Polish Notation

Taneli Huuskonen ${ }^{1]}$
Department of Mathematics and Statistics
University of Helsinki
Finland

Abstract

Summary. This article is the first in a series formalizing some results in my joint work with Prof. Joanna Golińska-Pilarek (12] and [13) concerning a logic proposed by Prof. Andrzej Grzegorczyk ([14).

We present some mathematical folklore about representing formulas in "Polish notation", that is, with operators of fixed arity prepended to their arguments. This notation, which was published by Jan Łukasiewicz in [15, eliminates the need for parentheses and is generally well suited for rigorous reasoning about syntactic properties of formulas.

MSC: 68R15 03B35
Keywords: Polish notation; syntax; well-formed formula
MML identifier: POLNOT_1, version: 8.1.04 5.32.1240
The notation and terminology used in this paper have been introduced in the following articles: [5], [1], 4], [11], [7], 8], 3], 9], [16], [19], [17], [18], and [10].

1. Preliminaries

From now on k, m, n denote natural numbers, a, b, c, c_{1}, c_{2} denote objects, x, y, z, X, Y, Z denote sets, D denotes a non empty set, p, q, r, s, t, u, v denote finite sequences, $P, Q, R, P_{1}, P_{2}, Q_{1}, Q_{2}, R_{1}, R_{2}$ denote finite sequencemembered sets, and S, T denote non empty, finite sequence-membered sets.

Let D be a non empty set and P, Q be subsets of D^{*}. The functor ${ }^{\frown}(D, P, Q)$ yielding a subset of D^{*} is defined by the term

[^0](Def. 1) $\quad\left\{p^{\wedge} q\right.$, where p is a finite sequence of elements of D, q is a finite sequence of elements of $D: p \in P$ and $q \in Q\}$.
Let us consider P and Q. The functor $P^{\frown} Q$ yielding a finite sequencemembered set is defined by
(Def. 2) for every $a, a \in i t$ iff there exists p and there exists q such that $a=p^{\frown} q$ and $p \in P$ and $q \in Q$.
Let β be an empty set. One can check that $\beta^{\wedge} P$ is empty and $P \frown \beta$ is empty.

Let us consider S and T. One can check that $S^{\wedge} T$ is non empty.
Now we state the propositions:
(1) If $p^{\frown} q=r^{\frown} s$, then there exists t such that $p^{\frown} t=r$ or $p=r^{\frown} t$.
(2) $\left(P^{\frown} Q\right)^{\wedge} R=P \frown\left(Q^{\wedge} R\right)$. Proof: For every $a, a \in\left(P^{\wedge} Q\right)^{\wedge} R$ iff $a \in P^{\wedge}\left(Q^{\wedge} R\right)$ by [4, (32)].
Note that $\{\emptyset\}$ is non empty and finite sequence-membered.
(i) $P \frown\{\emptyset\}=P$, and
(ii) $\{\emptyset\}{ }^{\wedge} P=P$.

Proof: For every $a, a \in P \frown\{\emptyset\}$ iff $a \in P$ by [4, (34)]. For every a, $a \in\{\emptyset\}^{\wedge} P$ iff $a \in P$ by [4, (34)].
Let us consider P. The functor $P \frown \frown$ yielding a function is defined by
(Def. 3) dom it $=\mathbb{N}$ and $i t(0)=\{\emptyset\}$ and for every n, there exists Q such that $Q=i t(n)$ and $i t(n+1)=Q^{\wedge} P$.
Let us consider n. The functor $P \frown n$ yielding a finite sequence-membered set is defined by the term
(Def. 4) (P^{\frown}) (n).
Now we state the proposition:
(4) $\emptyset \in P \frown 0$.

Let us consider P. Let n be a zero natural number. Note that $P \frown n$ is non empty.

Let β be an empty set and n be a non zero natural number. One can verify that $\beta \frown n$ is empty.

Let us consider P. The functor P^{*} yielding a non empty, finite sequencemembered set is defined by the term
(Def. 5) \bigcup the set of all $P \frown n$ where n is a natural number.
(5) $a \in P^{*}$ if and only if there exists n such that $a \in P \frown n$.

Let us consider P.
(6) (i) $P \frown 0=\{\emptyset\}$, and
(ii) for every $n, P \frown(n+1)=(P \frown n)^{\frown} P$.
(7) $\quad P \frown 1=P$. The theorem is a consequence of (6) and (3).
(8) $\quad P \frown n \subseteq P^{*}$.
(9) (i) $\emptyset \in P^{*}$, and
(ii) $P \subseteq P^{*}$.

The theorem is a consequence of (4), (5), and (7).
(10) $\quad P \frown(m+n)=\left(P^{\frown} m\right)^{\wedge}\left(P^{\frown} n\right)$.

Proof: Define \mathcal{X} [natural number] $\equiv P^{\wedge}\left(m+\$_{1}\right)=\left(P^{\wedge} m\right)^{\wedge}\left(P \frown \$_{1}\right)$. $\mathcal{X}[0]$. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$. For every $k, \mathcal{X}[k]$ from [2, Sch. 2].
(11) If $p \in P^{\frown} m$ and $q \in P^{\frown} n$, then $p^{\wedge} q \in P^{\frown}(m+n)$. The theorem is a consequence of (10).
(12) If $p, q \in P^{*}$, then $p^{\curvearrowright} q \in P^{*}$. The theorem is a consequence of (5) and (11).
(13) If $P \subseteq R^{*}$ and $Q \subseteq R^{*}$, then $P^{\wedge} Q \subseteq R^{*}$. The theorem is a consequence of (12).
(14) If $Q \subseteq P^{*}$, then $Q^{\frown} n \subseteq P^{*}$.

Proof: Define \mathcal{X} [natural number] $\equiv Q^{-} \$_{1} \subseteq P^{*}$. $\mathcal{X}[0]$. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$. For every $k, \mathcal{X}[k]$ from [2, Sch. 2].
(15) If $Q \subseteq P^{*}$, then $Q^{*} \subseteq P^{*}$. The theorem is a consequence of (5) and (14).
(16) If $P_{1} \subseteq P_{2}$ and $Q_{1} \subseteq Q_{2}$, then $P_{1} \curvearrowright Q_{1} \subseteq P_{2} \curvearrowright Q_{2}$.
(17) If $P \subseteq Q$, then for every $n, P^{\frown} n \subseteq Q \frown n$.

Proof: Define \mathcal{S} [natural number] $\equiv P \frown \$_{1} \subseteq Q^{\frown} \$_{1} . P \frown 0=\{\emptyset\}$. For every n such that $\mathcal{S}[n]$ holds $\mathcal{S}[n+1]$. For every $n, \mathcal{S}[n]$ from [2, Sch. 2].

Let us consider S and n. Let us observe that $S \frown n$ is non empty and finite sequence-membered.

2. The Language

In the sequel α denotes a function from P into \mathbb{N} and U, V, W denote subsets of P^{*}.

Let us consider P, α, and U. The Polish-expression layer (P, α, U) yielding a subset of P^{*} is defined by
(Def. 6) for every $a, a \in i t$ iff $a \in P^{*}$ and there exists p and there exists q and there exists n such that $a=p^{\wedge} q$ and $p \in P$ and $n=\alpha(p)$ and $q \in U \frown n$.
Now we state the proposition:
(18) Suppose $p \in P$ and $n=\alpha(p)$ and $q \in U \frown n$. Then $p^{\curvearrowleft} q \in$ the Polish-expression layer (P, α, U). The theorem is a consequence of (14), (9), and (12).

Let us consider P and α. The $\operatorname{Polish} \operatorname{atoms}(P, \alpha)$ yielding a subset of P^{*} is defined by
(Def. 7) for every $a, a \in$ it iff $a \in P$ and $\alpha(a)=0$.
The Polish operations (P, α) yielding a subset of P is defined by the term
(Def. 8) $\left\{t\right.$, where t is an element of $P^{*}: t \in P$ and $\left.\alpha(t) \neq 0\right\}$.
Now we state the propositions:
(19) The Polish atoms $(P, \alpha) \subseteq$ the Polish-expression layer (P, α, U). The theorem is a consequence of (4) and (18).
(20) Suppose $U \subseteq V$. Then the Polish-expression layer $(P, \alpha, U) \subseteq$ the Polishexpression layer (P, α, V). The theorem is a consequence of (17).
(21) Suppose $u \in$ the Polish-expression $\operatorname{layer}(P, \alpha, U)$. Then there exists p and there exists q such that $p \in P$ and $u=p^{\wedge} q$.
Let us consider P and α. The Polish-expression hierarchy (P, α) yielding a function is defined by
(Def. 9) $\quad \operatorname{dom} i t=\mathbb{N}$ and $i t(0)=$ the $\operatorname{Polish} \operatorname{atoms}(P, \alpha)$ and for every n, there exists U such that $U=i t(n)$ and $i t(n+1)=$ the Polish-expression layer (P, α, U).
Let us consider n. The Polish-expression hierarchy (P, α, n) yielding a subset of P^{*} is defined by the term
(Def. 10) (the Polish-expression hierarchy $(P, \alpha))(n)$.
Now we state the proposition:
(22) The Polish-expression hierarchy $(P, \alpha, 0)=$ the $\operatorname{Polish} \operatorname{atoms}(P, \alpha)$.

Let us consider P, α, and n. Now we state the propositions:
(23) The Polish-expression hierarchy $(P, \alpha, n+1)=$ the Polish-expression $\operatorname{layer}(P, \alpha$, the Polish-expression hierarchy $(P, \alpha, n))$.
(24) The Polish-expression hierarchy $(P, \alpha, n) \subseteq$ the Polish-expression hierarchy $(P, \alpha, n+1)$.
Proof: Define \mathcal{S} [natural number] \equiv the Polish-expression hierarchy $(P$, $\left.\alpha, \$_{1}\right) \subseteq$ the Polish-expression hierarchy $\left(P, \alpha, \$_{1}+1\right)$. $\mathcal{S}[0]$. For every k such that $\mathcal{S}[k]$ holds $\mathcal{S}[k+1]$. For every $k, \mathcal{S}[k]$ from [2, Sch. 2].
Now we state the proposition:
(25) The Polish-expression hierarchy $(P, \alpha, n) \subseteq$ the Polish-expression hierarchy $(P, \alpha, n+m)$.
Proof: Define \mathcal{S} [natural number] \equiv the Polish-expression hierarchy $(P$, $\alpha, n) \subseteq$ the Polish-expression hierarchy $\left(P, \alpha, n+\$_{1}\right)$. For every k such that $\mathcal{S}[k]$ holds $\mathcal{S}[k+1]$. For every $k, \mathcal{S}[k]$ from [2, Sch. 2].

Let us consider P and α. The Polish-expression $\operatorname{set}(P, \alpha)$ yielding a subset of P^{*} is defined by the term
(Def. 11) \bigcup the set of all the Polish-expression hierarchy (P, α, n) where n is a natural number.
Now we state the propositions:
(26) The Polish-expression hierarchy $(P, \alpha, n) \subseteq$ the Polish-expression set $(P$, $\alpha)$.
(27) Suppose $q \in($ the Polish-expression $\operatorname{set}(P, \alpha)) \frown n$. Then there exists m such that $q \in($ the Polish-expression hierarchy $(P, \alpha, m)) \frown n$.
Proof: Define \mathcal{S} [natural number] \equiv for every q such that $q \in$ (the Polishexpression $\operatorname{set}(P, \alpha)) \frown \$_{1}$ there exists m such that $q \in$ (the Polish-expression hierarchy $(P, \alpha, m)) \frown \$_{1} . \mathcal{S}[0]$. For every k such that $\mathcal{S}[k]$ holds $\mathcal{S}[k+1]$. For every $k, \mathcal{S}[k]$ from [2, Sch. 2].
(28) Suppose $a \in$ the Polish-expression $\operatorname{set}(P, \alpha)$. Then there exists n such that $a \in$ the Polish-expression hierarchy $(P, \alpha, n+1)$. The theorem is a consequence of (24).
Let us consider P and α.
A Polish expression of P and α is an element of the Polish-expression set $(P$, α). Let us consider n and t. Assume $t \in P$. The Polish operation (P, α, n, t) yielding a function from (the Polish-expression $\operatorname{set}(P, \alpha))^{\frown} n$ into P^{*} is defined by
(Def. 12) for every q such that $q \in$ dom it holds $i t(q)=t \wedge q$.
Let us consider X and Y. Let F be a partial function from X to 2^{Y}. One can check that F is disjoint valued if and only if the condition (Def. 13) is satisfied.
(Def. 13) for every a and b such that $a, b \in \operatorname{dom} F$ and $a \neq b$ holds $F(a)$ misses $F(b)$.
Let X be a set. One can check that there exists a finite sequence of elements of 2^{X} which is disjoint valued.

Now we state the proposition:
(29) Let us consider a set X, a disjoint valued finite sequence B of elements of $2^{X}, a, b$, and c. If $a \in B(b)$ and $a \in B(c)$, then $b=c$ and $b \in \operatorname{dom} B$.
Let us consider X. Let B be a disjoint valued finite sequence of elements of 2^{X}. The arity from list B yielding a function from X into \mathbb{N} is defined by
(Def. 14) for every a such that $a \in X$ holds there exists n such that $a \in B(n)$ and $a \in B(i t(a))$ or there exists no n such that $a \in B(n)$ and $i t(a)=0$.
Now we state the propositions:
(30) Let us consider a disjoint valued finite sequence B of elements of 2^{X}, and a. Suppose $a \in X$. Then (the arity from list $B)(a) \neq 0$ if and only if
there exists n such that $a \in B(n)$. The theorem is a consequence of (29).
(31) Let us consider a disjoint valued finite sequence B of elements of 2^{X}, a, and n. Suppose $a \in B(n)$. Then (the arity from list $B)(a)=n$. The theorem is a consequence of (29).
(32) Suppose $r \in$ the Polish-expression $\operatorname{set}(P, \alpha)$. Then there exists n and there exists p and there exists q such that $p \in P$ and $n=\alpha(p)$ and $q \in($ the Polish-expression $\operatorname{set}(P, \alpha)) \frown n$ and $r=p^{\frown} q$. The theorem is a consequence of (28), (23), (26), and (17).
Let us consider P, α, and Q. We say that Q is α-closed if and only if
(Def. 15) for every p, n, and q such that $p \in P$ and $n=\alpha(p)$ and $q \in Q \frown n$ holds $p^{\wedge} q \in Q$.
Now we state the propositions:
(33) The Polish-expression $\operatorname{set}(P, \alpha)$ is α-closed. The theorem is a consequence of (27), (18), (23), and (26).
(34) If Q is α-closed, then the $\operatorname{Polish} \operatorname{atoms}(P, \alpha) \subseteq Q$. The theorem is a consequence of (4).
(35) If Q is α-closed, then the Polish-expression hierarchy $(P, \alpha, n) \subseteq Q$.

Proof: Define \mathcal{X} [natural number] \equiv the Polish-expression hierarchy $(P$, $\left.\alpha, \$_{1}\right) \subseteq Q . \mathcal{X}[0]$. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$. For every k, $\mathcal{X}[k]$ from [2, Sch. 2].
(36) The Polish atoms $(P, \alpha) \subseteq$ the Polish-expression $\operatorname{set}(P, \alpha)$. The theorem is a consequence of (33) and (34).
(37) If Q is α-closed, then the Polish-expression $\operatorname{set}(P, \alpha) \subseteq Q$. The theorem is a consequence of (28) and (35).
(38) Suppose $r \in$ the Polish-expression $\operatorname{set}(P, \alpha)$. Then there exists n and there exists t and there exists q such that $t \in P$ and $n=\alpha(t)$ and $r=$ (the Polish operation $(P, \alpha, n, t))(q)$. The theorem is a consequence of (28), (23), (26), and (17).
(39) Suppose $p \in P$ and $n=\alpha(p)$ and $q \in(\text { the Polish-expression } \operatorname{set}(P, \alpha))^{\frown}$ n. Then (the Polish operation $(P, \alpha, n, p))(q) \in$ the Polish-expression $\operatorname{set}(P, \alpha)$. The theorem is a consequence of (33).
The scheme A Ind deals with a finite sequence-membered set \mathcal{P} and a function α from \mathcal{P} into \mathbb{N} and a unary predicate \mathcal{X} and states that
(Sch. 1) For every a such that $a \in$ the Polish-expression $\operatorname{set}(\mathcal{P}, \alpha)$ holds $\mathcal{X}[a]$ provided

- for every p, q, and n such that $p \in \mathcal{P}$ and $n=\alpha(p)$ and $q \in($ the Polish-expression $\operatorname{set}(\mathcal{P}, \alpha)) \frown n$ holds $\mathcal{X}\left[p^{\frown} q\right]$.

3. Parsing

In the sequel k, l, m, n, i, j denote natural numbers, a, b, c, c_{1}, c_{2} denote objects, x, y, z, X, Y, Z denote sets, D, D_{1}, D_{2} denote non empty sets, p, q, r, s, t, u, v denote finite sequences, and P, Q, R denote finite sequence-membered sets.

Let us consider P. We say that P is antichain-like if and only if
(Def. 16) for every p and q such that $p, p^{\wedge} q \in P$ holds $q=\emptyset$.
Now we state the propositions:
(40) P is antichain-like if and only if for every p and q such that $p, p^{\curvearrowright} q \in P$ holds $p=p^{\wedge} q$.
Proof: If P is antichain-like, then for every p and q such that $p, p^{\frown} q \in P$ holds $p=p^{\wedge} q$ by [4, (34)].
(41) If $P \subseteq Q$ and Q is antichain-like, then P is antichain-like.

Note that every finite sequence-membered set which is trivial is also antichainlike.

Now we state the proposition:
(42) If $P=\{a\}$, then P is antichain-like.

Note that there exists a non empty, finite sequence-membered set which is antichain-like and every finite sequence-membered set which is empty is also antichain-like.

An antichain is an antichain-like, finite sequence-membered set. In the sequel B, C denote antichains.

Let us consider B. One can verify that every subset of B is antichain-like and finite sequence-membered.

A Polish-language is a non empty antichain. From now on S, T denote Polish-languages.

Let D be a non empty set and ψ be a subset of D^{*}. Note that ψ is antichainlike if and only if the condition (Def. 17) is satisfied.
(Def. 17) for every finite sequence g of elements of D and for every finite sequence h of elements of D such that $g, g^{\frown} h \in \psi$ holds $h=\varepsilon_{D}$.
Now we state the proposition:
(43) If $p^{\frown} q=r^{\frown} s$ and $p, r \in B$, then $p=r$ and $q=s$. The theorem is a consequence of (1) and (40).
Let us consider B and C. Note that $B^{\wedge} C$ is antichain-like.
Now we state the propositions:
(44) If for every p and q such that $p, q \in P$ holds $\operatorname{dom} p=\operatorname{dom} q$, then P is antichain-like.

Proof: For every p and q such that $p, p^{\wedge} q \in P$ holds $p=p^{\wedge} q$ by [4, (21)].
(45) If for every p such that $p \in P$ holds $\operatorname{dom} p=a$, then P is antichain-like. The theorem is a consequence of (44).
(46) If $\emptyset \in B$, then $B=\{\emptyset\}$.

Proof: For every a such that $a \in B$ holds $a=\emptyset$ by [4, (34)].
Let us consider B and n. Note that $B \frown n$ is antichain-like.
Let us consider T. Let us observe that there exists a subset of T^{*} which is non empty and antichain-like and $T \frown n$ is non empty.

A Polish-language of T is a non empty, antichain-like subset of T^{*}.
A Polish arity-function of T is a function from T into \mathbb{N} and is defined by
(Def. 18) there exists a such that $a \in T$ and $i t(a)=0$.
One can verify that every Polish-language of T is non empty, antichain-like, and finite sequence-membered.

In the sequel α denotes a Polish arity-function of T and U, V, W denote Polish-languages of T.

Let us consider T and α. Let t be an element of T. Let us observe that the functor $\alpha(t)$ yields a natural number. Let us consider U. Note that the Polishexpression layer (T, α, U) is defined by
(Def. 19) for every $a, a \in i t$ iff there exists an element t of T and there exists an element u of T^{*} such that $a=t^{\frown} u$ and $u \in U \frown \alpha(t)$.
Let us consider B and p. We say that p is B-headed if and only if
(Def. 20) there exists q and there exists r such that $q \in B$ and $p=q^{\wedge} r$.
Let us consider P. We say that P is B-headed if and only if
(Def. 21) for every p such that $p \in P$ holds p is B-headed.
Now we state the propositions:
(47) If p is B-headed and $B \subseteq C$, then p is C-headed.
(48) If P is B-headed and $B \subseteq C$, then P is C-headed.

Let us consider B and P. Observe that $B^{\wedge} P$ is B-headed.
Now we state the propositions:
(49) If p is $\left(B^{\frown} C\right)$-headed, then p is B-headed.
(50) B is B-headed. The theorem is a consequence of (3).

Let us consider B. Let us observe that there exists a finite sequence-membered set which is B-headed.

Let P be a B-headed, finite sequence-membered set. Let us note that every subset of P is B-headed.

Let us consider S. Let us observe that there exists a finite sequence-membered set which is non empty and S-headed.

Now we state the proposition:
(51) $S \frown(m+n)$ is $(S \frown m)$-headed. The theorem is a consequence of (10).

Let us consider S and p. The functor S-head (p) yielding a finite sequence is defined by
(Def. 22) (i) it $\in S$ and there exists r such that $p=i t^{\wedge} r$, if p is S-headed,
(ii) $i t=\emptyset$, otherwise.

The functor S-tail (p) yielding a finite sequence is defined by
(Def. 23) $\quad p=(S-\operatorname{head}(p))^{\wedge}$ it.
Now we state the propositions:
(52) If $s \in S$, then S-head $\left(s^{\wedge} t\right)=s$ and S-tail $\left(s^{\wedge} t\right)=t$.
(53) If $s \in S$, then S-head $(s)=s$ and S-tail $(s)=\emptyset$. The theorem is a consequence of (52).
Let us consider S, T, and u. Now we state the propositions:
(54) If $u \in S \frown T$, then S-head $(u) \in S$ and S-tail $(u) \in T$. The theorem is a consequence of (52).
(55) If $S \subseteq T$ and u is S-headed, then S-head $(u)=T$-head (u) and S-tail $(u)=$ T-tail (u). The theorem is a consequence of (52).
Now we state the propositions:
(56) Suppose s is S-headed. Then
(i) $s^{\curvearrowleft} t$ is S-headed, and
(ii) S-head $\left(s^{\frown} t\right)=S$-head (s), and
(iii) S-tail $(s \wedge t)=(S-\operatorname{tail}(s))^{\wedge} t$.

The theorem is a consequence of (52).
(57) If $m+1 \leqslant n$ and $s \in S \frown n$, then s is $(S \frown m)$-headed and $S \frown m$-tail (s) is S-headed. The theorem is a consequence of (51), (10), (54), and (7).
(58) (i) s is $(S \frown 0)$-headed, and
(ii) $S \frown 0-\operatorname{head}(s)=\emptyset$, and
(iii) $S \frown 0-\operatorname{tail}(s)=s$.

The theorem is a consequence of (4) and (52).
Let us consider T and α. One can verify that the $\operatorname{Polish} \operatorname{atoms}(T, \alpha)$ is non empty and antichain-like.

Let us consider U. Let us observe that the Polish-expression layer (T, α, U) is non empty and antichain-like.

One can verify that the Polish-expression $\operatorname{layer}(T, \alpha, U)$ yields a Polishlanguage of T. The Polish operations (T, α) yielding a subset of T is defined by the term
(Def. 24) $\quad\{t$, where t is an element of $T: \alpha(t) \neq 0\}$.
Let us consider n. Let us note that the Polish-expression hierarchy (T, α, n) is antichain-like and non empty.

One can check that the Polish-expression hierarchy (T, α, n) yields a Polishlanguage of T. The functor Polish-WFF-set (T, α) yielding a Polish-language of T is defined by the term
(Def. 25) the Polish-expression $\operatorname{set}(T, \alpha)$.
A Polish WFF of T and α is an element of $\operatorname{Polish-WFF-set(~} T, \alpha)$. Let t be an element of T. The Polish operation (T, α, t) yielding a function from Polish-WFF-set $(T, \alpha) \frown \alpha(t)$ into Polish-WFF-set (T, α) is defined by the term
(Def. 26) the Polish operation $(T, \alpha, \alpha(t), t)$.
Assume $\alpha(t)=1$. The functor Polish-unOp (T, α, t) yielding a unary operation on Polish-WFF-set (T, α) is defined by the term
(Def. 27) the Polish operation (T, α, t).
Assume $\alpha(t)=2$. The functor Polish-binOp (T, α, t) yielding a binary operation on Polish-WFF-set (T, α) is defined by
(Def. 28) for every u and v such that $u, v \in \operatorname{Polish-WFF-set}(T, \alpha)$ holds $i t(u, v)=$ (the Polish operation $(T, \alpha, t))\left(u^{\wedge} v\right)$.
In the sequel φ, ψ denote Polish WFFs of T and α.
Let us consider X and Y. Let F be a partial function from X to 2^{Y}. We say that F is exhaustive if and only if
(Def. 29) for every a such that $a \in Y$ there exists b such that $b \in \operatorname{dom} F$ and $a \in F(b)$.
Let X be a non empty set. Observe that there exists a finite sequence of elements of 2^{X} which is non exhaustive and disjoint valued.

Now we state the proposition:
(59) Let us consider a partial function F from X to 2^{Y}. Then F is not exhaustive if and only if there exists a such that $a \in Y$ and for every b such that $b \in \operatorname{dom} F$ holds $a \notin F(b)$.
Let us consider T. Let B be a non exhaustive, disjoint valued finite sequence of elements of 2^{T}. The Polish arity from list B yielding a Polish arity-function of T is defined by the term
(Def. 30) the arity from list B.
One can check that there exists an antichain-like, finite sequence-membered set which has non empty elements and there exists a Polish-language which is non trivial and every antichain-like, finite sequence-membered set which is non trivial has also non empty elements.

Let us consider S, n, and m. Let p be an element of $S \frown(n+1+m)$. The functor $\operatorname{decomp}(S, n, m, p)$ yielding an element of S is defined by the term
(Def. 31) S-head $(S \frown n$-tail (p)).
Let p be an element of $S \frown n$. The functor $\operatorname{decomp}(S, n, p)$ yielding a finite sequence of elements of S is defined by
(Def. 32) dom $i t=\operatorname{Seg} n$ and for every m such that $m \in \operatorname{Seg} n$ there exists k such that $m=k+1$ and $i t(m)=S$-head $(S \frown k$-tail $(p))$.
Now we state the propositions:
(60) Let us consider an element s of $S \frown n$, and an element t of $T \frown n$. If $S \subseteq T$ and $s=t$, then $\operatorname{decomp}(S, n, s)=\operatorname{decomp}(T, n, t)$.
Proof: Set $p=\operatorname{decomp}(S, n, s)$. Set $q=\operatorname{decomp}(T, n, t)$. For every a such that $a \in \operatorname{Seg} n$ holds $p(a)=q(a)$ by (17), [4, (1)], (57), (55).
(61) Let us consider an element q of $S \frown 0$. Then $\operatorname{decomp}(S, 0, q)=\emptyset$.
(62) Let us consider an element q of $S \frown n$. Then len $\operatorname{decomp}(S, n, q)=n$.
(63) Let us consider an element q of $S \frown 1$. Then $\operatorname{decomp}(S, 1, q)=\langle q\rangle$. The theorem is a consequence of $(7),(58),(53)$, and (62).
(64) Let us consider elements p, q of S, and an element r of $S \frown 2$. Suppose $r=p^{\complement} q$. Then $\operatorname{decomp}(S, 2, r)=\langle p, q\rangle$. The theorem is a consequence of (58), (52), (7), (53), and (62).
(65) Polish-WFF-set (T, α) is T-headed. The theorem is a consequence of (28), (23), and (21).
(66) The Polish-expression hierarchy (T, α, n) is T-headed. The theorem is a consequence of (26) and (65).
Let us consider T, α, and φ. The functor Polish-WFF-head φ yielding an element of T is defined by the term
(Def. 33) T-head (φ).
Let us consider n. Let φ be an element of the Polish-expression hierarchy $(T$, $\alpha, n)$. The functor Polish-WFF-head φ yielding an element of T is defined by the term
(Def. 34) T-head (φ).
Let us consider φ. The Polish arity φ yielding a natural number is defined by the term
(Def. 35) α (Polish-WFF-head φ).
Let us consider n. Let φ be an element of the Polish-expression hierarchy $(T$, $\alpha, n)$. The Polish arity φ yielding a natural number is defined by the term
(Def. 36) α (Polish-WFF-head φ).
Now we state the propositions:
(67) T - $\operatorname{tail}(\varphi) \in \operatorname{Polish}-\mathrm{WFF}-\operatorname{set}(T, \alpha) \frown($ the Polish arity $\varphi)$. The theorem is a consequence of (32) and (52).
(68) Let us consider an element φ of the Polish-expression hierarchy $(T, \alpha$, $n+1)$. Then T-tail $(\varphi) \in($ the Polish-expression hierarchy $(T, \alpha, n)) \frown$ (the Polish arity φ). The theorem is a consequence of (23) and (52).
Let us consider T, α, and φ. The functor (T, α)-tail φ yielding an element of Polish-WFF-set $(T, \alpha) \frown$ (the Polish arity φ) is defined by the term (Def. 37) T-tail (φ).

Now we state the proposition:
(69) If T-head $(\varphi) \in$ the $\operatorname{Polish} \operatorname{atoms}(T, \alpha)$, then $\varphi=T$-head (φ). The theorem is a consequence of (67) and (6).
Let us consider T, α, and n. Let φ be an element of the Polish-expression hierarchy $(T, \alpha, n+1)$. The functor (T, α)-tail φ yielding an element of (the Polishexpression hierarchy $(T, \alpha, n)) \frown($ the Polish arity $\varphi)$ is defined by the term
(Def. 38) T-tail (φ).
Let us consider φ. The functor Polish-WFF-args φ yielding a finite sequence of elements of Polish-WFF-set (T, α) is defined by the term
(Def. 39) decomp(Polish-WFF-set (T, α), the Polish arity $\varphi,(T, \alpha)$-tail φ).
Let us consider n. Let φ be an element of the Polish-expression hierarchy $(T$, $\alpha, n+1)$. The functor Polish-WFF-args φ yielding a finite sequence of elements of the Polish-expression hierarchy (T, α, n) is defined by the term
(Def. 40) decomp(the Polish-expression hierarchy (T, α, n), the Polish arity φ, (T, α)-tail φ).
Now we state the propositions:
(70) Let us consider an element t of T, and u.

Suppose $u \in \operatorname{Polish-WFF-set}(T, \alpha) \frown \alpha(t)$.
Then T-tail $(($ the $\operatorname{Polish} \operatorname{operation}(T, \alpha, t))(u))=u$. The theorem is a consequence of (52).
(71) Suppose $\varphi \in$ the $\operatorname{Polish}-\operatorname{expression} \operatorname{hierarchy}(T, \alpha, n+1)$.

Then rng Polish-WFF-args $\varphi \subseteq$ the Polish-expression hierarchy (T, α, n). The theorem is a consequence of (60) and (26).
(72) Let us consider a finite sequence p, a function f from Y into D, and a function g from Z into D. Suppose $\operatorname{rng} p \subseteq Y$ and $\operatorname{rng} p \subseteq Z$ and for every a such that $a \in \operatorname{rng} p$ holds $f(a)=g(a)$. Then $f \cdot p=g \cdot p$.
Proof: Reconsider $p_{1}=p$ as a finite sequence of elements of Y. Reconsider $q=f \cdot p_{1}$ as a finite sequence. Reconsider $p_{2}=p$ as a finite sequence of elements of Z. Reconsider $r=g \cdot p_{2}$ as a finite sequence. $q=r$ by [6, (33)], [4, (1)], [7, (13), (3)].

Let us consider T, α, and D. The Polish recursion-domain (α, D) yielding a subset of $T \times D^{*}$ is defined by the term
(Def. 41) $\quad\{\langle t, p\rangle$, where t is an element of T, p is a finite sequence of elements of $D: \operatorname{len} p=\alpha(t)\}$.
A Polish recursion-function of α and D is a function from the Polish recursiondomain (α, D) into D. From now on f denotes a Polish recursion-function of α and D and $\gamma, \gamma_{1}, \gamma_{2}$ denote functions from $\left.\operatorname{Polish-WFF-set(~} T, \alpha\right)$ into D.

Let us consider T, α, D, f, and γ. We say that γ is f-recursive if and only if
(Def. 42) for every $\varphi, \gamma(\varphi)=f(\langle T-\operatorname{head}(\varphi), \gamma \cdot$ Polish-WFF-args $\varphi\rangle)$.
Now we state the proposition:
(73) If γ_{1} is f-recursive and γ_{2} is f-recursive, then $\gamma_{1}=\gamma_{2}$. The theorem is a consequence of (36), (17), (33), (52), (60), (72), and (37).
From now on L denotes a non trivial Polish-language, β denotes a Polish arity-function of L, g denotes a Polish recursion-function of β and D, J, J_{1} denote subsets of Polish-WFF-set $(L, \beta), H$ denotes a function from J into D, H_{1} denotes a function from J_{1} into D.

Let us consider L, β, D, g, J, and H. We say that H is g-recursive if and only if
(Def. 43) for every Polish WFF φ of L and β such that $\varphi \in J$ and rng Polish-WFF-args $\varphi \subseteq J$ holds
$H(\varphi)=g(\langle L-\operatorname{head}(\varphi), H \cdot$ Polish-WFF-args $\varphi\rangle)$.
Now we state the propositions:
(74) There exists J and there exists H such that $J=$ the Polish-expression hierarchy (L, β, n) and H is g-recursive.
Proof: Define \mathcal{X} [natural number] \equiv there exists J and there exists H such that $J=$ the Polish-expression hierarchy $\left(L, \beta, \$_{1}\right)$ and H is g-recursive. For every $n, \mathcal{X}[n]$ from [2, Sch. 2].
(75) There exists a function γ from $\operatorname{Polish-WFF-set}(L, \beta)$ into D such that γ is g-recursive.
Proof: Set $W=$ Polish-WFF-set (L, β). Define $\mathcal{X}[$ object, object $] \equiv$ there exists n and there exists J_{1} and there exists H_{1} such that $J_{1}=$ the Polishexpression hierarchy (L, β, n) and H_{1} is g-recursive and $\$_{1} \in J_{1}$ and $\$_{2}=$ $H_{1}\left(\$_{1}\right)$. For every a such that $a \in W$ there exists b such that $b \in D$ and $\mathcal{X}[a, b]$ by (28), (74), [8, (5)]. Consider γ being a function from W into D such that for every a such that $a \in W$ holds $\mathcal{X}[a, \gamma(a)]$ from [8, Sch. 1].
(76) Let us consider an element t of L. Then the Polish operation (L, β, t) is one-to-one.

Proof: Set $f=$ the Polish operation (L, β, t). For every a and b such that $a, b \in \operatorname{dom} f$ and $f(a)=f(b)$ holds $a=b$ by [4, (33)].
(77) Let us consider elements t, u of L. Suppose rng(the Polish operation(L, $\beta, t)$) meets rng(the Polish operation $(L, \beta, u))$. Then $t=u$. The theorem is a consequence of (43).
(78) Let us consider an element t of L, and a. Suppose $a \in \operatorname{dom}$ (the Polish operation $(L, \beta, t))$. Then there exists p such that
(i) $p=($ the $\operatorname{Polish} \operatorname{operation}(L, \beta, t))(a)$, and
(ii) L-head $(p)=t$.

The theorem is a consequence of (52).
Let us consider L, β, an element t of L, and a $\operatorname{Polish} \operatorname{WFF} \varphi$ of L and β. Now we state the proposition:
(79) Polish-WFF-head $\varphi=t$ if and only if there exists an element u of Polish-WFF-set $(L, \beta) \frown \beta(t)$ such that $\varphi=($ the $\operatorname{Polish} \operatorname{operation}(L, \beta$, $t))(u)$. The theorem is a consequence of (52).
Let us assume that $\beta(t)=1$. Now we state the propositions:
(80) If Polish-WFF-head $\varphi=t$, then there exists a Polish WFF ψ of L and β such that $\varphi=(\operatorname{Polish}-\operatorname{unOp}(L, \beta, t))(\psi)$. The theorem is a consequence of (79) and (7).
(81) (i) Polish-WFF-head $((\operatorname{Polish}-u n O p(L, \beta, t))(\varphi))=t$, and
(ii) Polish-WFF-args $((\operatorname{Polish}-\mathrm{unOp}(L, \beta, t))(\varphi))=\langle\varphi\rangle$.

The theorem is a consequence of $(7),(79),(70)$, and (63).
Now we state the proposition:
(82) Suppose $\beta(t)=2$. Then suppose Polish-WFF-head $\varphi=t$. Then there exist Polish WFFs ψ, H of L and β such that $\varphi=(\operatorname{Polish}-\operatorname{binOp}(L, \beta, t))$ (ψ, H). The theorem is a consequence of (79), (6), and (7).
Now we state the propositions:
(83) Let us consider an element t of L. Suppose $\beta(t)=2$. Let us consider Polish WFFs φ, ψ of L and β. Then
(i) Polish-WFF-head $(\operatorname{Polish}-\operatorname{binOp}(L, \beta, t))(\varphi, \psi)=t$, and
(ii) Polish-WFF-args $(\operatorname{Polish}-\operatorname{binOp}(L, \beta, t))(\varphi, \psi)=\langle\varphi, \psi\rangle$.

The theorem is a consequence of (7), (11), (79), (64), and (70).
(84) Let us consider a Polish WFF φ of L and β. Then $\varphi \in$ the Polish $\operatorname{atoms}(L, \beta)$ if and only if the Polish arity $\varphi=0$. The theorem is a consequence of (53), (67), and (6).
(85) Let us consider a function γ from $\operatorname{Polish-WFF-set~}(L, \beta)$ into D, an element t of L, and a Polish WFF φ of L and β. Suppose γ is g-recursive and $\beta(t)=1$. Then $\gamma((\operatorname{Polish}-u n O p(L, \beta, t))(\varphi))=g(t,\langle\gamma(\varphi)\rangle)$. The theorem is a consequence of (81).
Let us consider S. Let p be a finite sequence of elements of S. The functor Flat (p) yielding an element of $S \frown \operatorname{len} p$ is defined by
(Def. 44) $\quad \operatorname{decomp}(S$, len $p, i t)=p$.
Let us consider L and β.
A substitution of L and β is a partial function from the Polish atoms $(L$, β) to Polish-WFF-set (L, β). Let s be a substitution of L and β. The functor Subst s yielding a Polish recursion-function of β and $\operatorname{Polish-WFF-set~}(L, \beta)$ is defined by
(Def. 45) for every element t of L and for every finite sequence p of elements of Polish-WFF-set (L, β) such that len $p=\beta(t)$ holds if $t \in \operatorname{dom} s$, then $i t(t, p)=s(t)$ and if $t \notin \operatorname{dom} s$, then $i t(t, p)=t^{\wedge} \operatorname{Flat}(p)$.
Let φ be a Polish WFF of L and β. The functor $s[\varphi]$ yielding a Polish WFF of L and β is defined by
(Def. 46) there exists a function H from Polish-WFF-set (L, β) into Polish-WFF-set (L, β) such that H is (Subst s)-recursive and it $=H(\varphi)$.
Now we state the proposition:
(86) Let us consider a substitution s of L and β, and a Polish WFF φ of L and β. If $s=\emptyset$, then $s[\varphi]=\varphi$.
Proof: Set $W=$ Polish-WFF-set (L, β). Set $g=$ Subst s. Set $\gamma=\mathrm{id}_{W} \cdot \gamma$ is g-recursive by (62), [6, (32), (33)], [7, (3), (17), (13)].

References

[1] Grzegorz Bancerek. Cardinal numbers Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Binary operations, Formalized Mathematics, 1(1):175-180, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Byliński. Functions and their basic properties Formalized Mathematics, 1(1): 55-65, 1990.
[8] Czesław Byliński. Functions from a set to a set Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. Partial functions, Formalized Mathematics, 1(2):357-367, 1990.
[10] Czesław Byliński. Some basic properties of sets Formalized Mathematics, 1(1):47-53, 1990.
[11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[12] Joanna Golińska-Pilarek and Taneli Huuskonen. Logic of descriptions. A new approach to the foundations of mathematics and science. Studies in Logic, Grammar and Rhetoric, 40(27), 2012.
[13] Joanna Golińska-Pilarek and Taneli Huuskonen. Grzegorczyk's non-Fregean logics. In Rafał Urbaniak and Gillman Payette, editors, Applications of Formal Philosophy: The Road Less Travelled, Logic, Reasoning and Argumentation. Springer, 2015.
[14] Andrzej Grzegorczyk. Filozofia logiki i formalna logika niesymplifikacyjna. Zagadnienia Naukoznawstwa, XLVII(4), 2012. In Polish.
[15] Jan Łukasiewicz. Uwagi o aksjomacie Nicoda i 'dedukcji uogólniającej'. In Ksiega pamiattkowa Polskiego Towarzystwa Filozoficznego, Lwów, 1931. In Polish.
[16] Andrzej Nędzusiak. Probability Formalized Mathematics, 1(4):745-749, 1990.
[17] Beata Padlewska. Families of sets Formalized Mathematics, 1(1):147-152, 1990.
[18] Zinaida Trybulec. Properties of subsets Formalized Mathematics, 1(1):67-71, 1990.
[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.

Received April 30, 2015

[^0]: ${ }^{1}$ Work supported by Polish National Science Center (NCN) grant "Logic of language experience" nr 2011/03/B/HS1/04580.

