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Summary. We are inspired by the work of Henri Cartan [16], Bourbaki
[10] (TG. I Filtres) and Claude Wagschal [34]. We define the base of filter, image
filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des
sections).
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1. Filters – Set-Theoretical Approach

From now on X denotes a non empty set, F denotes a filter of X, and S

denotes a family of subsets of X.
Let X be a set and S be a family of subsets of X. We say that S is upper if

and only if

(Def. 1) for every subsets Y1, Y2 of X such that Y1 ∈ S and Y1 ⊆ Y2 holds Y2 ∈ S.

Let us note that there exists a ∩-closed family of subsets of X which is non
empty and there exists a non empty, ∩-closed family of subsets of X which is
upper.

Let X be a non empty set. Let us note that there exists a non empty, upper,
∩-closed family of subsets of X which has non empty elements.

Now we state the propositions:
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(1) S is a non empty, upper, ∩-closed family of subsets of X with non empty
elements if and only if S is a filter of X.

(2) Let us consider non empty sets X1, X2, a filter F1 of X1, and a filter
F2 of X2. Then the set of all f1 × f2 where f1 is an element of F1, f2 is
an element of F2 is a non empty family of subsets of X1 ×X2.

Let X be a non empty set. We say that X is ∩-finite closed if and only if

(Def. 2) for every finite, non empty subset S1 of X,
⋂
S1 ∈ X.

One can check that there exists a non empty set which is ∩-finite closed.
Now we state the proposition:

(3) Let us consider a non empty set X. If X is ∩-finite closed, then X is
∩-closed.

Note that every non empty set which is ∩-finite closed is also ∩-closed.

(4) Let us consider a set X, and a family S of subsets of X. Then S is
∩-closed and X ∈ S if and only if FinMeetCl(S) ⊆ S.

(5) Let us consider a non empty set X, and a non empty subset A of X.
Then {B, where B is a subset of X : A ⊆ B} is a filter of X.

Let X be a non empty set. Note that every filter of X is ∩-closed.

(6) Let us consider a set X, and a family B of subsets of X. If B = {X},
then B is upper.

(7) Let us consider a non empty set X, and a filter F ′ of X. Then F ′ 6= 2X .

Let X be a non empty set. The functor Filt(X) yielding a non empty set is
defined by the term

(Def. 3) the set of all F ′ where F ′ is a filter of X.

Let I be a non empty set and M be a (Filt(X))-valued many sorted set
indexed by I. The intersection of the family of filters M yielding a filter of X is
defined by the term

(Def. 4)
⋂

rngM .

Let F1, F2 be filters of X. We say that F1 is coarser than F2 if and only if

(Def. 5) F1 ⊆ F2.

One can verify that the predicate is reflexive. We say that F1 is finer than F2 if
and only if

(Def. 6) F2 ⊆ F1.

Observe that the predicate is reflexive.
Now we state the propositions:

(8) Let us consider a non empty set X, a filter F ′ of X, and a filter F of X.
Suppose F = {X}. Then F is coarser than F ′.



Convergent filter bases 191

(9) Let us consider a non empty set X, a non empty set I, a (Filt(X))-valued
many sorted set M indexed by I, an element i of I, and a filter F ′ of X.
Suppose F ′ = M(i). Then the intersection of the family of filters M is
coarser than F ′.

(10) Let us consider a set X, and a family S of subsets of X. Suppose
FinMeetCl(S) has non empty elements. Then S has non empty elements.

(11) Let us consider a non empty set X, a family G of subsets of X, and
a filter F ′ of X. Suppose G ⊆ F ′. Then

(i) FinMeetCl(G) ⊆ F ′, and

(ii) FinMeetCl(G) has non empty elements.

The theorem is a consequence of (4).

Let X be a non empty set, F ′ be a filter of X, and B be a non empty subset
of F ′. We say that B is filter basis if and only if

(Def. 7) for every element f of F ′, there exists an element b of B such that b ⊆ f .

Now we state the proposition:

(12) Let us consider a non empty set X, a filter F ′ of X, and a non empty
subset B of F ′. Then F ′ is coarser than B if and only if B is filter basis.

Let X be a non empty set and F ′ be a filter of X. Observe that there exists
a non empty subset of F ′ which is filter basis.

A generalized basis of F ′ is a filter basis, non empty subset of F ′. Now we
state the proposition:

(13) Let us consider a non empty set X. Then every filter of X is a generalized
basis of F ′.

Let X be a set and B be a family of subsets of X. The functor [B] yielding
a family of subsets of X is defined by

(Def. 8) for every subset x of X, x ∈ it iff there exists an element b of B such
that b ⊆ x.

Now we state the propositions:

(14) Let us consider a set X, and a family S of subsets of X. Then [S] =
{x, where x is a subset of X : there exists an element b of S such that
b ⊆ x}.

(15) Let us consider a set X, and an empty family B of subsets of X. Then
[B] = 2X .

(16) Let us consider a set X, and a family B of subsets of X. If ∅ ∈ B, then
[B] = 2X .
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2. Filters – Lattice-Theoretical Approach

Now we state the propositions:

(17) Let us consider a set X, a non empty family B of subsets of X, and
a subset L of 2X⊆ . If B = L, then [B] = ↑L.

(18) Let us consider a set X, and a family B of subsets of X. Then B ⊆ [B].

Let X be a set and B1, B2 be families of subsets of X. We say that B1 and
B2 are equivalent generators if and only if

(Def. 9) for every element b1 of B1, there exists an element b2 of B2 such that
b2 ⊆ b1 and for every element b2 of B2, there exists an element b1 of B1

such that b1 ⊆ b2.

Let us note that the predicate is reflexive and symmetric.
Let us consider a set X and families B1, B2 of subsets of X.
Let us assume that B1 and B2 are equivalent generators. Now we state the

propositions:

(19) [B1] ⊆ [B2].

(20) [B1] = [B2].

Let X be a non empty set, F ′ be a filter of X, and B be a non empty subset
of F ′. The functor #B yielding a non empty family of subsets of X is defined
by the term

(Def. 10) B.

Now we state the propositions:

(21) Let us consider a non empty set X, a filter F ′ of X, and a generalized
basis B of F ′. Then F ′ = [#B].

(22) Let us consider a non empty set X, a filter F ′ of X, and a family B of
subsets of X. If F ′ = [B], then B is a generalized basis of F ′.

(23) Let us consider a non empty set X, a filter F ′ of X, a generalized basis
B of F ′, a family S of subsets of X, and a subset S1 of F ′. Suppose S = S1

and #B and S are equivalent generators. Then S1 is a generalized basis
of F ′. The theorem is a consequence of (19), (21), and (22).

(24) Let us consider a non empty set X, a filter F ′ of X, and generalized
bases B1, B2 of F ′. Then #B1 and #B2 are equivalent generators. The
theorem is a consequence of (21).

Let X be a set and B be a family of subsets of X. We say that B is quasi
basis if and only if

(Def. 11) for every elements b1, b2 of B, there exists an element b of B such that
b ⊆ b1 ∩ b2.
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Let X be a non empty set. Let us note that there exists a non empty family
of subsets of X which is quasi basis and there exists a non empty, quasi basis
family of subsets of X which has non empty elements.

A filter base of X is a non empty, quasi basis family of subsets of X with
non empty elements. Now we state the proposition:

(25) Let us consider a non empty set X, and a filter base B of X. Then [B]
is a filter of X.

Let X be a non empty set and B be a filter base of X. The functor [B)
yielding a filter of X is defined by the term

(Def. 12) [B].

Now we state the propositions:

(26) Let us consider a non empty set X, and filter bases B1, B2 of X. Suppose
[B1) = [B2). Then B1 and B2 are equivalent generators.

(27) Let us consider a non empty set X, a filter base F of X, and a filter F ′
of X. Suppose F ⊆ F ′. Then [F) is coarser than F ′.

(28) Let us consider a non empty set X, and a family G of subsets of X.
Suppose FinMeetCl(G) has non empty elements. Then

(i) FinMeetCl(G) is a filter base of X, and

(ii) there exists a filter F ′ of X such that FinMeetCl(G) ⊆ F ′.
The theorem is a consequence of (4).

(29) Let us consider a non empty set X, and a filter F ′ of X. Then every
generalized basis of F ′ is a filter base of X.

(30) Let us consider a non empty set X. Then every filter base of X is a ge-
neralized basis of [B).

(31) Let us consider a non empty set X, a filter F ′ of X, a generalized basis
B of F ′, and a subset L of 2X⊆ . If L = #B, then F ′ = ↑L. The theorem is
a consequence of (21) and (17).

(32) Let us consider a non empty set X, a filter base B of X, and a subset L
of 2X⊆ . If L = B, then [B) = ↑L.

(33) Let us consider a non empty set X, filters F1, F2 of X, a generalized
basis B1 of F1, and a generalized basis B2 of F2. Then F1 is coarser than
F2 if and only if B1 is coarser than B2. The theorem is a consequence of
(21).

(34) Let us consider non empty sets X, Y, a function f from X into Y, a filter
F ′ of X, and a generalized basis B of F ′. Then

(i) f◦(#B) is a filter base of Y, and

(ii) [f◦(#B)] is a filter of Y, and
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(iii) [f◦(#B)] = {M , where M is a subset of Y : f−1(M) ∈ F ′}.
Proof: Set F = f◦(#B). F is a quasi basis, non empty family of subsets
of Y by (29), [35, (123), (121)]. F has non empty elements by [35, (118)].
[F ] = {M , where M is a subset of Y : f−1(M) ∈ F ′} by [35, (143)], [12,
(42)], (21), [35, (123)]. �

Let X, Y be non empty sets, f be a function from X into Y, and F ′ be
a filter of X. The image of filter F ′ under f yielding a filter of Y is defined by
the term

(Def. 13) {M , where M is a subset of Y : f−1(M) ∈ F ′}.

Now we state the propositions:

(35) Let us consider non empty sets X, Y, a function f from X into Y, and
a filter F ′ of X. Then

(i) f◦F ′ is a filter base of Y, and

(ii) [f◦F ′] = the image of filter F ′ under f .

The theorem is a consequence of (13) and (34).

(36) Let us consider a non empty set X, and a filter base B of X. If B = [B),
then B is a filter of X.

(37) Let us consider non empty sets X, Y, a function f from X into Y, a filter
F ′ of X, and a generalized basis B of F ′. Then

(i) f◦(#B) is a generalized basis of the image of filter F ′ under f , and

(ii) [f◦(#B)] = the image of filter F ′ under f .

The theorem is a consequence of (34) and (30).

(38) Let us consider non empty sets X, Y, a function f from X into Y, and
filter bases B1, B2 of X. Suppose B1 is coarser than B2. Then [B1) is coarser
than [B2). The theorem is a consequence of (30) and (33).

(39) Let us consider non empty sets X, Y, a function f from X into Y, and
a filter F ′ of X. Then f◦F ′ is a filter of Y if and only if Y = rng f .
Proof: Reconsider f3 = f◦F ′ as a filter base of Y. [f3) ⊆ f3 by [35, (143)],
[11, (76), (77)]. �

(40) Let us consider a non empty set X, a non empty subset A of X, a filter
F ′ of A, and a generalized basis B of F ′. Then

(i) ( A↪→)◦(#B) is a filter base of X, and

(ii) [( A↪→)◦(#B)] is a filter of X, and

(iii) [( A↪→)◦(#B)] = {M , where M is a subset of X : ( A↪→)−1(M) ∈ F ′}.
Let L be a non empty relational structure. The functor Tails(L) yielding

a non empty family of subsets of L is defined by the term
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(Def. 14) the set of all ↑i where i is an element of L.

Now we state the proposition:

(41) Let us consider a non empty, transitive, reflexive relational structure L.
Suppose ΩL is directed. Then [Tails(L)] is a filter of ΩL.
Proof: Tails(L) is non empty family of subsets of L and quasi basis and
has non empty elements by [6, (22)]. �

Let L be a non empty, transitive, reflexive relational structure. Assume ΩL

is directed. The functor TailsFilterL yielding a filter of ΩL is defined by the
term

(Def. 15) [Tails(L)].

Now we state the proposition:

(42) Let us consider a non empty, transitive, reflexive relational structu-
re L. Suppose ΩL is directed. Then Tails(L) is a generalized basis of
TailsFilterL. The theorem is a consequence of (22).

Let L be a relational structure and x be a family of subsets of L. The functor
#x yielding a family of subsets of ΩL is defined by the term

(Def. 16) x.

Now we state the proposition:

(43) Let us consider a non empty set X, a non empty, transitive, reflexive
relational structure L, and a function f from ΩL into X. Suppose ΩL is
directed. Then f◦(# Tails(L)) is a generalized basis of the image of filter
TailsFilterL under f . The theorem is a consequence of (42) and (37).

Let us consider a non empty set X, a non empty, transitive, reflexive rela-
tional structure L, a function f from ΩL into X, and a subset x of X. Now we
state the propositions:

(44) Suppose ΩL is directed and x ∈ f◦(# Tails(L)). Then there exists an ele-
ment j of L such that for every element i of L such that i  j holds
f(i) ∈ x.

(45) Suppose ΩL is directed and there exists an element j of L such that for
every element i of L such that i  j holds f(i) ∈ x. Then there exists
an element b of Tails(L) such that f◦b ⊆ x.

(46) Let us consider a non empty set X, a non empty, transitive, reflexive
relational structure L, a function f from ΩL into X, a filter F ′ of X, and
a generalized basis B of F ′. Suppose ΩL is directed. Then F ′ is coarser
than the image of filter TailsFilterL under f if and only if B is coarser
than f◦(# Tails(L)). The theorem is a consequence of (43) and (33).

(47) Let us consider a non empty set X, a non empty, transitive, reflexive
relational structure L, a function f from ΩL into X, and a filter base B of
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X. Suppose ΩL is directed. Then B is coarser than f◦(# Tails(L)) if and
only if for every element b of B, there exists an element i of L such that
for every element j of L such that i ¬ j holds f(j) ∈ b. The theorem is a
consequence of (44) and (45).

Let X be a non empty set and s be a sequence of X. The elementary filter
of s yielding a filter of X is defined by the term

(Def. 17) the image of filter FrechetFilter(N) under s.

Now we state the propositions:

(48) There exists a sequence F ′ of 2N such that for every element x of N,
F ′(x) = {y, where y is an element of N : x ¬ y}.
Proof: Define F(object) = {y, where y is an element of N : there exists
an element x0 of N such that x0 = $1 and x0 ¬ y}. There exists a function
f from N into 2N such that for every object x such that x ∈ N holds
f(x) = F(x) from [12, Sch. 2]. Consider F ′ being a function from N into
2N such that for every object x such that x ∈ N holds F ′(x) = F(x). For
every element x of N, F ′(x) = {y, where y is an element of N : x ¬ y}. �

(49) Let us consider a natural number n. Then N \ {t, where t is an element
of N : n ¬ t} is finite.
Proof: N \ {t, where t is an element of N : n ¬ t} ⊆ n+ 1 by [8, (3), (5)],
[32, (4)]. �

(50) Let us consider an element p of the ordered N. Then {x, where x is
an element of N : there exists an element p0 of N such that p = p0 and
p0 ¬ x} = ↑p.
Proof: For every element p of the carrier of the ordered N, {x, where
x is an element of the carrier of the ordered N : p ¬ x} = ↑p by [6, (18)].
�

Observe that Ωthe ordered N is directed and the ordered N is reflexive.
Now we state the proposition:

(51) Let us consider a denumerable set X. Then FrechetFilter(X) =
the set of all X \A where A is a finite subset of X.

Let us consider a sequence F ′ of 2N.
Let us assume that for every element x of N, F ′(x) = {y, where y is an element

of N : x ¬ y}. Now we state the propositions:

(52) rngF ′ is a generalized basis of FrechetFilter(N).
Proof: FrechetFilter(N) = the set of all N \A where A is a finite subset
of N. For every object t such that t ∈ rngF ′ holds t ∈ FrechetFilter(N).
Reconsider F1 = rngF ′ as a non empty subset of FrechetFilter(N). F1 is
filter basis by [21, (2)], [4, (44)], [11, (3)]. �
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(53) # Tails(the ordered N) = rngF ′. The theorem is a consequence of (50).

Now we state the proposition:

(54) (i) # Tails(the ordered N) is a generalized basis of FrechetFilter(N),
and

(ii) TailsFilter the ordered N = FrechetFilter(N).
The theorem is a consequence of (48), (53), (52), and (21).

The base of Frechet filter yielding a filter base of N is defined by the term

(Def. 18) # Tails(the ordered N).

Now we state the propositions:

(55) N ∈ the base of Frechet filter.

(56) The base of Frechet filter is a generalized basis of FrechetFilter(N).

(57) Let us consider a non empty set X, filters F1, F2 of X, and a filter F ′
of X. Suppose F ′ is finer than F1 and F ′ is finer than F2. Let us consider
an element M1 of F1, and an element M2 of F2. Then M1 ∩M2 is not
empty.

(58) Let us consider a non empty set X, and filters F1, F2 of X. Suppose
for every element M1 of F1 for every element M2 of F2, M1 ∩M2 is not
empty. Then there exists a filter F ′ of X such that

(i) F ′ is finer than F1, and

(ii) F ′ is finer than F2.

Let X be a set and x be a subset of X. The functor SubsetToBooleSubsetx
yielding an element of 2X⊆ is defined by the term

(Def. 19) x.

Now we state the propositions:

(59) Let us consider an infinite set X. Then X ∈ the set of all X \ A where
A is a finite subset of X.

(60) Let us consider a set X, and a subset A of X. Then {B, where B is
an element of 2X⊆ : A ⊆ B} = {B, where B is a subset of X : A ⊆ B}.

(61) Let us consider a set X, and an element a of 2X⊆ . Then ↑a = {Y , where
Y is a subset of X : a ⊆ Y }.

(62) Let us consider a set X, and a subset A of X. Then {B, where B is
an element of 2X⊆ : A ⊆ B} = ↑SubsetToBooleSubsetA. The theorem is a
consequence of (60).

(63) Let us consider a non empty set X, and a filter F ′ of X. Then
⋃
F ′ = X.

(64) Let us consider an infinite set X. Then the set of all X \ A where A is
a finite subset of X is a filter of X. The theorem is a consequence of (59).
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Let us consider a set X. Now we state the propositions:

(65) 2X is a filter of 2X⊆ .

(66) {X} is a filter of 2X⊆ .

(67) Let us consider a non empty set X. Then {X} is a filter of X.

Let us consider an element A of 2X⊆ . Now we state the propositions:

(68) {Y, where Y is a subset of X : A ⊆ Y } is a filter of 2X⊆ .

(69) {B, where B is an element of 2X⊆ : A ⊆ B} is a filter of 2X⊆ . The theorem
is a consequence of (60) and (68).

Now we state the proposition:

(70) Let us consider a non empty set X, and a non empty subset B of 2X⊆ .
Then for every elements x, y of B, there exists an element z of B such
that z ⊆ x ∩ y if and only if B is filtered.
Proof: For every elements x, y of B, there exists an element z of B such
that z ⊆ x ∩ y by [19, (2)]. �

Let us consider a non empty set X and a non empty subset F ′ of the lattice
of subsets of X. Now we state the propositions:

(71) F ′ is a filter of the lattice of subsets of X if and only if for every elements
p, q of F ′, p ∩ q ∈ F ′ and for every element p of F ′ and for every element
q of the lattice of subsets of X such that p ⊆ q holds q ∈ F ′.

(72) F ′ is a filter of the lattice of subsets of X if and only if for every subsets
Y1, Y2 of X, if Y1, Y2 ∈ F ′, then Y1 ∩ Y2 ∈ F ′ and if Y1 ∈ F ′ and Y1 ⊆ Y2,
then Y2 ∈ F ′. The theorem is a consequence of (71).

Now we state the propositions:

(73) Let us consider a non empty set X, and a non empty family F of subsets
of X. Suppose F is a filter of the lattice of subsets of X. Then F is a filter
of 2X⊆ . The theorem is a consequence of (71).

(74) Let us consider a non empty set X. Then every filter of 2X⊆ is a filter of
the lattice of subsets of X. The theorem is a consequence of (72).

(75) Let us consider a non empty set X, and a non empty subset F ′ of
the lattice of subsets of X. Then F ′ is filter of the lattice of subsets of X
and has non empty elements if and only if F ′ is a filter of X. The theorem
is a consequence of (72).

(76) Let us consider a non empty set X. Then every proper filter of 2X⊆ is
a filter of X.
Proof: F ′ has non empty elements by [19, (18)], [7, (4)]. �

(77) Let us consider a non empty topological space T , and a point x of T .
Then the neighborhood system of x is a filter of the carrier of T .
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Let T be a non empty topological space and F ′ be a proper filter of 2ΩT
⊆ . The

functor BooleanFilterToFilter(F ′) yielding a filter of the carrier of T is defined
by the term

(Def. 20) F ′.
Let F1 be a filter of the carrier of T and F2 be a proper filter of 2ΩT

⊆ . We
say that F1 is finer than F2 if and only if

(Def. 21) BooleanFilterToFilter(F2) ⊆ F1.

3. Limit of a Filter

Let T be a non empty topological space and F ′ be a filter of the carrier of
T . The functor LimFilter(F ′) yielding a subset of T is defined by the term

(Def. 22) {x, where x is a point of T : F ′ is finer than the neighborhood system
of x}.

Let B be a filter base of the carrier of T . The functor LimB yielding a subset
of T is defined by the term

(Def. 23) LimFilter([B)).

Now we state the proposition:

(78) Let us consider a non empty topological space T , and a filter F ′ of
the carrier of T . Then there exists a proper filter F1 of 2α⊆ such that
F ′ = F1, where α is the carrier of T . The theorem is a consequence of (73)
and (75).

Let T be a non empty topological space and F ′ be a filter of the carrier of
T . The functor FilterToBooleanFilter(F ′, T ) yielding a proper filter of 2ΩT

⊆ is
defined by the term

(Def. 24) F ′.
Let us consider a non empty topological space T , a point x of T , and a filter

F ′ of the carrier of T . Now we state the propositions:

(79) x is a convergence point of F ′ and T if and only if x is a convergence
point of FilterToBooleanFilter(F ′, T ) and T .

(80) x is a convergence point of F ′ and T if and only if x ∈ LimFilter(F ′).
The theorem is a consequence of (78).

Let T be a non empty topological space and F ′ be a filter of 2ΩT
⊆ . The functor

LimFilterB(F ′) yielding a subset of T is defined by the term

(Def. 25) {x, where x is a point of T : the neighborhood system of x ⊆ F ′}.

Let us consider a non empty topological space T and a filter F ′ of the carrier
of T . Now we state the propositions:
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(81) LimFilter(F ′) = LimFilterB(FilterToBooleanFilter(F ′, T )).

(82) Lim(the net of FilterToBooleanFilter(F ′, T )) = LimFilter(F ′).
(83) Let us consider a Hausdorff, non empty topological space T , a filter F ′ of

the carrier of T , and points p, q of T . If p, q ∈ LimFilter(F ′), then p = q.

Let T be a Hausdorff, non empty topological space and F ′ be a filter of
the carrier of T . Note that LimFilter(F ′) is trivial.

Let X be a non empty set, T be a non empty topological space, f be a func-
tion from X into the carrier of T , and F ′ be a filter of X. The functor limF ′ f
yielding a subset of ΩT is defined by the term

(Def. 26) LimFilter(the image of filter F ′ under f).

Let L be a non empty, transitive, reflexive relational structure and f be
a function from ΩL into the carrier of T . The functor LimF(f) yielding a subset
of ΩT is defined by the term

(Def. 27) LimFilter(the image of filter TailsFilterL under f).

Now we state the proposition:

(84) Let us consider a non empty topological space T , a non empty, transitive,
reflexive relational structure L, a function f from ΩL into the carrier of T ,
a point x of T , and a generalized basisB of BooleanFilterToFilter(the neigh-
borhood system of x). Suppose ΩL is directed. Then x ∈ LimF(f) if and
only if for every element b of B, there exists an element i of L such that
for every element j of L such that i ¬ j holds f(j) ∈ b. The theorem is a
consequence of (46), (29), and (47).

Let T be a non empty topological space and s be a sequence of T . The
functor LimF(s) yielding a subset of T is defined by the term

(Def. 28) LimFilter(the elementary filter of s).

Now we state the proposition:

(85) Let us consider a non empty topological space T , and a sequence s of T .
Then limFrechetFilter(N) s = LimF(s).

Let us consider a non empty topological space T and a point x of T .

(86) The neighborhood system of x is a filter base of ΩT . The theorem is a
consequence of (76), (13), and (29).

(87) Every generalized basis of BooleanFilterToFilter(the neighborhood sys-
tem of x) is a filter base of ΩT .

(88) Let us consider a non empty set X, a sequence s of X, and a filter base
B of X. Then B is coarser than s◦(the base of Frechet filter) if and only
if for every element b of B, there exists an element i of the ordered N such
that for every element j of the ordered N such that i ¬ j holds s(j) ∈ b.
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(89) Let us consider a non empty topological space T , a sequence s of T , a po-
int x of T , and a generalized basis B of BooleanFilterToFilter(the neigh-
borhood system of x). Then x ∈ limFrechetFilter(N) s if and only if B is co-
arser than s◦(the base of Frechet filter). The theorem is a consequence of
(46) and (54).

(90) Let us consider a non empty topological space T , a sequence s of ΩT ,
a point x of T , and a generalized basisB of BooleanFilterToFilter(the neigh-
borhood system of x). Then B is coarser than s◦(the base of Frechet filter)
if and only if for every element b of B, there exists an element i of the or-
dered N such that for every element j of the ordered N such that i ¬ j

holds s(j) ∈ b. The theorem is a consequence of (29) and (47).

Let us consider a non empty topological space T , a sequence s of the carrier of
T , a point x of T , and a generalized basis B of BooleanFilterToFilter(the neigh-
borhood system of x).

(91) x ∈ limFrechetFilter(N) s if and only if for every element b of B, there exists
an element i of the ordered N such that for every element j of the ordered
N such that i ¬ j holds s(j) ∈ b. The theorem is a consequence of (89)
and (90).

(92) x ∈ LimF(s) if and only if for every element b of B, there exists an ele-
ment i of the ordered N such that for every element j of the ordered N
such that i ¬ j holds s(j) ∈ b. The theorem is a consequence of (91).

4. Nets

Let L be a 1-sorted structure and s be a sequence of the carrier of L. The net
of s yielding a non empty, strict net structure over L is defined by the term

(Def. 29) 〈N,¬N, s〉.
Let L be a non empty 1-sorted structure. Let us note that the net of s is

non empty.
Now we state the proposition:

(93) Let us consider a non empty 1-sorted structure L, a set B, and a sequence
s of the carrier of L. Then the net of s is eventually in B if and only if
there exists an element i of the net of s such that for every element j of
the net of s such that i ¬ j holds (the net of s)(j) ∈ B.

Let us consider a non empty topological space T , a sequence s of the carrier of
T , a point x of T , and a generalized basis B of BooleanFilterToFilter(the neigh-
borhood system of x). Now we state the propositions:

(94) for every element b of B, there exists an element i of the ordered N such
that for every element j of the ordered N such that i ¬ j holds s(j) ∈ b if
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and only if for every element b of B, there exists an element i of the net
of s such that for every element j of the net of s such that i ¬ j holds
(the net of s)(j) ∈ b.

(95) x ∈ LimF(s) if and only if for every element b of B, the net of s is
eventually in b. The theorem is a consequence of (92), (94), and (93).

(96) x ∈ LimF(s) if and only if for every element b of B, there exists an ele-
ment i of N such that for every element j of N such that i ¬ j holds
s(j) ∈ b. The theorem is a consequence of (91).

(97) x ∈ LimF(s) if and only if for every element b of B, there exists a natural
number i such that for every natural number j such that i ¬ j holds
s(j) ∈ b. The theorem is a consequence of (96).
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