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Summary. In this article we formalize in Mizar [5] product pre-measure
on product sets of measurable sets. Although there are some approaches to con-
struct product measure [22], [6], [9], [21], |25], we start it from o-measure because
existence of o-measure on any semialgebras has been proved in [15]. In this ap-
proach, we use some theorems for integrals.
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1. PRELIMINARIES

Now we state the proposition:

(1) Let us consider non empty sets A, Ay, Ag, B, By, Ba. Then A; x B
misses As X By and A x B = Ay x By U Ay x By if and only if A1 misses
Ay and A = AU Ay and B = By and B = By or By misses By and
B=BiUByand A= A; and A = A,.

Let C, D be non empty sets, F' be a sequence of D¢, and n be a natural
number. One can check that the functor F(n) yields a function from C' into D.

(2) Let us consider sets X, Y, A, B, and objects x, y. Suppose x € X and
y € Y. Then XA,X(x) . XB,y(y) = XA><B,X><Y($,Z/)-

Let A, B be sets. One can verify that X4 p is non-negative.

(3) Let us consider a non empty set X, a semialgebra S of sets of X, a pre-
measure P of S, an induced measure m of S and P, and an induced o-
measure M of S and m. Then COM(M) is complete on COM (o (the field
generated by S), M).
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The functor Intervalsg yielding a semialgebra of sets of R is defined by the
term

(Def. 1) the set of all I where I is an interval.
Now we state the propositions:
(4) Halflines C Intervalsg.
(5) Let us consider a subset I of R. If I is an interval, then I € the Borel
sets.
(6) (i) o(Intervalsg) = the Borel sets, and

(ii) o(the field generated by Intervalsg) = the Borel sets.
The theorem is a consequence of (4) and (5).

2. FAMILY OF SEMIALGEBRAS, FIELDS AND MEASURES

Now we state the propositions:

(7) Let us consider sets X1, X5, a non empty family S; of subsets of X7, and
a non empty family Sy of subsets of X5. Then the set of all a x b where a
is an element of S, b is an element of Ss is a non empty family of subsets
of X 1 X XQ.

(8) Let us consider sets X, Y, a family M of subsets of X with the empty
element, and a family N of subsets of Y with the empty element. Then
the set of all A x B where A is an element of M, B is an element of N
is a family of subsets of X x Y with the empty element. The theorem is
a consequence of (7).

(9) Let us consider a set X, and disjoint valued finite sequences O, T' of
elements of X. Suppose |Jrng O misses [JrngT. Then O ~ T is a disjoint
valued finite sequence of elements of X.

(10) Let us consider sets X1, Xo, a semiring S of X1, and a semiring Sy of
X5. Then the set of all A x B where A is an element of S7, B is an element
of S5 is a semiring of X; x Xs.

(11) Let us consider sets X, Xo, a semialgebra S7 of sets of X7, and a semial-
gebra Sy of sets of Xo. Then the set of all A x B where A is an element of
S1, B is an element of S5 is a semialgebra of sets of X1 x Xs. The theorem
is a consequence of (10).

(12) Let us consider sets X, Xy, a field O of subsets of X, and a field T
of subsets of X5. Then the set of all A x B where A is an element of O,
B is an element of T is a semialgebra of sets of X7 x X5. The theorem is
a consequence of (11).
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Let n be a non zero natural number and X be a non-empty, n-element finite
sequence.
A family of semialgebras of X is an n-element finite sequence and is defined
by
(Def. 2) for every natural number ¢ such that ¢ € Segn holds it(7) is a semialgebra
of sets of X (7).

Let us observe that a family of semialgebras of X is a N-closed yielding
family of semirings of X. Now we state the proposition:

(13) Let us consider a non zero natural number n, a non-empty, n-element
finite sequence X, a family S of semialgebras of X, and a natural number
i. If i € Segn, then X (i) € S(7).
Let us consider a non-empty, 1-element finite sequence X and a family S of
semialgebras of X. Now we state the propositions:

(14) the set of all [](s) where s is an element of S(1) is a semialgebra of
sets of the set of all (z) where z is an element of X (1). The theorem is
a consequence of (13).

(15) SemiringProduct(S) is a semialgebra of sets of [[X. The theorem is
a consequence of (14).

(16) Let us consider sets X7, X9, a semialgebra S of sets of X1, and a semial-
gebra So of sets of Xo. Then the set of all s; X s9 where s1 is an element
of S1, s9 is an element of Ss is a semialgebra of sets of X1 x Xs.

(17) Let us consider a non zero natural number n, a non-empty, n-element fini-
te sequence X, and a family S of semialgebras of X. Then SemiringProduct
(S) is a semialgebra of sets of [] X.
PROOF: Define P[non zero natural number| = for every non-empty, $1-
element finite sequence X for every family S of semialgebras of X,
SemiringProduct(S) is a semialgebra of sets of [] X. P[1]. For every non
zero natural number k, P[k| from [3, Sch. 10]. O

(18) Let us consider a non zero natural number n, a non-empty, n-element
finite sequence Xg, a non-empty, l-element finite sequence X1, a family
Sy of semialgebras of Xg, and a family S; of semialgebras of X;. Then
SemiringProduct(Ss ™ S1) is a semialgebra of sets of [[(Xg ~ Xi). The
theorem is a consequence of (17), (16), and (13).

Let n be a non zero natural number and X be a non-empty, n-element finite
sequence.
A family of fields of X is an n-element finite sequence and is defined by

(Def. 3) for every natural number ¢ such that i € Segn holds it(i) is a field of
subsets of X (7).
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Let S be a family of fields of X and ¢ be a natural number. Assume i € Seg n.
Observe that the functor S(i) yields a field of subsets of X ().
Observe that a family of fields of X is a family of semialgebras of X.
Let us consider a non-empty, 1-element finite sequence X and a family S of
fields of X. Now we state the propositions:
(19) the set of all [[(s) where s is an element of S(1) is a field of subsets of the
set of all (x) where x is an element of X (1). The theorem is a consequence
of (14).
(20) SemiringProduct(S) is a field of subsets of [[ X. The theorem is a con-
sequence of (19).
Let n be a non zero natural number, X be a non-empty, n-element finite
sequence, and S be a family of fields of X.
A family of measures of S is an n-element finite sequence and is defined by
(Def. 4) for every natural number i such that i € Segn holds it(i) is a measure

on S(i).

3. ProbucT OF TWO MEASURES

Let X1, X5 be sets, S1 be a field of subsets of X7, and S5 be a field of subsets
of X5. The functor MeasRect(S1, S2) yielding a semialgebra of sets of X7 x X»
is defined by the term

(Def. 5) the set of all A x B where A is an element of Sy, B is an element of Ss.
Now we state the proposition:
(21) Let us consider a set X, and a field F' of subsets of X. Then there exists
a semialgebra S of sets of X such that
(i) F =S5, and
(ii) F = the field generated by S.

Let X1, X9 be sets, S1 be a field of subsets of X7, So be a field of sub-
sets of X9, m1 be a measure on S, and mo be a measure on S5. The functor
ProdpreMeas(m1,m2) yielding a non-negative, zeroed function from MeasRect
(S1, S2) into R is defined by

(Def. 6) for every element C' of MeasRect(Si,S2), there exists an element A of
S1 and there exists an element B of Sy such that C' = A x B and it(C) =
mq(A) - ma(B).

Now we state the propositions:

(22) Let us consider sets X1, Xo, a field S of subsets of X, a field Sy of
subsets of X9, a measure m1 on Sp, a measure my on So, and sets A, B.
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Suppose A € S; and B € Si. Then (ProdpreMeas(mi, ma))(A x B) =
ml(A) : mQ(B)

(23) Let us consider sets X7, X5, a non empty family S; of subsets of X7,
a non empty family S5 of subsets of Xo, a non empty family S of subsets
of X7 x X9, and a finite sequence H of elements of S. Suppose S =
the set of all A x B where A is an element of Sp, B is an element of Ss.
Then there exists a finite sequence F' of elements of S; and there exists
a finite sequence G of elements of S5 such that len H = len F' and len H =
len G and for every natural number k such that k € dom H and H (k) # ()
holds H (k) = F(k) x G(k).

PRrROOF: For every natural number k£ such that £ € dom H there exists
an element A of S7 and there exists an element B of Sy such that H(k) =
A x B. Define P[natural number, set] = there exists an element B of Sy
such that H($;) = $2 x B. Consider F being a finite sequence of elements
of S1 such that dom F' = Seglen H and for every natural number k£ such
that k& € Seglen H holds Plk, F'(k)] from [4, Sch. 5]. Define Q[natural

number, set] = there exists an element A of Sy such that H($1) = A x $5.
For every natural number k such that k € Seglen H there exists an element
B of Sy such that Q[k, B]. Consider G being a finite sequence of elements
of S5 such that dom G = Seglen H and for every natural number k such
that k € Seglen H holds Q[k, G(k)] from [4, Sch. 5]. O

(24) Let us consider a set X, a non empty, semi-diff-closed, N-closed family
S of subsets of X, and elements Fy, F of S. Then there exist disjoint
valued finite sequences O, T', F' of elements of S such that

(i) UrngO = E; \ Es, and
(i) UmgT = E5 \ E1, and
(ili) Urng F' = E1 N Ey, and
(iv) (O™ T) " F is a disjoint valued finite sequence of elements of S.

The theorem is a consequence of (9).

(25) Let us consider sets X, Xo, a field S of subsets of Xj, a field Sy
of subsets of X5, a measure mi on Si, a measure mo on So, and ele-
ments Ey, Fy of MeasRect(S1, S2). Suppose E; misses Eo and Fy U FEy €
MeasRect(S1, S2). Then (ProdpreMeas(m1, ma))(E1 U Ey) =
(ProdpreMeas(m1, m2))(E1) + (ProdpreMeas(mi, m2))(E2). The theorem
is a consequence of (1) and (22).

(26) Let us consider a non empty set X, a non empty family S of subsets
of X, a function f from N into S, and a sequence F' of partial functions
from X into R. Suppose f is disjoint valued and for every natural number
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n, F'(n) = Xj(n),x- Let us consider an object z. Suppose z € X. Then
XU r.x (@) = (Hm (35— Fa))xen) (2)-

(27) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, a partial function f from X to R, and a real number 7.
Suppose dom f € S and 0 < r and for every object x such that x € dom f
holds f(z) =r. Then [ fdM =r- M(dom f).

Let us consider a non empty set X, a o-field S of subsets of X, a o-measure
M on S, a partial function f from X to R, and an element A of S. Now we
state the propositions:

(28) Suppose there exists an element E of S such that £ = dom f and f is
measurable on F and for every object x such that z € dom f \ A holds
f(z) =0 and f is non-negative. Then [ fdM = [ flAdM. The theorem
is a consequence of (27).

(29) If f is integrable on M and for every object x such that x € dom f\ A
holds f(z) =0, then [ fdM = [ flAdM. The theorem is a consequence
of (27).

(30) Let us consider non empty sets X, Xa, a o-field S; of subsets of X1, a o-
field Sy of subsets of X5, a o-measure Ms on So, a function D from N into
S1, a function E from N into Sy, an element A of S1, an element B of S,
a sequence F of partial functions from X5 into R, a sequence R of R*1, and
an element x of X;. Suppose for every natural number n, R(n) = X D(n),X:
and for every natural number n, F((n) = R(n)(x) - Xg) x, and for every
natural number n, E(n) C B. Then there exists a sequence I of extended
reals such that

(i) for every natural number n, I(n) = Ma(E(n)) - Xpp),x, (z), and

(ii) I is summable, and
(iii) flim( g:O F(a))neN dMQ = Z 1.
PROOF: For every natural number n, dom(F(n)) = X3. Reconsider S3 =
X5 as an element of Ss. For every natural number n and for every set y
such that y € E(n) holds F(n)(y) = 0 or F(n)(y) = 1 by [10, (3)], [18,
(1)], [12 (39)]. For every natural number n and for every set y such that
y ¢ E(n) holds F(n)(y) = 0. For every natural number n, F'(n) is non-
negative and F'(n) is measurable on B by [8, (51)], [I7, (37)], [18, (29)].
For every element y of Xs such that y € B holds F'#y is summable by [8|,
(51), (39)], [19, (16)], [29; (37)].

Consider I being a sequence of extended reals such that for eve-

ry natural number n, I(n) = [F(n)[BdMy and I is summable and
JUIm(>E_o F(@))ken|BdMs = Y I. For every natural number n, I(n) =
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Ms(E(n)) - Xpm),x, (z) by [28, (61)], [10, (47), (49)], [18 (29)]. For eve-
ry natural number n, F'(n) is measurable on S3 by [18, (29)], [17, (37)].
For every natural number n, F(n) is without —oco. For every element y
of Xy such that y € S3 holds (3-5_q F'(«))ken#y is convergent by [19,
(38)]. For every object y such that y € domlim(}_%_ F(«))ken \ B holds
(Um(>"5_g F(a))ken)(y) = 0 by [19, (43)], [16, (52)]. For every object y
such that y € dom lim(>°F_ F(«))xen holds (Llm(>°5_ F(a))ken)(y) = 0
by [19 (36)], [8, (51)], [19, (10), (38)]. O
(31) Let us consider a non empty set X, a o-field S of subsets of X, an element
A of S, and an extended real number p. Then X —— p is measurable on A.
PROOF: For every real number r, AN GTE-dom(X —— p,r) € S by [26,
(D], [Z, (7)]. O
Let A, X be sets. The functor x4 y yielding a function from X into R is
defined by

(Def. 7) for every object x such that x € X holds if x € A, then it(x) = 400 and
if x ¢ A, then it(z) = 0.
Now we state the proposition:

(32) Let us consider a non empty set X, a o-field S of subsets of X, and
elements A, B of S. Then X4 x is measurable on B.

Let X, A be sets. Let us observe that Y, y is non-negative.

(33) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, and an element A of S. Then

(i) if M(A) #0, then [X4 x dM = +o0, and
(i) if M(A) =0, then [ X4y dM = 0.

PROOF: Reconsider X3 = X as an element of S. Reconsider X9 = X3\ A as
an element of S. Reconsider F' =74 x[A as a partial function from X to
R. Reconsider O =Y 4,x [ X2 as a partial function from X to R. Reconsider
T =Xax[(X2UA) as a partial function from X to R. [ FdM =0. O is
measurable on X. For every element = of X such that z € dom (X4 x[X2)
holds (X4 x [X2)(x) = 0 by [10, (47)]. [T'dM = [OdM +0. O

(34) Let us consider non empty sets X1, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of X5, a o-measure M; on Si, a o-measure My
on So, and a disjoint valued function K from N into MeasRect(S1, S2).
Suppose |J K € MeasRect(S7,S2). Then (ProdpreMeas(M;, M2))(U K) =
S~ (ProdpreMeas(My, M) - K).
ProOF: Consider A being an element of S, B being an element of Sy such
that | J K = Ax B. Consider P being an element of S1, @ being an element
of Sy such that | J K = PxQ and (ProdpreMeas(M1, Ms))(U K) = M1 (P)-
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M5(Q). Define F(object) = X (s,), x, x x,- Consider X being a sequence of
partial functions from X7 x X5 into R such that for every natural number
n, Xe¢(n) = F(n) from [24, Sch. 1]. Define P[natural number, object] =
$o = m (K ($1)). For every element ¢ of N, there exists an element A of
S1 such that P[i, A] by [2, (9)], [7, (7)]. Consider D being a function from
N into S; such that for every element i of N, P[i, D(¢)] from [II], Sch. 3].
Define Q[natural number, object] = $2 = ma(K($1)). For every element 4
of N, there exists an element B of Sy such that Q[i, B] by [2 (9)], [7, (7)].

Consider E being a function from N into S2 such that for every
element i of N, Q[i, E(i)] from [11}, Sch. 3]. Define O(object) = Xp(s,) x; -
Consider X7 being a sequence of partial functions from X; into R such
that for every natural number n, X7(n) = O(n) from [24, Sch. 1]. Define
T (object) = Xg(s,),x,- Consider X4 being a sequence of partial functions
from X5 into R such that for every natural number n, X4(n) = 7 (n) from
[24, Sch. 1]. For every natural number n and for every objects z, y such
that z € X; and y € X5 holds Xg(n)(z,y) = X7(n)(z) - Xa(n)(y) by [14,
(87), 2 (9)], (2). (ProdpreMeas(My, M) (U K) = M (4)-My(B) by [T
(110)]. Reconsider C1 = XAxB,x;x X, as a function from X7 x X5 into R.
For every element x of X, Ma(B)- X4 x, (z) = [ curry(Cy, z) dM> by (2),
13, (5)], [19, (14)], [23, (4)]. For every object n such that n € N holds
X7(n) € R*t by [12, (39)]. Reconsider R; = X7 as a sequence of R, For
every natural number n, D(n) C A and E(n) C B by [2, (10)], [1 (1)].
For every element x of X1, there exists a sequence X5 of partial functions
from X» into R and there exists a sequence I of extended reals such that
for every natural number n, X5(n) = Ri(n)(z) - Xg),x, and for every
natural number n, I(n) = Ma(E(n)) - Xp(n),x, (z) and I is summable and
J (S X (0))wen dMy = 351 by [I3, (45)], (30).

Reconsider L1 = lIm(} 5 _o X6())ken as a function from X; X
X, into R. For every element = of X; and for every element y of X,
(curry(Ch,z))(y) = (curry(L1,x))(y). For every element x of X1, curry(C1,
x) = curry(L, z). For every element x of X1, Ma(B) - Xa x,(x) = [ curry
(L1,x)dMs. For every element x of X, there exists a sequence I of
extended reals such that for every natural number n, I(n) = My(E(n)) -
XD(n),Xl (.’L‘) and MQ(B> - XA,X, (.’L‘) = > I by [87 (51)]7 [197 (38), (29),
(30)]. Define R[natural number,object] = if My(E($1)) = +oo, then
$2 = Xp($,),x, and if Ma(E(31)) # +o0, then there exists a real number
mg such that my = Ma(E(31)) and $2 = ma-Xp(s,),x, - For every element n
of N, there exists an element y of X; R such that R[n,y| by [13 (45)], [8,
(51)]. Consider Fy being a function from N into X;->R such that for every
element n of N, R[n, F1(n)] from [II], Sch. 3]. For every natural number



(35)

(36)

PRODUCT PRE-MEASURE

n, dom(Fi(n)) = X;. For every natural number n, F;(n) is non-negative
by [8, (51)]. For every natural numbers n, m, dom(F;(n)) = dom(Fy(m)).

Reconsider X3 = X7 as an element of S7. For every natural num-
ber n, Fi(n) is non-negative and Fj(n) is measurable on A and Fj(n)
is measurable on X3 by (32), [I8, (29)], [I7, (37)]. For every element z
of Xj such that x € A holds Fy#x is summable by [8, (51), (39)], [20,
(2)]. Consider J being a sequence of extended reals such that for eve-
ry natural number n, J(n) = [Fi(n)[AdM; and J is summable and
JUm(} ko Fi(a))ken[AdM; = 3" J. For every natural number n, J(n) =
[ Fi(n)dM;. Reconsider X3 = X as an element of S;. For every element
n of N, J(n) = (ProdpreMeas(M;, M) - K)(n) by (33), [8, (51)], [18, (29)],
[16l, (86), (88)]. For every element x of X1, (im(>-5_ Fi(a))ken)(x) = 0
by [19, (38)], [29] (37), (23)], [8, (51)]. For every natural number n, Fj(n)
is measurable on X3 and Fj(n) is without —oo. For every object = such
that z € domlim(>-5_ Fi(a))ken \ 4 holds (m (35 _ Fi(a))ken)(z) =0
by [197 (30)7 (32)]> [167 (52)]' fhm(zgzo Fl(a))neN dMy =

7

JUm(3o5—0 Fi(a))ren[AdMy. [lm(35_o Fi(e))ren dM1 = My (A)-Ma(B)

by [11}, (63)], [19, (30), (32)], [8, (51)]. O

Let us consider a without —oo finite sequence f of elements of R, and
a without —oo sequence s of extended reals. Suppose for every object n
such that n € dom f holds f(n) = s(n).

Then ¥ f + 5(0) = (X s(0))een(len f).

PRrROOF: Consider F' being a sequence of R such that Y f = F(len f)
and F'(0) = 0 and for every natural number ¢ such that ¢ < len f holds
F(i+1)=F(i)+ f(i+1). Define P[natural number] = if §; < len f, then
F($1) +s(0) = (XF_ s(a))ken($1) and F($1) # —oo. For every natural
number £ such that P[k] holds P[k + 1] by [3, (11)], [27,, (25)], [16, (10)],
[3, (13)]. For every natural number k, P[k| from [3, Sch. 2]. O

Let us consider a non-negative finite sequence f of elements of R, and
a sequence s of extended reals. Suppose for every object n such that n €
dom f holds f(n) = s(n) and for every element n of N such that n ¢ dom f
holds s(n) = 0. Then

(i) ©f=s and

(i) T f=%s
PRrROOF: For every object n such that n € doms holds 0 < s(n) by [8,
(51)]. > f +s(0) = (> o6—0s(a))xen(len f). Define P[natural number| =

>k _os(a))wen(len f) = ((O6_y s(a@))ken T len f)($1). For every natural
number & such that P[k] holds P[k + 1] by [27, (25)]. For every natural
number k, P[k] from [3, Sch. 2]. O
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(37) Let us consider non empty sets X1, Xo, a o-field Sy of subsets of X7, a o-

field Sy of subsets of X5, a o-measure M7 on Si, a o-measure Mo on S9,
and a disjoint valued finite sequence F' of elements of MeasRect(S7, 52).
Suppose [J F' € MeasRect(S1,.S2). Then (ProdpreMeas(M;, Ma))(UF) =
> (ProdpreMeas(M;y, Ms) - F).
PRrROOF: Set S = MeasRect(S1, S2). Define Plobject, object] = if §; €
dom F; then $5 = F($;) and if $; ¢ dom F, then $3 = (). For every
element n of N, there exists an element y of S such that P[n, y| by [10, (3)].
Consider G being a function from N into S such that for every element
n of N, Pln,G(n)] from [II], Sch. 3]. For every object = such that = ¢
dom F holds G(z) = 0. For every objects x, y such that x # y holds G(x)
misses G(y). (ProdpreMeas(M, Ms))(U F) = 3 (ProdpreMeas(M;, Ms) -
G). For every object n such that n € dom(ProdpreMeas(Mj, Ms)-F') holds
ProdpreMeas(M;, Mz) - F')(n) = (ProdpreMeas(M;1, Ms) - G)(n) by [10,
1), (12), (13)]. For every element n of N such that n ¢ dom(ProdpreMeas
Ml,Mg) F) holds (ProdpreMeas(M;, M) - G)(n) = 0 by [10, (3), (11),

(
(1
(
(13)]. O

(38) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,

a o-field Sy of subsets of X5, a o-measure M; on S1, and a o-measure My
on Sy. Then ProdpreMeas(M7i, M) is a pre-measure of MeasRect(S7, S2).
The theorem is a consequence of (37) and (34).

Let X1, X2 be non empty sets, S1 be a o-field of subsets of X1, S2 be a o-

field of subsets of X5, M7 be a o-measure on Si, and Ms be a o-measure on Ss.
Let us observe that the functor ProdpreMeas(Mj, Ms) yields a pre-measure of
MeasRect(S1, S2).

2]
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