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Summary. In this article we formalize in Mizar [5] product pre-measure
on product sets of measurable sets. Although there are some approaches to con-
struct product measure [22], [6], [9], [21], [25], we start it from σ-measure because
existence of σ-measure on any semialgebras has been proved in [15]. In this ap-
proach, we use some theorems for integrals.
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1. Preliminaries

Now we state the proposition:

(1) Let us consider non empty sets A, A1, A2, B, B1, B2. Then A1 × B1
misses A2 ×B2 and A×B = A1 ×B1 ∪ A2 ×B2 if and only if A1 misses
A2 and A = A1 ∪ A2 and B = B1 and B = B2 or B1 misses B2 and
B = B1 ∪B2 and A = A1 and A = A2.

Let C, D be non empty sets, F be a sequence of DC , and n be a natural
number. One can check that the functor F (n) yields a function from C into D.

(2) Let us consider sets X, Y, A, B, and objects x, y. Suppose x ∈ X and
y ∈ Y. Then χA,X(x) · χB,Y (y) = χA×B,X×Y (x, y).

Let A, B be sets. One can verify that χA,B is non-negative.

(3) Let us consider a non empty set X, a semialgebra S of sets of X, a pre-
measure P of S, an induced measure m of S and P , and an induced σ-
measure M of S and m. Then COM(M) is complete on COM(σ(the field
generated by S),M).
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The functor IntervalsR yielding a semialgebra of sets of R is defined by the
term

(Def. 1) the set of all I where I is an interval.

Now we state the propositions:

(4) Halflines ⊆ IntervalsR.

(5) Let us consider a subset I of R. If I is an interval, then I ∈ the Borel
sets.

(6) (i) σ(IntervalsR) = the Borel sets, and

(ii) σ(the field generated by IntervalsR) = the Borel sets.
The theorem is a consequence of (4) and (5).

2. Family of Semialgebras, Fields and Measures

Now we state the propositions:

(7) Let us consider sets X1, X2, a non empty family S1 of subsets of X1, and
a non empty family S2 of subsets of X2. Then the set of all a× b where a
is an element of S1, b is an element of S2 is a non empty family of subsets
of X1 ×X2.

(8) Let us consider sets X, Y, a family M of subsets of X with the empty
element, and a family N of subsets of Y with the empty element. Then
the set of all A × B where A is an element of M , B is an element of N
is a family of subsets of X × Y with the empty element. The theorem is
a consequence of (7).

(9) Let us consider a set X, and disjoint valued finite sequences O, T of
elements of X. Suppose

⋃
rngO misses

⋃
rng T . Then O a T is a disjoint

valued finite sequence of elements of X.

(10) Let us consider sets X1, X2, a semiring S1 of X1, and a semiring S2 of
X2. Then the set of all A×B where A is an element of S1, B is an element
of S2 is a semiring of X1 ×X2.

(11) Let us consider sets X1, X2, a semialgebra S1 of sets of X1, and a semial-
gebra S2 of sets of X2. Then the set of all A×B where A is an element of
S1, B is an element of S2 is a semialgebra of sets of X1×X2. The theorem
is a consequence of (10).

(12) Let us consider sets X1, X2, a field O of subsets of X1, and a field T

of subsets of X2. Then the set of all A × B where A is an element of O,
B is an element of T is a semialgebra of sets of X1 ×X2. The theorem is
a consequence of (11).
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Let n be a non zero natural number and X be a non-empty, n-element finite
sequence.

A family of semialgebras of X is an n-element finite sequence and is defined
by

(Def. 2) for every natural number i such that i ∈ Seg n holds it(i) is a semialgebra
of sets of X(i).

Let us observe that a family of semialgebras of X is a ∩-closed yielding
family of semirings of X. Now we state the proposition:

(13) Let us consider a non zero natural number n, a non-empty, n-element
finite sequence X, a family S of semialgebras of X, and a natural number
i. If i ∈ Seg n, then X(i) ∈ S(i).

Let us consider a non-empty, 1-element finite sequence X and a family S of
semialgebras of X. Now we state the propositions:

(14) the set of all
∏
〈s〉 where s is an element of S(1) is a semialgebra of

sets of the set of all 〈x〉 where x is an element of X(1). The theorem is
a consequence of (13).

(15) SemiringProduct(S) is a semialgebra of sets of
∏
X. The theorem is

a consequence of (14).

(16) Let us consider sets X1, X2, a semialgebra S1 of sets of X1, and a semial-
gebra S2 of sets of X2. Then the set of all s1 × s2 where s1 is an element
of S1, s2 is an element of S2 is a semialgebra of sets of X1 ×X2.

(17) Let us consider a non zero natural number n, a non-empty, n-element fini-
te sequenceX, and a family S of semialgebras ofX. Then SemiringProduct
(S) is a semialgebra of sets of

∏
X.

Proof: Define P[non zero natural number] ≡ for every non-empty, $1-
element finite sequence X for every family S of semialgebras of X,
SemiringProduct(S) is a semialgebra of sets of

∏
X. P[1]. For every non

zero natural number k, P[k] from [3, Sch. 10]. �

(18) Let us consider a non zero natural number n, a non-empty, n-element
finite sequence X8, a non-empty, 1-element finite sequence X1, a family
S4 of semialgebras of X8, and a family S1 of semialgebras of X1. Then
SemiringProduct(S4 a S1) is a semialgebra of sets of

∏
(X8 a X1). The

theorem is a consequence of (17), (16), and (13).

Let n be a non zero natural number and X be a non-empty, n-element finite
sequence.

A family of fields of X is an n-element finite sequence and is defined by

(Def. 3) for every natural number i such that i ∈ Seg n holds it(i) is a field of
subsets of X(i).
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Let S be a family of fields of X and i be a natural number. Assume i ∈ Seg n.
Observe that the functor S(i) yields a field of subsets of X(i).

Observe that a family of fields of X is a family of semialgebras of X.
Let us consider a non-empty, 1-element finite sequence X and a family S of

fields of X. Now we state the propositions:

(19) the set of all
∏
〈s〉 where s is an element of S(1) is a field of subsets of the

set of all 〈x〉 where x is an element of X(1). The theorem is a consequence
of (14).

(20) SemiringProduct(S) is a field of subsets of
∏
X. The theorem is a con-

sequence of (19).

Let n be a non zero natural number, X be a non-empty, n-element finite
sequence, and S be a family of fields of X.

A family of measures of S is an n-element finite sequence and is defined by

(Def. 4) for every natural number i such that i ∈ Seg n holds it(i) is a measure
on S(i).

3. Product of Two Measures

Let X1, X2 be sets, S1 be a field of subsets of X1, and S2 be a field of subsets
of X2. The functor MeasRect(S1, S2) yielding a semialgebra of sets of X1 ×X2
is defined by the term

(Def. 5) the set of all A×B where A is an element of S1, B is an element of S2.

Now we state the proposition:

(21) Let us consider a set X, and a field F of subsets of X. Then there exists
a semialgebra S of sets of X such that

(i) F = S, and

(ii) F = the field generated by S.

Let X1, X2 be sets, S1 be a field of subsets of X1, S2 be a field of sub-
sets of X2, m1 be a measure on S1, and m2 be a measure on S2. The functor
ProdpreMeas(m1,m2) yielding a non-negative, zeroed function from MeasRect
(S1, S2) into R is defined by

(Def. 6) for every element C of MeasRect(S1, S2), there exists an element A of
S1 and there exists an element B of S2 such that C = A×B and it(C) =
m1(A) ·m2(B).

Now we state the propositions:

(22) Let us consider sets X1, X2, a field S1 of subsets of X1, a field S2 of
subsets of X2, a measure m1 on S1, a measure m2 on S2, and sets A, B.
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Suppose A ∈ S1 and B ∈ S2. Then (ProdpreMeas(m1,m2))(A × B) =
m1(A) ·m2(B).

(23) Let us consider sets X1, X2, a non empty family S1 of subsets of X1,
a non empty family S2 of subsets of X2, a non empty family S of subsets
of X1 × X2, and a finite sequence H of elements of S. Suppose S =
the set of all A × B where A is an element of S1, B is an element of S2.
Then there exists a finite sequence F of elements of S1 and there exists
a finite sequence G of elements of S2 such that lenH = lenF and lenH =
lenG and for every natural number k such that k ∈ domH and H(k) 6= ∅
holds H(k) = F (k)×G(k).
Proof: For every natural number k such that k ∈ domH there exists
an element A of S1 and there exists an element B of S2 such that H(k) =
A × B. Define P[natural number, set] ≡ there exists an element B of S2
such that H($1) = $2×B. Consider F being a finite sequence of elements
of S1 such that domF = Seg lenH and for every natural number k such
that k ∈ Seg lenH holds P[k, F (k)] from [4, Sch. 5]. Define Q[natural
number, set] ≡ there exists an element A of S1 such that H($1) = A× $2.
For every natural number k such that k ∈ Seg lenH there exists an element
B of S2 such that Q[k,B]. Consider G being a finite sequence of elements
of S2 such that domG = Seg lenH and for every natural number k such
that k ∈ Seg lenH holds Q[k,G(k)] from [4, Sch. 5]. �

(24) Let us consider a set X, a non empty, semi-diff-closed, ∩-closed family
S of subsets of X, and elements E1, E2 of S. Then there exist disjoint
valued finite sequences O, T , F of elements of S such that

(i)
⋃

rngO = E1 \ E2, and

(ii)
⋃

rng T = E2 \ E1, and

(iii)
⋃

rngF = E1 ∩ E2, and

(iv) (O a T ) a F is a disjoint valued finite sequence of elements of S.

The theorem is a consequence of (9).

(25) Let us consider sets X1, X2, a field S1 of subsets of X1, a field S2
of subsets of X2, a measure m1 on S1, a measure m2 on S2, and ele-
ments E1, E2 of MeasRect(S1, S2). Suppose E1 misses E2 and E1 ∪ E2 ∈
MeasRect(S1, S2). Then (ProdpreMeas(m1,m2))(E1 ∪ E2) =
(ProdpreMeas(m1,m2))(E1) + (ProdpreMeas(m1,m2))(E2). The theorem
is a consequence of (1) and (22).

(26) Let us consider a non empty set X, a non empty family S of subsets
of X, a function f from N into S, and a sequence F of partial functions
from X into R. Suppose f is disjoint valued and for every natural number
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n, F (n) = χ
f(n),X . Let us consider an object x. Suppose x ∈ X. Then

χ⋃
f,X(x) = (lim(

∑κ
α=0 F (α))κ∈N)(x).

(27) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and a real number r.
Suppose dom f ∈ S and 0 ¬ r and for every object x such that x ∈ dom f

holds f(x) = r. Then
∫
f dM = r ·M(dom f).

Let us consider a non empty set X, a σ-field S of subsets of X, a σ-measure
M on S, a partial function f from X to R, and an element A of S. Now we
state the propositions:

(28) Suppose there exists an element E of S such that E = dom f and f is
measurable on E and for every object x such that x ∈ dom f \ A holds
f(x) = 0 and f is non-negative. Then

∫
f dM =

∫
f�AdM . The theorem

is a consequence of (27).

(29) If f is integrable on M and for every object x such that x ∈ dom f \ A
holds f(x) = 0, then

∫
f dM =

∫
f�AdM . The theorem is a consequence

of (27).

(30) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-
field S2 of subsets of X2, a σ-measure M2 on S2, a function D from N into
S1, a function E from N into S2, an element A of S1, an element B of S2,
a sequence F of partial functions from X2 into R, a sequence R of RX1 , and
an element x of X1. Suppose for every natural number n, R(n) = χ

D(n),X1
and for every natural number n, F (n) = R(n)(x) · χE(n),X2 and for every
natural number n, E(n) ⊆ B. Then there exists a sequence I of extended
reals such that

(i) for every natural number n, I(n) = M2(E(n)) · χD(n),X1(x), and

(ii) I is summable, and

(iii)
∫

lim(
∑κ
α=0 F (α))κ∈N dM2 =

∑
I.

Proof: For every natural number n, dom(F (n)) = X2. Reconsider S3 =
X2 as an element of S2. For every natural number n and for every set y
such that y ∈ E(n) holds F (n)(y) = 0 or F (n)(y) = 1 by [10, (3)], [18,
(1)], [12, (39)]. For every natural number n and for every set y such that
y /∈ E(n) holds F (n)(y) = 0. For every natural number n, F (n) is non-
negative and F (n) is measurable on B by [8, (51)], [17, (37)], [18, (29)].
For every element y of X2 such that y ∈ B holds F#y is summable by [8,
(51), (39)], [19, (16)], [29, (37)].

Consider I being a sequence of extended reals such that for eve-
ry natural number n, I(n) =

∫
F (n)�B dM2 and I is summable and∫

lim(
∑κ
α=0 F (α))κ∈N�B dM2 =

∑
I. For every natural number n, I(n) =



Product pre-measure 75

M2(E(n)) · χD(n),X1(x) by [28, (61)], [10, (47), (49)], [18, (29)]. For eve-
ry natural number n, F (n) is measurable on S3 by [18, (29)], [17, (37)].
For every natural number n, F (n) is without −∞. For every element y
of X2 such that y ∈ S3 holds (

∑κ
α=0 F (α))κ∈N#y is convergent by [19,

(38)]. For every object y such that y ∈ dom lim(
∑κ
α=0 F (α))κ∈N \B holds

(lim(
∑κ
α=0 F (α))κ∈N)(y) = 0 by [19, (43)], [16, (52)]. For every object y

such that y ∈ dom lim(
∑κ
α=0 F (α))κ∈N holds (lim(

∑κ
α=0 F (α))κ∈N)(y) ­ 0

by [19, (36)], [8, (51)], [19, (10), (38)]. �

(31) Let us consider a non empty set X, a σ-field S of subsets of X, an element
A of S, and an extended real number p. Then X 7−→ p is measurable on A.
Proof: For every real number r, A ∩ GTE-dom(X 7−→ p, r) ∈ S by [26,
(7)], [7, (7)]. �

Let A, X be sets. The functor χA,X yielding a function from X into R is
defined by

(Def. 7) for every object x such that x ∈ X holds if x ∈ A, then it(x) = +∞ and
if x /∈ A, then it(x) = 0.

Now we state the proposition:

(32) Let us consider a non empty set X, a σ-field S of subsets of X, and
elements A, B of S. Then χA,X is measurable on B.

Let X, A be sets. Let us observe that χA,X is non-negative.

(33) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and an element A of S. Then

(i) if M(A) 6= 0, then
∫
χA,X dM = +∞, and

(ii) if M(A) = 0, then
∫
χA,X dM = 0.

Proof: Reconsider X3 = X as an element of S. Reconsider X2 = X3\A as
an element of S. Reconsider F = χA,X�A as a partial function from X to
R. Reconsider O = χA,X�X2 as a partial function from X to R. Reconsider
T = χA,X�(X2 ∪ A) as a partial function from X to R.

∫
F dM = 0. O is

measurable on X2. For every element x of X such that x ∈ dom(χA,X�X2)
holds (χA,X�X2)(x) = 0 by [10, (47)].

∫
T dM =

∫
O dM + 0. �

(34) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2
on S2, and a disjoint valued function K from N into MeasRect(S1, S2).
Suppose

⋃
K ∈ MeasRect(S1, S2). Then (ProdpreMeas(M1,M2))(

⋃
K) =∑

(ProdpreMeas(M1,M2) ·K).
Proof: Consider A being an element of S1, B being an element of S2 such
that

⋃
K = A×B. Consider P being an element of S1, Q being an element

of S2 such that
⋃
K = P×Q and (ProdpreMeas(M1,M2))(

⋃
K) = M1(P )·



76 noboru endou

M2(Q). Define F(object) = χ
K($1),X1×X2 . Consider X6 being a sequence of

partial functions from X1×X2 into R such that for every natural number
n, X6(n) = F(n) from [24, Sch. 1]. Define P[natural number, object] ≡
$2 = π1(K($1)). For every element i of N, there exists an element A of
S1 such that P[i, A] by [2, (9)], [7, (7)]. Consider D being a function from
N into S1 such that for every element i of N, P[i,D(i)] from [11, Sch. 3].
Define Q[natural number, object] ≡ $2 = π2(K($1)). For every element i
of N, there exists an element B of S2 such that Q[i, B] by [2, (9)], [7, (7)].

Consider E being a function from N into S2 such that for every
element i of N, Q[i, E(i)] from [11, Sch. 3]. Define O(object) = χ

D($1),X1 .
Consider X7 being a sequence of partial functions from X1 into R such
that for every natural number n, X7(n) = O(n) from [24, Sch. 1]. Define
T (object) = χ

E($1),X2 . Consider X4 being a sequence of partial functions
from X2 into R such that for every natural number n, X4(n) = T (n) from
[24, Sch. 1]. For every natural number n and for every objects x, y such
that x ∈ X1 and y ∈ X2 holds X6(n)(x, y) = X7(n)(x) ·X4(n)(y) by [14,
(87)], [2, (9)], (2). (ProdpreMeas(M1,M2))(

⋃
K) = M1(A) ·M2(B) by [14,

(110)]. Reconsider C1 = χA×B,X1×X2 as a function from X1 ×X2 into R.
For every element x of X1, M2(B) ·χA,X1(x) =

∫
curry(C1, x) dM2 by (2),

[13, (5)], [19, (14)], [23, (4)]. For every object n such that n ∈ N holds
X7(n) ∈ RX1 by [12, (39)]. Reconsider R1 = X7 as a sequence of RX1 . For
every natural number n, D(n) ⊆ A and E(n) ⊆ B by [2, (10)], [1, (1)].
For every element x of X1, there exists a sequence X5 of partial functions
from X2 into R and there exists a sequence I of extended reals such that
for every natural number n, X5(n) = R1(n)(x) · χE(n),X2 and for every
natural number n, I(n) = M2(E(n)) · χD(n),X1(x) and I is summable and∫

lim(
∑κ
α=0X5(α))κ∈N dM2 =

∑
I by [13, (45)], (30).

Reconsider L1 = lim(
∑κ
α=0X6(α))κ∈N as a function from X1 ×

X2 into R. For every element x of X1 and for every element y of X2,
(curry(C1, x))(y) = (curry(L1, x))(y). For every element x ofX1, curry(C1,
x) = curry(L1, x). For every element x of X1, M2(B) · χA,X1(x) =

∫
curry

(L1, x) dM2. For every element x of X1, there exists a sequence I of
extended reals such that for every natural number n, I(n) = M2(E(n)) ·
χ
D(n),X1(x) and M2(B) · χA,X1(x) =

∑
I by [8, (51)], [19, (38), (29),

(30)]. Define R[natural number, object] ≡ if M2(E($1)) = +∞, then
$2 = χD($1),X1 and if M2(E($1)) 6= +∞, then there exists a real number
m2 such that m2 = M2(E($1)) and $2 = m2·χD($1),X1 . For every element n
of N, there exists an element y of X1→̇R such that R[n, y] by [13, (45)], [8,
(51)]. Consider F1 being a function from N into X1→̇R such that for every
element n of N, R[n, F1(n)] from [11, Sch. 3]. For every natural number
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n, dom(F1(n)) = X1. For every natural number n, F1(n) is non-negative
by [8, (51)]. For every natural numbers n, m, dom(F1(n)) = dom(F1(m)).

Reconsider X3 = X1 as an element of S1. For every natural num-
ber n, F1(n) is non-negative and F1(n) is measurable on A and F1(n)
is measurable on X3 by (32), [18, (29)], [17, (37)]. For every element x
of X1 such that x ∈ A holds F1#x is summable by [8, (51), (39)], [20,
(2)]. Consider J being a sequence of extended reals such that for eve-
ry natural number n, J(n) =

∫
F1(n)�AdM1 and J is summable and∫

lim(
∑κ
α=0 F1(α))κ∈N�AdM1 =

∑
J . For every natural number n, J(n) =∫

F1(n) dM1. Reconsider X3 = X1 as an element of S1. For every element
n of N, J(n) = (ProdpreMeas(M1,M2) ·K)(n) by (33), [8, (51)], [18, (29)],
[16, (86), (88)]. For every element x of X1, (lim(

∑κ
α=0 F1(α))κ∈N)(x) ­ 0

by [19, (38)], [29, (37), (23)], [8, (51)]. For every natural number n, F1(n)
is measurable on X3 and F1(n) is without −∞. For every object x such
that x ∈ dom lim(

∑κ
α=0 F1(α))κ∈N \A holds (lim(

∑κ
α=0 F1(α))κ∈N)(x) = 0

by [19, (30), (32)], [16, (52)].
∫

lim(
∑κ
α=0 F1(α))κ∈N dM1 =∫

lim(
∑κ
α=0 F1(α))κ∈N�AdM1.

∫
lim(
∑κ
α=0 F1(α))κ∈N dM1 = M1(A)·M2(B)

by [11, (63)], [19, (30), (32)], [8, (51)]. �

(35) Let us consider a without −∞ finite sequence f of elements of R, and
a without −∞ sequence s of extended reals. Suppose for every object n
such that n ∈ dom f holds f(n) = s(n).
Then

∑
f + s(0) = (

∑κ
α=0 s(α))κ∈N(len f).

Proof: Consider F being a sequence of R such that
∑
f = F (len f)

and F (0) = 0 and for every natural number i such that i < len f holds
F (i+ 1) = F (i) + f(i+ 1). Define P[natural number] ≡ if $1 ¬ len f , then
F ($1) + s(0) = (

∑κ
α=0 s(α))κ∈N($1) and F ($1) 6= −∞. For every natural

number k such that P[k] holds P[k + 1] by [3, (11)], [27, (25)], [16, (10)],
[3, (13)]. For every natural number k, P[k] from [3, Sch. 2]. �

(36) Let us consider a non-negative finite sequence f of elements of R, and
a sequence s of extended reals. Suppose for every object n such that n ∈
dom f holds f(n) = s(n) and for every element n of N such that n /∈ dom f

holds s(n) = 0. Then

(i)
∑
f =
∑
s, and

(ii)
∑
f =
∑
s.

Proof: For every object n such that n ∈ dom s holds 0 ¬ s(n) by [8,
(51)].

∑
f + s(0) = (

∑κ
α=0 s(α))κ∈N(len f). Define P[natural number] ≡

(
∑κ
α=0 s(α))κ∈N(len f) = ((

∑κ
α=0 s(α))κ∈N ↑ len f)($1). For every natural

number k such that P[k] holds P[k + 1] by [27, (25)]. For every natural
number k, P[k] from [3, Sch. 2]. �
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(37) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-
field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on S2,
and a disjoint valued finite sequence F of elements of MeasRect(S1, S2).
Suppose

⋃
F ∈ MeasRect(S1, S2). Then (ProdpreMeas(M1,M2))(

⋃
F ) =∑

(ProdpreMeas(M1,M2) · F ).
Proof: Set S = MeasRect(S1, S2). Define P[object, object] ≡ if $1 ∈
domF , then $2 = F ($1) and if $1 /∈ domF , then $2 = ∅. For every
element n of N, there exists an element y of S such that P[n, y] by [10, (3)].
Consider G being a function from N into S such that for every element
n of N, P[n,G(n)] from [11, Sch. 3]. For every object x such that x /∈
domF holds G(x) = ∅. For every objects x, y such that x 6= y holds G(x)
misses G(y). (ProdpreMeas(M1,M2))(

⋃
F ) =

∑
(ProdpreMeas(M1,M2) ·

G). For every object n such that n ∈ dom(ProdpreMeas(M1,M2)·F ) holds
(ProdpreMeas(M1,M2) · F )(n) = (ProdpreMeas(M1,M2) · G)(n) by [10,
(11), (12), (13)]. For every element n of N such that n /∈ dom(ProdpreMeas
(M1,M2) · F ) holds (ProdpreMeas(M1,M2) · G)(n) = 0 by [10, (3), (11),
(13)]. �

(38) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, and a σ-measure M2
on S2. Then ProdpreMeas(M1,M2) is a pre-measure of MeasRect(S1, S2).
The theorem is a consequence of (37) and (34).

Let X1, X2 be non empty sets, S1 be a σ-field of subsets of X1, S2 be a σ-
field of subsets of X2, M1 be a σ-measure on S1, and M2 be a σ-measure on S2.
Let us observe that the functor ProdpreMeas(M1,M2) yields a pre-measure of
MeasRect(S1, S2).
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