +t[N][r,s| =]z —t,s]|, and
(iii) f x —t <rand x +t <s, then |z —t,x +t[{N[r,s] = [r,x + t[, and
(iv) if e —t <r and s < x +t, then |z — ¢,z + t[N[r,s] = [r,s].
(66) Let us consider real numbers r, s, ¢, z, and a subset X; of R. Suppose
O<tandr <z <sand X; =]z —t,az+t[N][rs]. Then

(i)ifr<z—tand z+1t<s,theninfX; =z —¢and supX; =z +1¢,
and

(ii) if r <x —t and s < x + ¢, then inf X; = 2 — ¢ and sup X; = s, and
(iii) if z —t <r and x +t < s, then inf X; = r and sup X; = = + ¢, and
(iv) if z — ¢t <r and s < x + ¢, then inf X; = r and sup X; = s.

The theorem is a consequence of (65).

Let us consider real numbers a, b, ¢, non empty, compact subsets I5, Ig of
R, a partition Dy of I, a partition Dg of Ig, and natural numbers i, j.

Let us assume that a < ¢ < b and I5 = [a,c] and I = [c,b]. Now we state
the propositions:

(67) Suppose i € dom Dy and j € dom Dg. Then
(i) if ¢ < len Dy, then D4(i) < Dg(j), and
(ii) if ¢ =len D4 and ¢ < Dg(1), then D4(i) < Dg(j), and
(iii) if Dg(1) = ¢, then Dy(len Dy) = Dg(1).
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PROOF: If i < len Dy, then Dy(i) < Dg(j) by [3, (3)]. If i = len Dy and
¢ < Dg(1), then Dy(i) < Dg(j) by [T, (6)], [3, (91)]. O

(68) If i € dom Dy and j € dom Dg, then if ¢ < Dg(1), then Dy(i) < Dg(j).
The theorem is a consequence of (67).

(69) Let us consider real numbers a, b, ¢, and non empty, compact subsets Iy,
I5, Is of R. Suppose a < ¢ < b and Iy = [a,b] and I5 = [a, ¢| and I = [e, b].
Let us consider a partition D4 of Is, and a partition Dg of Is. Suppose
¢ < Dg(1). Then Dy ™ Dg is a partition of 4.
PROOF: Set D5 = Dy ™ Dg. For every extended reals eq, es such that eq,
ey € dom D5 and e; < ey holds Ds(e1) < Ds(e2) by [3, (25)], (68), [2,
(11)], [3, (1)]. rng D5 C Iy by [3, (31)]. Ds(len Ds) = sup Iy by [3 (3),
(22)], [15, (19)]. O

(70) Let us consider real numbers a, b, and a non empty, closed interval subset
I, of R. Suppose a < b and Iy = [a,b]. Let us consider a partition D3 of
1. If len D3 = 1, then D3 = (b).

(71) Let us consider real numbers a, b, a non empty, compact subset I of R,
and a partition D3 of I;. Suppose 2 < len D3. Then D3 ; is a partition of
1.
PRrROOF: Set D = D3;. D is a non empty, increasing finite sequence of
elements of R by [3, (60)]. rng D C I by [7, (33)]. D(len D) = sup I4 by
B, (3))- O

(72) Let us consider real numbers a, b. Suppose a < b. Then (a,b) is a non
empty, increasing finite sequence of elements of R.
PROOF: Set s = (a, b). s is increasing by [3], (44), (2)]. O

(73) Let us consider real numbers a, b, and a non empty, closed interval subset
I, of R. Suppose a < b and I; = [a,b]. Then (a,b) is a partition of I4.
PROOF: (a,b) is a partition of Iy by (72), [6, (127)], [3 (44)], [I5, (19)]. O

8. COusIN’S LEMMA

Now we state the proposition:

(74) Let us consider real numbers a, b, and a positive yielding function ¢ from
[a, b] into R. Suppose a < b. Then there exists a non empty, increasing finite
sequence z of elements of R and there exists a non empty finite sequence
t of elements of R such that (1) = a and z(lenxz) = b and ¢(1) = a and
dom x = domt and for every natural number ¢ such that i — 1, 7 € dom ¢
holds t(i) — ¢(t(i)) < x(i — 1) < ¢(¢) and for every natural number ¢ such
that i € domt holds ¢(i) < z(2) < t(7) + ¢(t(7)).

117
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PRrROOF: Define Plobject] = there exists a non empty, increasing finite
sequence z of elements of R and there exists a non empty finite sequence
t of elements of R such that (1) = a and z(lenz) = $; and ¢(1) = a and
dom x = domt and for every natural number ¢ such that i — 1, i € dom¢
holds t(i) — ¢(t(i)) < z(i — 1) < t(i) and for every natural number i
such that ¢ € domt holds (i) < z(i) < t(i) + ¢(¢(¢)). Consider C' being
a set such that for every object z, z € C iff © € [a,b] and P[z]. For
every object x such that z € C holds z is real. Reconsider ¢ = supC
as a real number. ¢ € [a,b]. Consider d being an element of R such that
d € C and ¢ — p(c) < d. Consider Dy being a non empty, increasing
finite sequence of elements of R, Ty being a non empty finite sequence of
elements of R such that Dy(1) = a and Dy(len Dy) = d and Tp(1) = a
and dom Dy = dom Ty and for every natural number ¢ such that i — 1,
i € dom T holds Tp(i) —p(To(i)) < Do(i—1) < Tp(i) and for every natural
number ¢ such that ¢ € dom Ty holds Tp(i) < Do(i) < Top(7) + ¢(To(7)).
c € C and P[c| by (1), [27, (32)], Bl (22), (39), (1)]. ¢ = b by (1), [27,
(32)], B (22), (39), (1)]. O

(75) CoOUSIN’S LEMMA:

Let us consider a non empty, closed interval subset I of R, and a positive
yielding function ¢ from [ into R. Then there exists a tagged partition T}
of I and ¢ such that T} is é-fine.

PRrOOF: Consider a, b being real numbers such that a < b and I = [a, b].
Reconsider r = % as a positive real number. Reconsider ¢ = r - ¢ as
a positive yielding function from I into R. Consider x being a non empty,
increasing finite sequence of elements of R, ¢ being a non empty finite
sequence of elements of R such that z(1) = a and z(lenz) = band t(1) = a
and dom z = dom ¢ and for every natural number ¢ such that i—1,47 € dom ¢
holds t(i) — ¢(t(7)) < (i — 1) < t(7) and for every natural number i such
that ¢ € domt holds (i) < x(i) < t(i) + ¢(t(7)). Reconsider D = x as
a partition of I. Reconsider T' = t as an element of the set of tagged
partitions of D. Reconsider T} = (D, T') as a tagged partition of I and ¢.

Ty is &-fine by [I5, (19)], (4), [8 (3)], [21L (20)]. O
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