Polynomially Bounded Sequences and Polynomial Sequences

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Yuichi Futa
Japan Advanced Institute
of Science and Technology
Ishikawa, Japan

Abstract

Summary. In this article, we formalize polynomially bounded sequences that plays an important role in computational complexity theory. Class P is a fundamental computational complexity class that contains all polynomial-time decision problems [11, [12. It takes polynomially bounded amount of computation time to solve polynomial-time decision problems by the deterministic Turing machine. Moreover we formalize polynomial sequences [5].

MSC: 03D15 68Q15 03B35
Keywords: computational complexity; polynomial time
MML identifier: $\widehat{\text { ASYMPT_2, }}$, version: 8.1.04 5.32.1246

The notation and terminology used in this paper have been introduced in the following articles: [26], [18], [16], [17, [6], 22], 10], [7], 8], [24], 14], 1], [2], 3], [13], 20], [27], 28], [21], [25], and [9].

1. Preliminaries

Now we state the proposition:
(1) Let us consider natural numbers m, k. If $1 \leqslant m$, then $1 \leqslant m^{k}$.

Let us consider natural numbers m, n. Now we state the propositions:
(2) $m \leqslant m^{n+1}$.
(3) If $2 \leqslant m$, then $n+1 \leqslant m^{n}$.
(4) Let us consider a natural number k. Then $2 \cdot k \leqslant 2^{k}$.

Proof: Define \mathcal{P} [natural number] $\equiv 2 \cdot \$_{1} \leqslant 2^{\$_{1}}$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [20, (25)], [24, (5)], [1, (14)], (2). For every natural number $n, \mathcal{P}[n]$ from [1, Sch. 2].
(5) Let us consider natural numbers k, n. If $k \leqslant n$, then $n+k \leqslant 2^{n}$.

Proof: Define \mathcal{P} [natural number] $\equiv \$_{1}+k+k \leqslant 2^{\$_{1}+k} .2 \cdot k \leqslant 2^{k}$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [20, (27), (25), (24)]. For every natural number $n, \mathcal{P}[n]$ from [1, Sch. 2].
(6) Let us consider natural numbers k, m. If $2 \cdot k+1 \leqslant m$, then $2^{k} \leqslant 2^{m} / m$. The theorem is a consequence of (5).
(7) Let us consider real numbers a, b, c. If $1<a$ and $0<b \leqslant c$, then $\log _{a} b \leqslant \log _{a} c$.
Let us consider a natural number n and a real number a. Now we state the propositions:
(8) If $1<a$, then $a^{n}<a^{n+1}$.
(9) If $1 \leqslant a$, then $a^{n} \leqslant a^{n+1}$.
(10) There exists a partial function g from \mathbb{R} to \mathbb{R} such that
(i) $\operatorname{dom} g=] 0,+\infty[$, and
(ii) for every real number x such that $x \in] 0,+\infty\left[\right.$ holds $g(x)=\log _{2} x$, and
(iii) g is differentiable on $] 0,+\infty[$, and
(iv) for every real number x such that $x \in] 0,+\infty[$ holds g is differentiable in x and $g^{\prime}(x)=\log _{2} e / x$ and $0<g^{\prime}(x)$.
Proof: Set $g=\log _{2} e \cdot$ (the function \ln). For every real number d such that $d \in] 0,+\infty\left[\right.$ holds $g(d)=\log _{2} d$ by [20, (56)]. For every real number x such that $x \in] 0,+\infty\left[\right.$ holds g is differentiable in x and $g^{\prime}(x)=\log _{2} e / x$ and $0<g^{\prime}(x)$ by [23, (18)], [22, (15)], [20, (57)], [23, (11)].
(11) There exists a partial function f from \mathbb{R} to \mathbb{R} such that
(i) $] e,+\infty[=\operatorname{dom} f$, and
(ii) for every real number x such that $x \in \operatorname{dom} f$ holds $f(x)=x / \log _{2} x$, and
(iii) f is differentiable on $] e,+\infty[$, and
(iv) for every real number x_{0} such that $\left.x_{0} \in\right] e,+\infty\left[\right.$ holds $0 \leqslant f^{\prime}\left(x_{0}\right)$, and
(v) f is non-decreasing.

Proof: Consider g being a partial function from \mathbb{R} to \mathbb{R} such that dom $g=$ $] 0,+\infty[$ and for every real number x such that $x \in] 0,+\infty[$ holds $g(x)=$ $\log _{2} x$ and g is differentiable on $] 0,+\infty[$ and for every real number x such that $x \in] 0,+\infty\left[\right.$ holds g is differentiable in x and $g^{\prime}(x)=\log _{2} e / x$ and $0<g^{\prime}(x)$. Set $\left.g_{0}=g \upharpoonright\right] e,+\infty[$. For every object x such that $x \in] e,+\infty[$ holds $x \in] 0,+\infty$ [by [23, (11)]. Set $f=\operatorname{id}_{\Omega_{\mathbb{R}}} / g_{0} \cdot g_{0}{ }^{-1}(\{0\})=\emptyset$ by [23, (11)], [7, (49)], [4, (10)], [20, (52)]. For every real number x such that $x \in$ dom f holds $f(x)=x / \log _{2} x$ by [7, (49)]. For every real number x such that $x \in] e,+\infty\left[\right.$ holds f is differentiable in x and $f^{\prime}(x)=\log _{2} x-\log _{2} e /\left(\log _{2} x\right)^{2}$ by [23, (11)], [7, (49)], [4, (10)], [20, (52)]. For every real number x such that $x \in] e,+\infty\left[\right.$ holds $0 \leqslant f^{\prime}(x)$ by [20, (57)], [23, (11)].
(12) Let us consider real numbers x, y. If $e<x \leqslant y$, then $x / \log _{2} x \leqslant y / \log _{2} y$. The theorem is a consequence of (11).
(13) Let us consider a natural number k. Suppose $e<k$. Then there exists a natural number N such that for every natural number n such that $N \leqslant n$ holds $2^{k} \leqslant n / \log _{2} n$. The theorem is a consequence of (12) and (6).
Let us consider a natural number x. Let us assume that $1<x$.
(14) There exists a natural number N such that for every natural number n such that $N \leqslant n$ holds $4<n / \log _{x} n$.
(15) There exist natural numbers N, c such that for every natural number n such that $N \leqslant n$ holds $n^{x} \leqslant c \cdot x^{n}$.
(16) Let us consider a natural number x. Suppose $1<x$. Then there exist no natural numbers N, c such that for every natural number n such that $N \leqslant n$ holds $2^{n} \leqslant c \cdot n^{x}$.
Proof: Consider N being a natural number such that there exists a natural number c such that for every natural number n such that $N \leqslant n$ holds $2^{n} \leqslant c \cdot n^{x} . N \neq 0$ by [20, (42), (24)]. Consider c being a natural number such that for every natural number n such that $N \leqslant n$ holds $2^{n} \leqslant c \cdot n^{x}$. There exists an element n of \mathbb{N} such that $N \leqslant n$ and $0<n-(x / 4)$ by [24, (6), (3)]. Consider n being an element of \mathbb{N} such that $N \leqslant n$ and $0<n-(x / 4) .0<c$ by [20, (34)]. For every natural number k such that $1 \leqslant k$ holds $2^{k \cdot n} \leqslant c \cdot(k \cdot n)^{x}$. For every natural number k such that $1 \leqslant k$ holds $k \cdot n \leqslant \log _{2} c+x \cdot \log _{2} k+x \cdot \log _{2} n$ by [20, (34)], (7), [20, (55), (52), (53)]. Consider Z being an element of \mathbb{N} such that for every natural number k such that $Z \leqslant k$ holds $4<k / \log _{2} k$. There exists a natural number k such that $Z \leqslant k$ and $\log _{2} c+x \cdot \log _{2} n /{ }_{n-(x / 4)} \leqslant k$ by [24, (6), (3)]. There exists a natural number k such that $Z \leqslant k$ and $\log _{2} c+x \cdot \log _{2} n / n-(x / 4) \leqslant k$ and $1<k$ by [1, (11)]. Consider k being a natural number such that $Z \leqslant k$ and $1<k$ and $\log _{2} c+x \cdot \log _{2} n / n-(x / 4) \leqslant k$.
(17) Let us consider natural numbers a, b. If $a \leqslant b$, then $\left\{n^{a}\right\}_{n \in \mathbb{N}} \in O\left(\left\{n^{b}\right\}_{n \in \mathbb{N}}\right)$.
(18) Let us consider a natural number x. Suppose $1<x$. Then there exist no natural numbers N, c such that for every natural number n such that $N \leqslant n$ holds $x^{n} \leqslant c \cdot n^{x}$.
Proof: There exist natural numbers N, c such that for every natural number n such that $N \leqslant n$ holds $2^{n} \leqslant c \cdot n^{x}$ by [24, (7)].
(19) Let us consider a non negative real number a, and a natural number n. If $1 \leqslant n$, then $0<\left\{n^{a}\right\}_{n \in \mathbb{N}}(n)$.

2. Polynomially Bounded Sequences

Let p be a sequence of real numbers. We say that p is polynomially bounded if and only if
(Def. 1) there exists a natural number k such that $p \in O\left(\left\{n^{k}\right\}_{n \in \mathbb{N}}\right)$.
Now we state the propositions:
(20) Let us consider a sequence f of real numbers. Suppose f is not polynomially bounded. Let us consider a natural number k. Then $f \notin O\left(\left\{n^{k}\right\}_{n \in \mathbb{N}}\right)$.
(21) Let us consider a sequence f of real numbers. Suppose for every natural number $k, f \notin O\left(\left\{n^{k}\right\}_{n \in \mathbb{N}}\right)$. Then f is not polynomially bounded.
(22) Let us consider a positive real number a. Then $\left\{a^{1 \cdot n+0}\right\}_{n \in \mathbb{N}}$ is positive.

Let us consider a real number a. Now we state the propositions:
(23) If $1 \leqslant a$, then $\left\{a^{1 \cdot n+0}\right\}_{n \in \mathbb{N}}$ is non-decreasing. The theorem is a consequence of (9).
(24) If $1<a$, then $\left\{a^{1 \cdot n+0}\right\}_{n \in \mathbb{N}}$ is increasing. The theorem is a consequence of (8).
(25) Let us consider a natural number a. If $1<a$, then $\left\{a^{1 \cdot n+0}\right\}_{n \in \mathbb{N}}$ is not polynomially bounded.
Proof: Consider k being a natural number such that $\left\{a^{1 \cdot n+0}\right\}_{n \in \mathbb{N}} \in$ $O\left(\left\{n^{k}\right\}_{n \in \mathbb{N}}\right)$. Reconsider $f=\left\{n^{k}\right\}_{n \in \mathbb{N}}$ as an eventually positive sequence of real numbers. Reconsider $t=\left\{a^{1 \cdot n+0}\right\}_{n \in \mathbb{N}}$ as an eventually nonnegative sequence of real numbers. $t \in O(f)$ and for every element n of \mathbb{N} such that $1 \leqslant n$ holds $0<f(n)$. Consider c being a real number such that $c>0$ and for every element n of \mathbb{N} such that $n \geqslant 1$ holds $\left(\left\{a^{1 \cdot n+0}\right\}_{n \in \mathbb{N}}\right)(n) \leqslant c \cdot\left\{n^{k}\right\}_{n \in \mathbb{N}}(n)$. For every natural number n such that $n \geqslant 1$ holds $2^{n} \leqslant c \cdot n^{k}$ by [24, (7)]. There exist natural numbers N, b such that for every natural number n such that $N \leqslant n$ holds $2^{n} \leqslant b \cdot n^{k}$ by [24, (3)].

3. Polynomial Sequences

Now we state the proposition:
(26) Let us consider a finite 0 -sequence x of \mathbb{R}, and a sequence y of real numbers. Then
(i) $x \cdot y$ is a finite transfinite sequence of elements of \mathbb{R}, and
(ii) $\operatorname{dom}(x \cdot y)=\operatorname{dom} x$, and
(iii) for every object i such that $i \in \operatorname{dom} x$ holds $(x \cdot y)(i)=x(i) \cdot y(i)$.

Let x be a finite 0 -sequence of \mathbb{R} and y be a sequence of real numbers. Observe that the functor $x \cdot y$ yields a finite 0 -sequence of \mathbb{R}. Now we state the proposition:
(27) Let us consider a finite 0 -sequence d of \mathbb{R}, and natural numbers x, i. Suppose $i \in \operatorname{dom} d$. Then $\left(d \cdot\left\{x^{1 \cdot n+0}\right\}_{n \in \mathbb{N}}\right)(i)=d(i) \cdot x^{i}$. The theorem is a consequence of (26).
Let c be a finite 0 -sequence of \mathbb{R}. The functor $\operatorname{Seq}_{\text {poly }}(c)$ yielding a sequence of real numbers is defined by
(Def. 2) for every natural number $x, i t(x)=\sum\left(c \cdot\left\{x^{1 \cdot n+0}\right\}_{n \in \mathbb{N}}\right)$.
Let us consider a finite 0 -sequence d of \mathbb{R} and a natural number k. Now we state the propositions:
(28) Suppose len $d=k+1$. Then there exists a real number a and there exists a finite 0 -sequence d_{1} of \mathbb{R} and there exists a sequence y of real numbers such that len $d_{1}=k$ and $d_{1}=d \upharpoonright k$ and $a=d(k)$ and $d=d_{1} 乞\langle a\rangle$ and $\operatorname{Seq}_{\text {poly }}(d)=\operatorname{Seq}_{\text {poly }}\left(d_{1}\right)+y$ and for every natural number $i, y(i)=a \cdot i^{k}$. Proof: Consider a being a real number, d_{1} being a finite 0 -sequence of \mathbb{R} such that len $d_{1}=k$ and $d_{1}=d \upharpoonright k$ and $a=d(k)$ and $d=d_{1} \frown\langle a\rangle$. Define \mathcal{F} (natural number) $=a \cdot \$_{1}^{k}$. Consider y being a sequence of real numbers such that for every natural number $x, y(x)=\mathcal{F}(x)$ from [15, Sch. 1]. For every element x of \mathbb{N}, $\left(\operatorname{Seq}_{\text {poly }}(d)\right)(x)=\left(\operatorname{Seq}_{\text {poly }}\left(d_{1}\right)+y\right)(x)$ by (26), [1, (13), (44)], (27).
(29) If len $d=1$, then there exists a real number a such that $a=d(0)$ and for every natural number $x,\left(\operatorname{Seq}_{\text {poly }}(d)\right)(x)=a$. The theorem is a consequence of (26).
(30) If len $d=1$ and d is non-negative yielding, then $\operatorname{Seq}_{\text {poly }}(d) \in O\left(\left\{n^{k}\right\}_{n \in \mathbb{N}}\right)$. The theorem is a consequence of (29).
(31) Let us consider a natural number k, a real number a, and a sequence y of real numbers. Suppose $0 \leqslant a$ and for every natural number $i, y(i)=a \cdot i^{k}$. Then $y \in O\left(\left\{n^{k}\right\}_{n \in \mathbb{N}}\right)$.
(32) Let us consider natural numbers k, n. If $k \leqslant n$, then $O\left(\left\{n^{k}\right\}_{n \in \mathbb{N}}\right) \subseteq$ $O\left(\left\{n^{n}\right\}_{n \in \mathbb{N}}\right)$.
Proof: Consider i being a natural number such that $n=k+i$. Define \mathcal{P} [natural number] $\equiv O\left(\left\{n^{k}\right\}_{n \in \mathbb{N}}\right) \subseteq O\left(\left\{n^{\left(k+\$_{1}\right)}\right\}_{n \in \mathbb{N}}\right)$. For every natural number x such that $\mathcal{P}[x]$ holds $\mathcal{P}[x+1]$. For every natural number $x, \mathcal{P}[x]$ from [1, Sch. 2].
(33) Let us consider a natural number k, and a non-negative yielding finite 0 -sequence c of \mathbb{R}. Suppose len $c=k+1$. Then $\operatorname{Seq}_{\text {poly }}(c) \in O\left(\left\{n^{k}\right\}_{n \in \mathbb{N}}\right)$. Proof: Define \mathcal{P} [natural number] \equiv for every non-negative yielding finite 0 -sequence c of \mathbb{R} such that len $c=\$_{1}+1$ holds $\operatorname{Seq}_{\text {poly }}(c) \in O\left(\left\{n^{\$_{1}}\right\}_{n \in \mathbb{N}}\right)$. $\mathcal{P}[0]$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by (28), [7, (47)], [1, (13), (39)]. For every natural number $k, \mathcal{P}[k]$ from [1, Sch. 2].
(34) Let us consider a natural number k, and a finite 0 -sequence c of \mathbb{R}. Then there exists a finite 0 -sequence d of \mathbb{R} such that
(i) $\operatorname{len} d=\operatorname{len} c$, and
(ii) for every natural number i such that $i \in \operatorname{dom} d$ holds $d(i)=|c(i)|$.

Proof: Define \mathcal{F} (natural number) $=\left|c\left(\$_{1}\right)\right|(\in \mathbb{R})$. Consider d being a finite 0 -sequence of \mathbb{R} such that len $d=\operatorname{len} c$ and for every natural number j such that $j \in \operatorname{len} c$ holds $d(j)=\mathcal{F}(j)$ from [18, Sch. 1].
(35) Let us consider a finite 0 -sequence c of \mathbb{R}, and a finite 0 -sequence d of \mathbb{R}. Suppose len $d=\operatorname{len} c$ and for every natural number i such that $i \in \operatorname{dom} d$ holds $d(i)=|c(i)|$. Let us consider a natural number n. Then $\left(\operatorname{Seq}_{\text {poly }}(c)\right)(n) \leqslant\left(\operatorname{Seq}_{\text {poly }}(d)\right)(n)$.
Proof: $\operatorname{dom}\left(d \cdot\left\{x^{1 \cdot n+0}\right\}_{n \in \mathbb{N}}\right)=\operatorname{dom} d$. For every natural number i such that $i \in \operatorname{dom}\left(c \cdot\left\{x^{1 \cdot n+0}\right\}_{n \in \mathbb{N}}\right)$ holds $\left(c \cdot\left\{x^{1 \cdot n+0}\right\}_{n \in \mathbb{N}}\right)(i) \leqslant\left(d \cdot\left\{x^{1 \cdot n+0}\right\}_{n \in \mathbb{N}}\right)(i)$ by (26), (27), [19, (4)].
(36) Let us consider a natural number k, and a finite 0 -sequence c of \mathbb{R}. Suppose len $c=k+1$ and $\operatorname{Seq}_{\text {poly }}(c)$ is eventually nonnegative. Then $\operatorname{Seq}_{\text {poly }}(c) \in O\left(\left\{n^{k}\right\}_{n \in \mathbb{N}}\right)$.
Proof: Consider d being a finite 0 -sequence of \mathbb{R} such that len $d=\operatorname{len} c$ and for every natural number i such that $i \in \operatorname{dom} d$ holds $d(i)=|c(i)|$. For every natural number i such that $i \in$ dom d holds $0 \leqslant d(i)$ by [6, (46)]. For every real number r such that $r \in \operatorname{rng} d$ holds $0 \leqslant r . \operatorname{Seq}_{\text {poly }}(d) \in$ $O\left(\left\{n^{k}\right\}_{n \in \mathbb{N}}\right)$. Consider t being an element of $\mathbb{R}^{\mathbb{N}}$ such that $\operatorname{Seq}_{\text {poly }}(d)=t$ and there exists a real number c and there exists an element N of \mathbb{N} such that $c>0$ and for every element n of \mathbb{N} such that $n \geqslant N$ holds $t(n) \leqslant$ $c \cdot\left\{n^{k}\right\}_{n \in \mathbb{N}}(n)$ and $t(n) \geqslant 0$. Consider N_{1} being a natural number such that for every natural number n such that $N_{1} \leqslant n$ holds $0 \leqslant\left(\operatorname{Seq}_{\text {poly }}(c)\right)(n)$.

Consider a being a real number, N_{2} being an element of \mathbb{N} such that $a>0$ and for every element n of \mathbb{N} such that $n \geqslant N_{2}$ holds $t(n) \leqslant a \cdot\left\{n^{k}\right\}_{n \in \mathbb{N}}(n)$ and $t(n) \geqslant 0$. Set $N=N_{1}+N_{2}$. For every element n of \mathbb{N} such that $n \geqslant N$ holds $\left(\operatorname{Seq}_{\text {poly }}(c)\right)(n) \leqslant a \cdot\left\{n^{k}\right\}_{n \in \mathbb{N}}(n)$ and $\left(\operatorname{Seq}_{\text {poly }}(c)\right)(n) \geqslant 0$ by [1, (11)], (35).
(37) Let us consider natural numbers k, n. If $0<n$, then $n \cdot\left\{n^{k}\right\}_{n \in \mathbb{N}}(n)=$ $\left\{n^{(k+1)}\right\}_{n \in \mathbb{N}}(n)$.
(38) Let us consider a finite 0 -sequence c of \mathbb{R}. Suppose len $c=0$. Let us consider a natural number x. Then $\left(\operatorname{Seq}_{\text {poly }}(c)\right)(x)=0$.
(39) Let us consider an eventually nonnegative sequence f of real numbers, and a natural number k. Suppose $f \in O\left(\left\{n^{k}\right\}_{n \in \mathbb{N}}\right)$. Then there exists a natural number N such that for every natural number n such that $N \leqslant n$ holds $f(n) \leqslant\left\{n^{(k+1)}\right\}_{n \in \mathbb{N}}(n)$. The theorem is a consequence of (37).
(40) Let us consider a finite 0 -sequence c of \mathbb{R}. Then there exists a finite 0 -sequence a_{1} of \mathbb{R} such that
(i) $a_{1}=|c|$, and
(ii) for every natural number n, $\left(\operatorname{Seq}_{\text {poly }}(c)\right)(n) \leqslant\left(\operatorname{Seq}_{\text {poly }}\left(a_{1}\right)\right)(n)$.

Proof: Reconsider $a_{1}=|c|$ as a finite 0 -sequence of \mathbb{R}. Set $m_{1}=c$. $\left\{n^{1 \cdot n+0}\right\}_{n \in \mathbb{N}}$. Set $m_{2}=a_{1} \cdot\left\{n^{1 \cdot n+0}\right\}_{n \in \mathbb{N}}$. For every natural number x such that $x \in \operatorname{dom} m_{1}$ holds $m_{1}(x) \leqslant m_{2}(x)$ by [19, (4)].
(41) Let us consider finite 0 -sequences c, a_{1} of \mathbb{R}. Suppose $a_{1}=|c|$. Let us consider a natural number n. Then $\left|\left(\operatorname{Seq}_{\text {poly }}(c)\right)(n)\right| \leqslant\left(\operatorname{Seq}_{\text {poly }}\left(a_{1}\right)\right)(n)$. Proof: Define \mathcal{P} [natural number] \equiv for every finite 0 -sequences c, a_{1} of \mathbb{R} such that len $c=\$_{1}$ and $a_{1}=|c|$ for every natural number x, $\left|\left(\operatorname{Seq}_{\text {poly }}(c)\right)(x)\right| \leqslant\left(\operatorname{Seq}_{\text {poly }}\left(a_{1}\right)\right)(x) . \mathcal{P}[0]$ by (26), [6, (44)]. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by (28), [7, (47)], [15, (7)], [6, (56), (65)]. For every natural number $n, \mathcal{P}[n]$ from [1, Sch. 2].
(42) Let us consider a real number a. Suppose $0<a$. Let us consider a natural number k, and a non-negative yielding finite 0 -sequence d of \mathbb{R}. Suppose len $d=k$. Then there exists a natural number N such that for every natural number x such that $N \leqslant x$ for every natural number i such that $i \in \operatorname{dom} d$ holds $d(i) \cdot x^{i} \cdot k \leqslant a \cdot x^{k}$.
Proof: For every natural number i such that $i \in \operatorname{dom} d$ holds $0 \leqslant d(i)$ by [7, (3)].
(43) Let us consider a natural number k, a finite 0 -sequence d of \mathbb{R}, a real number a, and a sequence y of real numbers. Suppose $0<a$ and len $d=k$ and for every natural number $x, y(x)=a \cdot x^{k}$. Then there exists a natural number N such that for every natural number x such that $N \leqslant x$ holds
$\left|\left(\operatorname{Seq}_{\text {poly }}(d)\right)(x)\right| \leqslant y(x)$. The theorem is a consequence of $(38),(42),(26)$, (27), and (41).
(44) Let us consider a natural number k, and a finite 0 -sequence d of \mathbb{R}. Suppose len $d=k+1$ and $0<d(k)$. Then $\operatorname{Seq}_{\text {poly }}(d)$ is eventually nonnegative. Proof: Consider a being a real number, d_{1} being a finite 0 -sequence of \mathbb{R}, y being a sequence of real numbers such that len $d_{1}=k$ and $d_{1}=d \upharpoonright k$ and $a=d(k)$ and $d=d_{1} 乞\langle a\rangle$ and $\operatorname{Seq}_{\text {poly }}(d)=\operatorname{Seq}_{\text {poly }}\left(d_{1}\right)+y$ and for every natural number $i, y(i)=a \cdot i^{k}$. Consider N being a natural number such that for every natural number i such that $N \leqslant i$ holds $\left|\left(\operatorname{Seq}_{\text {poly }}\left(d_{1}\right)\right)(i)\right| \leqslant y(i)$. For every natural number i such that $N \leqslant i$ holds $0 \leqslant\left(\operatorname{Seq}_{\text {poly }}(d)\right)(i)$ by [19, (4)], [15, (7)].
Let us consider a natural number k and a finite 0 -sequence c of \mathbb{R}.
Let us assume that len $c=k+1$ and $0<c(k)$. Now we state the propositions:

$$
\begin{equation*}
\operatorname{Seq}_{\text {poly }}(c) \in O\left(\left\{n^{k}\right\}_{n \in \mathbb{N}}\right) \tag{45}
\end{equation*}
$$

(46) $\operatorname{Seq}_{\text {poly }}(c)$ is polynomially bounded. The theorem is a consequence of (36) and (44).

Acknowledgement: The authors would also like to express their gratitude to Prof. Yasunari Shidama for his support and encouragement.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek. Increasing and continuous ordinal sequences Formalized Mathematics, 1(4):711-714, 1990.
[4] Grzegorz Bancerek and Piotr Rudnicki. Two programs for SCM. Part I - preliminaries. Formalized Mathematics, 4(1):69-72, 1993.
[5] E.J. Barbeau. Polynomials. Springer, 2003.
[6] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[7] Czesław Byliński. Functions and their basic properties Formalized Mathematics, 1(1): 55-65, 1990.
[8] Czesław Byliński. Functions from a set to a set Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. Some basic properties of sets Formalized Mathematics, 1(1):47-53, 1990.
[10] Agata Darmochwał. Finite sets Formalized Mathematics, 1(1):165-167, 1990.
[11] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley, 2005.
[12] Donald E. Knuth. The Art of Computer Programming, Volume 1: Fundamental Algorithms, Third Edition. Addison-Wesley, 1997.
[13] Artur Korniłowicz. On the real valued functions. Formalized Mathematics, 13(1):181-187, 2005.
[14] Jarosław Kotowicz. The limit of a real function at infinity Formalized Mathematics, 2 (1):17-28, 1991.
[15] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[16] Richard Krueger, Piotr Rudnicki, and Paul Shelley. Asymptotic notation. Part I: Theory. Formalized Mathematics, 9(1):135-142, 2001.
[17] Richard Krueger, Piotr Rudnicki, and Paul Shelley. Asymptotic notation. Part II: Examples and problems. Formalized Mathematics, 9(1):143-154, 2001.
[18] Yatsuka Nakamura and Hisashi Ito. Basic properties and concept of selected subsequence of zero based finite sequences. Formalized Mathematics, 16(3):283-288, 2008. doi $10.2478 / \mathrm{v} 10037-008-0034-\mathrm{y}$
[19] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[20] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms Formalized Mathematics, 2(2):213-216, 1991.
[21] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449452, 1991.
[22] Konrad Raczkowski and Paweł Sadowski. Real function differentiability Formalized Mathematics, 1(4):797-801, 1990.
[23] Yasunari Shidama. The Taylor expansions Formalized Mathematics, 12(2):195-200, 2004.
[24] Michał J. Trybulec. Integers Formalized Mathematics, 1(3):501-505, 1990.
[25] Zinaida Trybulec. Properties of subsets Formalized Mathematics, 1(1):67-71, 1990.
[26] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences Formalized Mathematics, 9(4):825-829, 2001.
[27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
[28] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received June 30, 2015

