

Polish Notation

Taneli Huuskonen¹
Department of Mathematics and Statistics
University of Helsinki
Finland

Summary. This article is the first in a series formalizing some results in my joint work with Prof. Joanna Golińska-Pilarek ([12] and [13]) concerning a logic proposed by Prof. Andrzej Grzegorczyk ([14]).

We present some *mathematical folklore* about representing formulas in "Polish notation", that is, with operators of fixed arity prepended to their arguments. This notation, which was published by Jan Łukasiewicz in [15], eliminates the need for parentheses and is generally well suited for rigorous reasoning about syntactic properties of formulas.

MSC: 68R15 03B35

Keywords: Polish notation; syntax; well-formed formula MML identifier: POLNOT_1, version: 8.1.04 5.32.1240

The notation and terminology used in this paper have been introduced in the following articles: [5], [1], [4], [11], [7], [8], [3], [9], [16], [19], [17], [18], and [10].

1. Preliminaries

From now on k, m, n denote natural numbers, a, b, c, c_1 , c_2 denote objects, x, y, z, X, Y, Z denote sets, D denotes a non empty set, p, q, r, s, t, u, v denote finite sequences, P, Q, R, P_1 , P_2 , Q_1 , Q_2 , R_1 , R_2 denote finite sequencemembered sets, and S, T denote non empty, finite sequence-membered sets.

Let D be a non empty set and P, Q be subsets of D^* . The functor (D, P, Q) yielding a subset of D^* is defined by the term

¹Work supported by Polish National Science Center (NCN) grant "Logic of language experience" nr 2011/03/B/HS1/04580.

(Def. 1) $\{p \cap q, \text{ where } p \text{ is a finite sequence of elements of } D, q \text{ is a finite sequence of elements of } D: p \in P \text{ and } q \in Q\}.$

Let us consider P and Q. The functor $P \cap Q$ yielding a finite sequencemembered set is defined by

(Def. 2) for every $a, a \in it$ iff there exists p and there exists q such that $a = p \cap q$ and $p \in P$ and $q \in Q$.

Let β be an empty set. One can check that $\beta \cap P$ is empty and $P \cap \beta$ is empty.

Let us consider S and T. One can check that $S \cap T$ is non empty.

Now we state the propositions:

- (1) If $p \cap q = r \cap s$, then there exists t such that $p \cap t = r$ or $p = r \cap t$.
- $(2) \quad (P \cap Q) \cap R = P \cap (Q \cap R).$

PROOF: For every $a, a \in (P \cap Q) \cap R$ iff $a \in P \cap (Q \cap R)$ by [4, (32)]. \square

Note that $\{\emptyset\}$ is non empty and finite sequence-membered.

- (3) (i) $P \cap \{\emptyset\} = P$, and
 - (ii) $\{\emptyset\} \cap P = P$.

PROOF: For every $a, a \in P \cap \{\emptyset\}$ iff $a \in P$ by [4, (34)]. For every $a, a \in \{\emptyset\} \cap P$ iff $a \in P$ by [4, (34)]. \square

Let us consider P. The functor $P \cap$ yielding a function is defined by

(Def. 3) dom $it = \mathbb{N}$ and $it(0) = \{\emptyset\}$ and for every n, there exists Q such that Q = it(n) and $it(n+1) = Q \cap P$.

Let us consider n. The functor $P \cap n$ yielding a finite sequence-membered set is defined by the term

(Def. 4) $(P \cap \cap)(n)$.

Now we state the proposition:

 $(4) \quad \emptyset \in P \cap 0.$

Let us consider P. Let n be a zero natural number. Note that $P \cap n$ is non empty.

Let β be an empty set and n be a non zero natural number. One can verify that $\beta \cap n$ is empty.

Let us consider P. The functor P^* yielding a non empty, finite sequencemembered set is defined by the term

- (Def. 5) \bigcup the set of all $P \cap n$ where n is a natural number.
 - (5) $a \in P^*$ if and only if there exists n such that $a \in P \cap n$.

Let us consider P.

- (6) (i) $P \cap 0 = {\emptyset}$, and
 - (ii) for every $n, P \cap (n+1) = (P \cap n) \cap P$.

- (7) $P \cap 1 = P$. The theorem is a consequence of (6) and (3).
- (8) $P \cap n \subseteq P^*$.
- (9) (i) $\emptyset \in P^*$, and
 - (ii) $P \subset P^*$.

The theorem is a consequence of (4), (5), and (7).

- (10) $P \cap (m+n) = (P \cap m) \cap (P \cap n)$. PROOF: Define $\mathcal{X}[\text{natural number}] \equiv P \cap (m+\$_1) = (P \cap m) \cap (P \cap \$_1)$. $\mathcal{X}[0]$. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$. For every k, $\mathcal{X}[k]$ from [2, Sch. 2]. \square
- (11) If $p \in P \cap m$ and $q \in P \cap n$, then $p \cap q \in P \cap (m+n)$. The theorem is a consequence of (10).
- (12) If $p, q \in P^*$, then $p \cap q \in P^*$. The theorem is a consequence of (5) and (11).
- (13) If $P \subseteq R^*$ and $Q \subseteq R^*$, then $P \cap Q \subseteq R^*$. The theorem is a consequence of (12).
- (14) If $Q \subseteq P^*$, then $Q \cap n \subseteq P^*$. PROOF: Define $\mathcal{X}[\text{natural number}] \equiv Q \cap \$_1 \subseteq P^*$. $\mathcal{X}[0]$. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$. For every k, $\mathcal{X}[k]$ from [2, Sch. 2]. \square
- (15) If $Q \subseteq P^*$, then $Q^* \subseteq P^*$. The theorem is a consequence of (5) and (14).
- (16) If $P_1 \subseteq P_2$ and $Q_1 \subseteq Q_2$, then $P_1 \cap Q_1 \subseteq P_2 \cap Q_2$.
- (17) If $P \subseteq Q$, then for every $n, P \cap n \subseteq Q \cap n$. PROOF: Define $\mathcal{S}[\text{natural number}] \equiv P \cap \$_1 \subseteq Q \cap \$_1$. $P \cap 0 = \{\emptyset\}$. For every n such that $\mathcal{S}[n]$ holds $\mathcal{S}[n+1]$. For every n, $\mathcal{S}[n]$ from [2, Sch. 2].

Let us consider S and n. Let us observe that $S \cap n$ is non empty and finite sequence-membered.

2. The Language

In the sequel α denotes a function from P into $\mathbb N$ and U,V,W denote subsets of P^* .

Let us consider P, α , and U. The Polish-expression layer (P, α, U) yielding a subset of P^* is defined by

- (Def. 6) for every $a, a \in it$ iff $a \in P^*$ and there exists p and there exists q and there exists n such that $a = p \cap q$ and $p \in P$ and $n = \alpha(p)$ and $q \in U \cap n$. Now we state the proposition:
 - (18) Suppose $p \in P$ and $n = \alpha(p)$ and $q \in U \cap n$. Then $p \cap q \in P$ the Polish-expression layer (P, α, U) . The theorem is a consequence of (14), (9), and (12).

Let us consider P and α . The Polish atoms (P, α) yielding a subset of P^* is defined by

(Def. 7) for every $a, a \in it$ iff $a \in P$ and $\alpha(a) = 0$.

The Polish operations (P, α) yielding a subset of P is defined by the term

(Def. 8) $\{t, \text{ where } t \text{ is an element of } P^* : t \in P \text{ and } \alpha(t) \neq 0\}.$

Now we state the propositions:

- (19) The Polish atoms $(P, \alpha) \subseteq$ the Polish-expression layer (P, α, U) . The theorem is a consequence of (4) and (18).
- (20) Suppose $U \subseteq V$. Then the Polish-expression layer $(P, \alpha, U) \subseteq$ the Polish-expression layer (P, α, V) . The theorem is a consequence of (17).
- (21) Suppose $u \in \text{the Polish-expression layer}(P, \alpha, U)$. Then there exists p and there exists q such that $p \in P$ and $u = p \cap q$.

Let us consider P and α . The Polish-expression hierarchy (P, α) yielding a function is defined by

(Def. 9) dom $it = \mathbb{N}$ and $it(0) = \text{the Polish atoms}(P, \alpha)$ and for every n, there exists U such that U = it(n) and $it(n+1) = \text{the Polish-expression layer}(P, \alpha, U)$.

Let us consider n. The Polish-expression hierarchy (P, α, n) yielding a subset of P^* is defined by the term

(Def. 10) (the Polish-expression hierarchy (P, α))(n).

Now we state the proposition:

- (22) The Polish-expression hierarchy $(P, \alpha, 0)$ = the Polish atoms (P, α) . Let us consider P, α , and n. Now we state the propositions:
- (23) The Polish-expression hierarchy $(P, \alpha, n+1)$ = the Polish-expression layer (P, α, n) .
- (24) The Polish-expression hierarchy $(P, \alpha, n) \subseteq$ the Polish-expression hierarchy $(P, \alpha, n + 1)$.

PROOF: Define S[natural number] \equiv the Polish-expression hierarchy(P, α , $\$_1$) \subseteq the Polish-expression hierarchy(P, α , $\$_1 + 1$). S[0]. For every k such that S[k] holds S[k+1]. For every k, S[k] from [2, Sch. 2]. \square

Now we state the proposition:

(25) The Polish-expression hierarchy $(P, \alpha, n) \subseteq$ the Polish-expression hierarchy $(P, \alpha, n + m)$.

PROOF: Define S[natural number] \equiv the Polish-expression hierarchy(P, α , n) \subseteq the Polish-expression hierarchy(P, α , $n + \$_1$). For every k such that S[k] holds S[k+1]. For every k, S[k] from [2, Sch. 2]. \square

Let us consider P and α . The Polish-expression set (P, α) yielding a subset of P^* is defined by the term

(Def. 11) Uthe set of all the Polish-expression hierarchy (P, α, n) where n is a natural number.

Now we state the propositions:

- (26) The Polish-expression hierarchy $(P, \alpha, n) \subseteq$ the Polish-expression set (P, α) .
- (27) Suppose $q \in (\text{the Polish-expression set}(P, \alpha)) \cap n$. Then there exists m such that $q \in (\text{the Polish-expression hierarchy}(P, \alpha, m)) \cap n$. PROOF: Define $\mathcal{S}[\text{natural number}] \equiv \text{for every } q \text{ such that } q \in (\text{the Polish-expression set}(P, \alpha)) \cap \$_1 \text{ there exists } m \text{ such that } q \in (\text{the Polish-expression hierarchy}(P, \alpha, m)) \cap \$_1$. $\mathcal{S}[0]$. For every k such that $\mathcal{S}[k]$ holds $\mathcal{S}[k+1]$. For every k, $\mathcal{S}[k]$ from [2, Sch. 2]. \square
- (28) Suppose $a \in \text{the Polish-expression set}(P, \alpha)$. Then there exists n such that $a \in \text{the Polish-expression hierarchy}(P, \alpha, n + 1)$. The theorem is a consequence of (24).

Let us consider P and α .

A Polish expression of P and α is an element of the Polish-expression set (P, α) . Let us consider n and t. Assume $t \in P$. The Polish operation (P, α, n, t) yielding a function from (the Polish-expression set (P, α)) $\widehat{\ }$ n into P^* is defined by

(Def. 12) for every q such that $q \in \text{dom } it \text{ holds } it(q) = t \cap q$.

Let us consider X and Y. Let F be a partial function from X to 2^Y . One can check that F is disjoint valued if and only if the condition (Def. 13) is satisfied.

(Def. 13) for every a and b such that $a, b \in \text{dom } F$ and $a \neq b$ holds F(a) misses F(b).

Let X be a set. One can check that there exists a finite sequence of elements of 2^X which is disjoint valued.

Now we state the proposition:

(29) Let us consider a set X, a disjoint valued finite sequence B of elements of 2^X , a, b, and c. If $a \in B(b)$ and $a \in B(c)$, then b = c and $b \in \text{dom } B$.

Let us consider X. Let B be a disjoint valued finite sequence of elements of 2^X . The arity from list B yielding a function from X into \mathbb{N} is defined by

(Def. 14) for every a such that $a \in X$ holds there exists n such that $a \in B(n)$ and $a \in B(it(a))$ or there exists no n such that $a \in B(n)$ and it(a) = 0.

Now we state the propositions:

(30) Let us consider a disjoint valued finite sequence B of elements of 2^X , and a. Suppose $a \in X$. Then (the arity from list B) $(a) \neq 0$ if and only if

there exists n such that $a \in B(n)$. The theorem is a consequence of (29).

- (31) Let us consider a disjoint valued finite sequence B of elements of 2^X , a, and n. Suppose $a \in B(n)$. Then (the arity from list B)(a) = n. The theorem is a consequence of (29).
- (32) Suppose $r \in$ the Polish-expression $\operatorname{set}(P, \alpha)$. Then there exists n and there exists p and there exists q such that $p \in P$ and $n = \alpha(p)$ and $q \in (\text{the Polish-expression } \operatorname{set}(P, \alpha)) \cap n$ and $r = p \cap q$. The theorem is a consequence of (28), (23), (26), and (17).

Let us consider P, α , and Q. We say that Q is α -closed if and only if

(Def. 15) for every p, n, and q such that $p \in P$ and $n = \alpha(p)$ and $q \in Q \cap n$ holds $p \cap q \in Q$.

Now we state the propositions:

- (33) The Polish-expression set(P, α) is α -closed. The theorem is a consequence of (27), (18), (23), and (26).
- (34) If Q is α -closed, then the Polish atoms $(P, \alpha) \subseteq Q$. The theorem is a consequence of (4).
- (35) If Q is α -closed, then the Polish-expression hierarchy $(P, \alpha, n) \subseteq Q$. PROOF: Define $\mathcal{X}[\text{natural number}] \equiv \text{the Polish-expression hierarchy}(P, \alpha, \$_1) \subseteq Q$. $\mathcal{X}[0]$. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$. For every k, $\mathcal{X}[k]$ from [2, Sch. 2]. \square
- (36) The Polish atoms $(P, \alpha) \subseteq$ the Polish-expression set (P, α) . The theorem is a consequence of (33) and (34).
- (37) If Q is α -closed, then the Polish-expression set $(P, \alpha) \subseteq Q$. The theorem is a consequence of (28) and (35).
- (38) Suppose $r \in$ the Polish-expression set (P, α) . Then there exists n and there exists t and there exists q such that $t \in P$ and $n = \alpha(t)$ and $r = (\text{the Polish operation}(P, \alpha, n, t))(q)$. The theorem is a consequence of (28), (23), (26), and (17).
- (39) Suppose $p \in P$ and $n = \alpha(p)$ and $q \in \text{(the Polish-expression set}(P, \alpha)) \cap n$. Then (the Polish operation $(P, \alpha, n, p)(q) \in \text{the Polish-expression set}(P, \alpha)$). The theorem is a consequence of (33).

The scheme AInd deals with a finite sequence-membered set \mathcal{P} and a function α from \mathcal{P} into \mathbb{N} and a unary predicate \mathcal{X} and states that

- (Sch. 1) For every a such that $a \in \text{the Polish-expression set}(\mathcal{P}, \alpha)$ holds $\mathcal{X}[a]$ provided
 - for every p, q, and n such that $p \in \mathcal{P}$ and $n = \alpha(p)$ and $q \in (\text{the Polish-expression set}(\mathcal{P}, \alpha)) \cap n \text{ holds } \mathcal{X}[p \cap q].$

3. Parsing

In the sequel k, l, m, n, i, j denote natural numbers, a, b, c, c_1 , c_2 denote objects, x, y, z, X, Y, Z denote sets, D, D_1 , D_2 denote non empty sets, p, q, r, s, t, u, v denote finite sequences, and P, Q, R denote finite sequence-membered sets.

Let us consider P. We say that P is antichain-like if and only if

(Def. 16) for every p and q such that $p, p \cap q \in P$ holds $q = \emptyset$.

Now we state the propositions:

(40) P is antichain-like if and only if for every p and q such that $p, p \cap q \in P$ holds $p = p \cap q$.

PROOF: If P is antichain-like, then for every p and q such that $p, p \cap q \in P$ holds $p = p \cap q$ by [4, (34)]. \square

(41) If $P \subseteq Q$ and Q is antichain-like, then P is antichain-like.

Note that every finite sequence-membered set which is trivial is also antichainlike.

Now we state the proposition:

(42) If $P = \{a\}$, then P is antichain-like.

Note that there exists a non empty, finite sequence-membered set which is antichain-like and every finite sequence-membered set which is empty is also antichain-like.

An antichain is an antichain-like, finite sequence-membered set. In the sequel $B,\,C$ denote antichains.

Let us consider B. One can verify that every subset of B is antichain-like and finite sequence-membered.

A Polish-language is a non empty antichain. From now on $S,\ T$ denote Polish-languages.

Let D be a non empty set and ψ be a subset of D^* . Note that ψ is antichain-like if and only if the condition (Def. 17) is satisfied.

(Def. 17) for every finite sequence g of elements of D and for every finite sequence h of elements of D such that g, $g \cap h \in \psi$ holds $h = \varepsilon_D$.

Now we state the proposition:

(43) If $p \cap q = r \cap s$ and $p, r \in B$, then p = r and q = s. The theorem is a consequence of (1) and (40).

Let us consider B and C. Note that $B \cap C$ is antichain-like.

Now we state the propositions:

(44) If for every p and q such that $p, q \in P$ holds dom p = dom q, then P is antichain-like.

PROOF: For every p and q such that $p, p \cap q \in P$ holds $p = p \cap q$ by [4, (21)]. \square

- (45) If for every p such that $p \in P$ holds dom p = a, then P is antichain-like. The theorem is a consequence of (44).
- (46) If $\emptyset \in B$, then $B = \{\emptyset\}$.

PROOF: For every a such that $a \in B$ holds $a = \emptyset$ by [4, (34)]. \square

Let us consider B and n. Note that $B \cap n$ is antichain-like.

Let us consider T. Let us observe that there exists a subset of T^* which is non empty and antichain-like and $T \cap n$ is non empty.

A Polish-language of T is a non empty, antichain-like subset of T^* .

A Polish arity-function of T is a function from T into \mathbb{N} and is defined by (Def. 18)—there exists a such that $a \in T$ and it(a) = 0.

One can verify that every Polish-language of T is non empty, antichain-like, and finite sequence-membered.

In the sequel α denotes a Polish arity-function of T and U, V, W denote Polish-languages of T.

Let us consider T and α . Let t be an element of T. Let us observe that the functor $\alpha(t)$ yields a natural number. Let us consider U. Note that the Polish-expression layer (T, α, U) is defined by

(Def. 19) for every $a, a \in it$ iff there exists an element t of T and there exists an element u of T^* such that $a = t \cap u$ and $u \in U \cap \alpha(t)$.

Let us consider B and p. We say that p is B-headed if and only if

(Def. 20) there exists q and there exists r such that $q \in B$ and $p = q \cap r$.

Let us consider P. We say that P is B-headed if and only if

(Def. 21) for every p such that $p \in P$ holds p is B-headed.

Now we state the propositions:

- (47) If p is B-headed and $B \subseteq C$, then p is C-headed.
- (48) If P is B-headed and $B \subseteq C$, then P is C-headed.

Let us consider B and P. Observe that $B \cap P$ is B-headed.

Now we state the propositions:

- (49) If p is $(B \cap C)$ -headed, then p is B-headed.
- (50) B is B-headed. The theorem is a consequence of (3).

Let us consider B. Let us observe that there exists a finite sequence-membered set which is B-headed.

Let P be a B-headed, finite sequence-membered set. Let us note that every subset of P is B-headed.

Let us consider S. Let us observe that there exists a finite sequence-membered set which is non empty and S-headed.

Now we state the proposition:

(51) $S \cap (m+n)$ is $(S \cap m)$ -headed. The theorem is a consequence of (10).

Let us consider S and p. The functor S-head(p) yielding a finite sequence is defined by

- (Def. 22) (i) $it \in S$ and there exists r such that $p = it \cap r$, if p is S-headed,
 - (ii) $it = \emptyset$, otherwise.

The functor S-tail(p) yielding a finite sequence is defined by

(Def. 23) $p = (S\text{-head}(p)) \cap it$.

Now we state the propositions:

- (52) If $s \in S$, then S-head $(s \cap t) = s$ and S-tail $(s \cap t) = t$.
- (53) If $s \in S$, then S-head(s) = s and S-tail $(s) = \emptyset$. The theorem is a consequence of (52).

Let us consider S, T, and u. Now we state the propositions:

- (54) If $u \in S \cap T$, then S-head $(u) \in S$ and S-tail $(u) \in T$. The theorem is a consequence of (52).
- (55) If $S \subseteq T$ and u is S-headed, then S-head(u) = T-head(u) and S-tail(u) = T-tail(u). The theorem is a consequence of (52).

Now we state the propositions:

- (56) Suppose s is S-headed. Then
 - (i) $s \cap t$ is S-headed, and
 - (ii) S-head $(s \cap t) = S$ -head(s), and
 - (iii) S-tail $(s \cap t) = (S$ -tail $(s)) \cap t$.

The theorem is a consequence of (52).

- (57) If $m+1 \le n$ and $s \in S \cap n$, then s is $(S \cap m)$ -headed and $S \cap m$ -tail(s) is S-headed. The theorem is a consequence of (51), (10), (54), and (7).
- (58) (i) s is $(S \cap 0)$ -headed, and
 - (ii) $S \cap 0$ -head $(s) = \emptyset$, and
 - (iii) $S \cap 0$ -tail(s) = s.

The theorem is a consequence of (4) and (52).

Let us consider T and α . One can verify that the Polish atoms (T, α) is non empty and antichain-like.

Let us consider U. Let us observe that the Polish-expression layer (T, α, U) is non empty and antichain-like.

One can verify that the Polish-expression layer (T, α, U) yields a Polish-language of T. The Polish operations (T, α) yielding a subset of T is defined by the term

(Def. 24) $\{t, \text{ where } t \text{ is an element of } T : \alpha(t) \neq 0\}.$

Let us consider n. Let us note that the Polish-expression hierarchy (T, α, n) is antichain-like and non empty.

One can check that the Polish-expression hierarchy (T, α, n) yields a Polish-language of T. The functor Polish-WFF-set (T, α) yielding a Polish-language of T is defined by the term

(Def. 25) the Polish-expression $set(T, \alpha)$.

A Polish WFF of T and α is an element of Polish-WFF-set (T, α) . Let t be an element of T. The Polish operation (T, α, t) yielding a function from Polish-WFF-set $(T, \alpha) \cap \alpha(t)$ into Polish-WFF-set (T, α) is defined by the term

(Def. 26) the Polish operation $(T, \alpha, \alpha(t), t)$.

Assume $\alpha(t) = 1$. The functor Polish-unOp (T, α, t) yielding a unary operation on Polish-WFF-set (T, α) is defined by the term

(Def. 27) the Polish operation (T, α, t) .

Assume $\alpha(t) = 2$. The functor Polish-binOp (T, α, t) yielding a binary operation on Polish-WFF-set (T, α) is defined by

(Def. 28) for every u and v such that $u, v \in \text{Polish-WFF-set}(T, \alpha)$ holds $it(u, v) = (\text{the Polish operation}(T, \alpha, t))(u \cap v)$.

In the sequel φ , ψ denote Polish WFFs of T and α .

Let us consider X and Y. Let F be a partial function from X to 2^Y . We say that F is exhaustive if and only if

(Def. 29) for every a such that $a \in Y$ there exists b such that $b \in \text{dom } F$ and $a \in F(b)$.

Let X be a non empty set. Observe that there exists a finite sequence of elements of 2^X which is non exhaustive and disjoint valued.

Now we state the proposition:

(59) Let us consider a partial function F from X to 2^Y . Then F is not exhaustive if and only if there exists a such that $a \in Y$ and for every b such that $b \in \text{dom } F$ holds $a \notin F(b)$.

Let us consider T. Let B be a non exhaustive, disjoint valued finite sequence of elements of 2^T . The Polish arity from list B yielding a Polish arity-function of T is defined by the term

(Def. 30) the arity from list B.

One can check that there exists an antichain-like, finite sequence-membered set which has non empty elements and there exists a Polish-language which is non trivial and every antichain-like, finite sequence-membered set which is non trivial has also non empty elements.

Let us consider S, n, and m. Let p be an element of $S \cap (n+1+m)$. The functor decomp(S, n, m, p) yielding an element of S is defined by the term

(Def. 31) S-head($S \cap n$ -tail(p)).

Let p be an element of $S \cap n$. The functor decomp(S, n, p) yielding a finite sequence of elements of S is defined by

(Def. 32) dom $it = \operatorname{Seg} n$ and for every m such that $m \in \operatorname{Seg} n$ there exists k such that m = k + 1 and it(m) = S-head $(S \cap k$ -tail(p)).

Now we state the propositions:

- (60) Let us consider an element s of $S \cap n$, and an element t of $T \cap n$. If $S \subseteq T$ and s = t, then $\operatorname{decomp}(S, n, s) = \operatorname{decomp}(T, n, t)$. PROOF: Set $p = \operatorname{decomp}(S, n, s)$. Set $q = \operatorname{decomp}(T, n, t)$. For every a such that $a \in \operatorname{Seg} n$ holds p(a) = q(a) by (17), [4, (1)], (57), (55). \square
- (61) Let us consider an element q of $S \cap 0$. Then $\operatorname{decomp}(S, 0, q) = \emptyset$.
- (62) Let us consider an element q of $S \cap n$. Then len decomp(S, n, q) = n.
- (63) Let us consider an element q of $S \cap 1$. Then decomp $(S, 1, q) = \langle q \rangle$. The theorem is a consequence of (7), (58), (53), and (62).
- (64) Let us consider elements p, q of S, and an element r of $S \cap 2$. Suppose $r = p \cap q$. Then $\operatorname{decomp}(S, 2, r) = \langle p, q \rangle$. The theorem is a consequence of (58), (52), (7), (53), and (62).
- (65) Polish-WFF-set (T, α) is T-headed. The theorem is a consequence of (28), (23), and (21).
- (66) The Polish-expression hierarchy (T, α, n) is T-headed. The theorem is a consequence of (26) and (65).

Let us consider T, α , and φ . The functor Polish-WFF-head φ yielding an element of T is defined by the term

(Def. 33) T-head(φ).

Let us consider n. Let φ be an element of the Polish-expression hierarchy (T, α, n) . The functor Polish-WFF-head φ yielding an element of T is defined by the term

(Def. 34) T-head(φ).

Let us consider φ . The Polish arity φ yielding a natural number is defined by the term

(Def. 35) α (Polish-WFF-head φ).

Let us consider n. Let φ be an element of the Polish-expression hierarchy (T, α, n) . The Polish arity φ yielding a natural number is defined by the term

(Def. 36) α (Polish-WFF-head φ).

Now we state the propositions:

- (67) T-tail $(\varphi) \in \text{Polish-WFF-set}(T, \alpha) \cap (\text{the Polish arity } \varphi)$. The theorem is a consequence of (32) and (52).
- (68) Let us consider an element φ of the Polish-expression hierarchy $(T, \alpha, n+1)$. Then T-tail $(\varphi) \in (\text{the Polish-expression hierarchy}(T, \alpha, n)) \cap (\text{the Polish arity } \varphi)$. The theorem is a consequence of (23) and (52).

Let us consider T, α , and φ . The functor (T,α) -tail φ yielding an element of Polish-WFF-set (T,α) (the Polish arity φ) is defined by the term (Def. 37) T-tail (φ) .

Now we state the proposition:

(69) If T-head $(\varphi) \in \text{the Polish atoms}(T, \alpha)$, then $\varphi = T$ -head (φ) . The theorem is a consequence of (67) and (6).

Let us consider T, α , and n. Let φ be an element of the Polish-expression hierarchy $(T, \alpha, n+1)$. The functor (T, α) -tail φ yielding an element of (the Polish-expression hierarchy (T, α, n)) $\widehat{}$ (the Polish arity φ) is defined by the term

(Def. 38) T-tail(φ).

Let us consider φ . The functor Polish-WFF-args φ yielding a finite sequence of elements of Polish-WFF-set (T, α) is defined by the term

(Def. 39) decomp(Polish-WFF-set (T, α) , the Polish arity φ , (T, α) -tail φ).

Let us consider n. Let φ be an element of the Polish-expression hierarchy $(T, \alpha, n+1)$. The functor Polish-WFF-args φ yielding a finite sequence of elements of the Polish-expression hierarchy (T, α, n) is defined by the term

(Def. 40) decomp(the Polish-expression hierarchy(T, α , n), the Polish arity φ , (T, α) -tail φ).

Now we state the propositions:

- (70) Let us consider an element t of T, and u. Suppose $u \in \text{Polish-WFF-set}(T, \alpha) \cap \alpha(t)$. Then T-tail((the Polish operation (T, α, t))(u)) = u. The theorem is a consequence of (52).
- (71) Suppose $\varphi \in$ the Polish-expression hierarchy $(T, \alpha, n + 1)$. Then rng Polish-WFF-args $\varphi \subseteq$ the Polish-expression hierarchy (T, α, n) . The theorem is a consequence of (60) and (26).
- (72) Let us consider a finite sequence p, a function f from Y into D, and a function g from Z into D. Suppose $\operatorname{rng} p \subseteq Y$ and $\operatorname{rng} p \subseteq Z$ and for every a such that $a \in \operatorname{rng} p$ holds f(a) = g(a). Then $f \cdot p = g \cdot p$. Proof: Reconsider $p_1 = p$ as a finite sequence of elements of Y. Reconsider $q = f \cdot p_1$ as a finite sequence. Reconsider $p_2 = p$ as a finite sequence of elements of Z. Reconsider $r = g \cdot p_2$ as a finite sequence. q = r by [6, (33)], [4, (1)], [7, (13), (3)]. \square

Let us consider T, α , and D. The Polish recursion-domain (α, D) yielding a subset of $T \times D^*$ is defined by the term

(Def. 41) $\{\langle t, p \rangle$, where t is an element of T, p is a finite sequence of elements of $D : \text{len } p = \alpha(t) \}$.

A Polish recursion-function of α and D is a function from the Polish recursion-domain (α, D) into D. From now on f denotes a Polish recursion-function of α and D and γ , γ_1 , γ_2 denote functions from Polish-WFF-set (T, α) into D.

Let us consider T, α , D, f, and γ . We say that γ is f-recursive if and only if

(Def. 42) for every φ , $\gamma(\varphi) = f(\langle T\text{-head}(\varphi), \gamma \cdot \text{Polish-WFF-args } \varphi \rangle)$.

Now we state the proposition:

(73) If γ_1 is f-recursive and γ_2 is f-recursive, then $\gamma_1 = \gamma_2$. The theorem is a consequence of (36), (17), (33), (52), (60), (72), and (37).

From now on L denotes a non trivial Polish-language, β denotes a Polish arity-function of L, g denotes a Polish recursion-function of β and D, J, J_1 denote subsets of Polish-WFF-set(L, β), H denotes a function from J into D, H_1 denotes a function from J_1 into D.

Let us consider L, β , D, g, J, and H. We say that H is g-recursive if and only if

(Def. 43) for every Polish WFF φ of L and β such that $\varphi \in J$ and rng Polish-WFF-args $\varphi \subseteq J$ holds $H(\varphi) = g(\langle L\text{-head}(\varphi), H \cdot \text{Polish-WFF-args }\varphi \rangle).$

Now we state the propositions:

- (74) There exists J and there exists H such that J = the Polish-expression hierarchy (L, β, n) and H is g-recursive.

 PROOF: Define $\mathcal{X}[\text{natural number}] \equiv \text{there exists } J \text{ and there exists } H \text{ such that } J = \text{the Polish-expression hierarchy}(L, \beta, \$_1) \text{ and } H \text{ is } g\text{-recursive.}$ For every n, $\mathcal{X}[n]$ from [2, Sch. 2]. \square
- (75) There exists a function γ from Polish-WFF-set (L,β) into D such that γ is g-recursive. PROOF: Set $W = \text{Polish-WFF-set}(L,\beta)$. Define $\mathcal{X}[\text{object},\text{object}] \equiv \text{there}$ exists n and there exists J_1 and there exists H_1 such that $J_1 = \text{the Polish-expression hierarchy}(L, \beta, n)$ and H_1 is g-recursive and $\mathcal{Y}_1 \in J_1$ and $\mathcal{Y}_2 = H_1(\mathcal{Y}_1)$. For every a such that $a \in W$ there exists b such that $b \in D$ and $\mathcal{X}[a,b]$ by (28), (74), [8, (5)]. Consider γ being a function from W into D such that for every a such that $a \in W$ holds $\mathcal{X}[a,\gamma(a)]$ from [8, Sch. 1]. \square
- (76) Let us consider an element t of L. Then the Polish operation (L, β, t) is one-to-one.

PROOF: Set f = the Polish operation(L, β , t). For every a and b such that a, $b \in \text{dom } f$ and f(a) = f(b) holds a = b by [4, (33)]. \square

- (77) Let us consider elements t, u of L. Suppose rng(the Polish operation(L, β , t)) meets rng(the Polish operation(L, β , u)). Then t = u. The theorem is a consequence of (43).
- (78) Let us consider an element t of L, and a. Suppose $a \in \text{dom}(\text{the Polish operation}(L, \beta, t))$. Then there exists p such that
 - (i) $p = (\text{the Polish operation}(L, \beta, t))(a), \text{ and}$
 - (ii) L-head(p) = t.

The theorem is a consequence of (52).

Let us consider L, β , an element t of L, and a Polish WFF φ of L and β . Now we state the proposition:

(79) Polish-WFF-head $\varphi = t$ if and only if there exists an element u of Polish-WFF-set $(L, \beta) \cap \beta(t)$ such that $\varphi = (\text{the Polish operation}(L, \beta, t))(u)$. The theorem is a consequence of (52).

Let us assume that $\beta(t) = 1$. Now we state the propositions:

- (80) If Polish-WFF-head $\varphi = t$, then there exists a Polish WFF ψ of L and β such that $\varphi = (\text{Polish-unOp}(L, \beta, t))(\psi)$. The theorem is a consequence of (79) and (7).
- (81) (i) Polish-WFF-head((Polish-unOp(L, β, t))(φ)) = t, and
 - (ii) Polish-WFF-args((Polish-unOp(L, β, t))(φ)) = $\langle \varphi \rangle$. The theorem is a consequence of (7), (79), (70), and (63).

Now we state the proposition:

(82) Suppose $\beta(t) = 2$. Then suppose Polish-WFF-head $\varphi = t$. Then there exist Polish WFFs ψ , H of L and β such that $\varphi = (\text{Polish-binOp}(L, \beta, t))$ (ψ, H) . The theorem is a consequence of (79), (6), and (7).

Now we state the propositions:

- (83) Let us consider an element t of L. Suppose $\beta(t) = 2$. Let us consider Polish WFFs φ , ψ of L and β . Then
 - (i) Polish-WFF-head(Polish-binOp (L, β, t)) $(\varphi, \psi) = t$, and
 - (ii) Polish-WFF-args(Polish-binOp (L, β, t)) $(\varphi, \psi) = \langle \varphi, \psi \rangle$.

The theorem is a consequence of (7), (11), (79), (64), and (70).

(84) Let us consider a Polish WFF φ of L and β . Then $\varphi \in$ the Polish atoms (L, β) if and only if the Polish arity $\varphi = 0$. The theorem is a consequence of (53), (67), and (6).

(85) Let us consider a function γ from Polish-WFF-set (L,β) into D, an element t of L, and a Polish WFF φ of L and β . Suppose γ is g-recursive and $\beta(t) = 1$. Then $\gamma((\text{Polish-unOp}(L,\beta,t))(\varphi)) = g(t,\langle\gamma(\varphi)\rangle)$. The theorem is a consequence of (81).

Let us consider S. Let p be a finite sequence of elements of S. The functor $\operatorname{Flat}(p)$ yielding an element of $S \cap \operatorname{len} p$ is defined by

(Def. 44) $\operatorname{decomp}(S, \operatorname{len} p, it) = p.$

Let us consider L and β .

A substitution of L and β is a partial function from the Polish atoms(L, β) to Polish-WFF-set(L, β). Let s be a substitution of L and β . The functor Subst s yielding a Polish recursion-function of β and Polish-WFF-set(L, β) is defined by

(Def. 45) for every element t of L and for every finite sequence p of elements of Polish-WFF-set (L,β) such that len $p=\beta(t)$ holds if $t\in \mathrm{dom}\, s$, then it(t,p)=s(t) and if $t\notin \mathrm{dom}\, s$, then $it(t,p)=t\cap \mathrm{Flat}(p)$.

Let φ be a Polish WFF of L and β . The functor $s[\varphi]$ yielding a Polish WFF of L and β is defined by

(Def. 46) there exists a function H from Polish-WFF-set (L, β) into Polish-WFF-set (L, β) such that H is (Subst s)-recursive and $it = H(\varphi)$. Now we state the proposition:

is g-recursive by (62), [6, (32), (33)], [7, (3), (17), (13)].

(86) Let us consider a substitution s of L and β , and a Polish WFF φ of L and β . If $s = \emptyset$, then $s[\varphi] = \varphi$.

PROOF: Set $W = \text{Polish-WFF-set}(L, \beta)$. Set g = Subst s. Set $\gamma = \text{id}_W$. γ

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.

- [11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [12] Joanna Golińska-Pilarek and Taneli Huuskonen. Logic of descriptions. A new approach to the foundations of mathematics and science. Studies in Logic, Grammar and Rhetoric, 40(27), 2012.
- [13] Joanna Golińska-Pilarek and Taneli Huuskonen. Grzegorczyk's non-Fregean logics. In Rafał Urbaniak and Gillman Payette, editors, Applications of Formal Philosophy: The Road Less Travelled, Logic, Reasoning and Argumentation. Springer, 2015.
- [14] Andrzej Grzegorczyk. Filozofia logiki i formalna LOGIKA NIESYMPLIFIKACYJNA. Zagadnienia Naukoznawstwa, XLVII(4), 2012. In Polish.
- [15] Jan Łukasiewicz. Uwagi o aksjomacie Nicoda i 'dedukcji uogólniającej'. In Księga pamiątkowa Polskiego Towarzystwa Filozoficznego, Lwów, 1931. In Polish.
- [16] Andrzej Nędzusiak. Probability. Formalized Mathematics, 1(4):745–749, 1990.
- [17] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.

Received April 30, 2015