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Summary. This article is the first in a series formalizing some results in
my joint work with Prof. Joanna Golinska-Pilarek ([12] and [I3]) concerning a
logic proposed by Prof. Andrzej Grzegorczyk ([14]).

We present some mathematical folklore about representing formulas in “Po-
lish notation”, that is, with operators of fixed arity prepended to their arguments.
This notation, which was published by Jan Lukasiewicz in [I5], eliminates the
need for parentheses and is generally well suited for rigorous reasoning about
syntactic properties of formulas.
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The notation and terminology used in this paper have been introduced in the
following articles: [5], [1], [4], [111, [7], [8], [3], [9], [16], [19], [17], [18], and [10].

1. PRELIMINARIES

From now on k, m, n denote natural numbers, a, b, ¢, c1, ca denote objects,
x, vy, 2z, X, Y, Z denote sets, D denotes a non empty set, p, q, r, s, t, u, v
denote finite sequences, P, Q, R, Pi, P», Q1, Q2, R1, Ro denote finite sequence-
membered sets, and S, T' denote non empty, finite sequence-membered sets.

Let D be a non empty set and P, @ be subsets of D*. The functor ~(D, P, Q)
yielding a subset of D* is defined by the term
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(Def. 1) {p~q, where p is a finite sequence of elements of D, ¢ is a finite sequence
of elements of D : p € P and ¢q € Q}.
Let us consider P and @. The functor P ~ @ yielding a finite sequence-
membered set is defined by
(Def. 2) for every a, a € it iff there exists p and there exists ¢ such that a = p "¢
and p € P and q € Q.
Let 8 be an empty set. One can check that 8~ P is empty and P ™ ( is
empty.
Let us consider S and T'. One can check that S~ T is non empty.
Now we state the propositions:
(1) If p~q=r"s, then there exists t such that p "t =rorp=r"t.
(2) (PTQ)"R=P"(Q"R).
PRrROOF: For every a,a € (P~ Q) " Riffae€ P~ (Q " R) by [4, (32)]. O
Note that {0} is non empty and finite sequence-membered.
(3) (1) P~ {0} =P, and
(i) {0} ~P=P.
PRrROOF: For every a, a € P~ {0} iff a € P by [4, (34)]. For every a,
ac{ld} " Piffac Pby [, (34)]. O
Let us consider P. The functor P ™" yielding a function is defined by
(Def. 3) domit = N and it(0) = {0} and for every n, there exists @ such that
Q =it(n) and it(n+1) =Q " P.
Let us consider n. The functor P ™ n yielding a finite sequence-membered
set is defined by the term
(Def. 4) (P ™7)(n).
Now we state the proposition:
(4) pepP—O0.
Let us consider P. Let n be a zero natural number. Note that P ™ n is non
empty.
Let 3 be an empty set and n be a non zero natural number. One can verify
that 87 n is empty.
Let us consider P. The functor P* yielding a non empty, finite sequence-
membered set is defined by the term
(Def. 5) |Jthe set of all P ™ n where n is a natural number.
(5) a € P* if and only if there exists n such that a € P ™ n.
Let us consider P.
(6) (i) P~ 0={0}, and
(ii) for everyn, P~ (n+1)= (P " n) " P.
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(7) P~ 1= P. The theorem is a consequence of (6) and (3).
(8) P~ nC P~
(9) (1) 0 € P* and
(il) P C P*.
The theorem is a consequence of (4), (5), and (7).
(10) P~ (m+n)=(P " m)" (P " n).
PROOF: Define X'[natural number] = P~ (m+$1) = (P~ m) "~ (P~ $1).
X[0]. For every k such that X'[k] holds X[k + 1]. For every k, X[k] from
[2, Sch. 2]. O
(11) IfpeP " mand g€ P " n,thenp™qge€ P~ (m+n). The theorem is
a consequence of (10).
(12) If p, ¢ € P*, then p = ¢ € P*. The theorem is a consequence of (5) and
(11).
(13) If PC R* and @Q C R*, then P~ @ C R*. The theorem is a consequence
of (12).
(14) If Q C P*, then Q@ ~n C P*.
PROOF: Define X'[natural number] = Q — $; C P*. X[0]. For every k such
that X'[k] holds X[k + 1]. For every k, X[k] from [2, Sch. 2]. O
(15) If @ C P*, then Q* C P*. The theorem is a consequence of (5) and (14).
(16) If P € Py and Q1 € Q2, then P ™ Q1 € P2~ Q».
(17) If P C Q, then for every n, P " n C Q ~ n.
PROOF: Define S[natural number] = P~ $, C Q ~ $;. P~ 0 = {0}. For
every n such that S[n] holds S[n + 1]. For every n, S[n] from [2, Sch. 2].
O

Let us consider S and n. Let us observe that .S ™ n is non empty and finite
sequence-membered.

2. THE LANGUAGE

In the sequel o denotes a function from P into N and U, V', W denote subsets
of P*.
Let us consider P, «, and U. The Polish-expression layer(P, «, U) yielding
a subset of P* is defined by
(Def. 6) for every a, a € it iff @ € P* and there exists p and there exists ¢ and
there exists n such that a = p "¢ and p € P and n = a(p) and ¢ € U ~ n.
Now we state the proposition:
(18) Supposep € Pandn = a(p) and ¢ € U™ n. Then p~q € the Polish-expres-
sion layer(P, o, U). The theorem is a consequence of (14), (9), and (12).
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Let us consider P and «. The Polish atoms(P, «) yielding a subset of P* is
defined by
(Def. 7) for every a, a € it iff a € P and a(a) = 0.
The Polish operations(P, «) yielding a subset of P is defined by the term
(Def. 8) {t, where t is an element of P* : t € P and «(t) # 0}.
Now we state the propositions:
(19) The Polish atoms(P, «) C the Polish-expression layer(P, «, U). The
theorem is a consequence of (4) and (18).
(20) Suppose U C V. Then the Polish-expression layer(P, o, U) C the Polish-
expression layer(P, «, V'). The theorem is a consequence of (17).
(21) Suppose u € the Polish-expression layer(P, «, U). Then there exists p
and there exists ¢ such that p € P and u=p " gq.
Let us consider P and «. The Polish-expression hierarchy(P, «) yielding
a function is defined by
(Def. 9) domit = N and 4¢(0) = the Polish atoms(P, «) and for every n, there
exists U such that U = it(n) and it(n + 1) = the Polish-expression
layer(P, a, U).
Let us consider n. The Polish-expression hierarchy (P, a, n) yielding a subset
of P* is defined by the term
(Def. 10) (the Polish-expression hierarchy(P, «))(n).
Now we state the proposition:
(22) The Polish-expression hierarchy(P, «, 0) = the Polish atoms(P, «).
Let us consider P, «, and n. Now we state the propositions:
(23) The Polish-expression hierarchy(P, o, n + 1) = the Polish-expression
layer(P, «, the Polish-expression hierarchy(P, a, n)).
(24) The Polish-expression hierarchy(P, a, n) C the Polish-expression
hierarchy(P, a, n + 1).
PROOF: Define S[natural number] = the Polish-expression hierarchy (P,
a, $1) C the Polish-expression hierarchy (P, a, $; + 1). S[0]. For every k
such that S[k] holds S[k + 1]. For every k, S[k| from [2, Sch. 2]. O

Now we state the proposition:

(25) The Polish-expression hierarchy(P, «, n) C the Polish-expression
hierarchy (P, a, n 4+ m).
PROOF: Define S[natural number| = the Polish-expression hierarchy(P,
a, n) C the Polish-expression hierarchy(P, «, n + $1). For every k such
that S[k] holds S[k + 1]. For every k, S[k| from [2, Sch. 2]. O
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Let us consider P and «. The Polish-expression set(P, «) yielding a subset
of P* is defined by the term

(Def. 11) |Jthe set of all the Polish-expression hierarchy(P, «, n) where n is
a natural number.
Now we state the propositions:
(26) The Polish-expression hierarchy(P, o, n) C the Polish-expression set(P,
Q).
(27) Suppose ¢ € (the Polish-expression set(P, «)) — n. Then there exists m
such that ¢ € (the Polish-expression hierarchy (P, a, m)) ~ n.
PROOF: Define S[natural number| = for every ¢ such that ¢ € (the Polish-
expression set(P, o))" $; there exists m such that ¢ € (the Polish-expression
hierarchy (P, o, m)) — $1. S[0]. For every k such that S[k] holds S[k + 1].
For every k, S[k] from [2, Sch. 2]. O
(28) Suppose a € the Polish-expression set(P, «). Then there exists n such
that a € the Polish-expression hierarchy(P, a, n + 1). The theorem is a
consequence of (24).
Let us consider P and «.
A Polish expression of P and « is an element of the Polish-expression set(P,
«). Let us consider n and ¢. Assume ¢t € P. The Polish operation(P, «, n, t)
yielding a function from (the Polish-expression set(P, «)) ~n into P* is defined
by
(Def. 12) for every ¢ such that ¢ € dom it holds it(q) =t~ q.
Let us consider X and Y. Let F be a partial function from X to 2Y. One can
check that F' is disjoint valued if and only if the condition (Def. 13) is satisfied.
(Def. 13) for every a and b such that a, b € dom F' and a # b holds F(a) misses
F(b).
Let X be a set. One can check that there exists a finite sequence of elements
of 2% which is disjoint valued.
Now we state the proposition:
(29) Let us consider a set X, a disjoint valued finite sequence B of elements
of 2% a, b, and c. If a € B(b) and a € B(c), then b = c and b € dom B.
Let us consider X. Let B be a disjoint valued finite sequence of elements of
2% The arity from list B yielding a function from X into N is defined by
(Def. 14) for every a such that a € X holds there exists n such that a € B(n) and
a € B(it(a)) or there exists no n such that a € B(n) and it(a) = 0.
Now we state the propositions:
(30) Let us consider a disjoint valued finite sequence B of elements of 2%,
and a. Suppose a € X. Then (the arity from list B)(a) # 0 if and only if
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there exists n such that a € B(n). The theorem is a consequence of (29).

(31) Let us consider a disjoint valued finite sequence B of elements of 2%,
a, and n. Suppose a € B(n). Then (the arity from list B)(a) = n. The
theorem is a consequence of (29).

(32) Suppose r € the Polish-expression set(P, «). Then there exists n and
there exists p and there exists ¢ such that p € P and n = «(p) and
q € (the Polish-expression set(P, «)) ~ n and r = p ~ ¢. The theorem is a
consequence of (28), (23), (26), and (17).

Let us consider P, a, and (). We say that () is a-closed if and only if
(Def. 15) for every p, n, and ¢ such that p € P and n = a(p) and ¢ € Q ~ n holds
pPTqeQ.
Now we state the propositions:

(33) The Polish-expression set(P, «) is a-closed. The theorem is a consequ-
ence of (27), (18), (23), and (26).

(34) If @ is a-closed, then the Polish atoms(P, a) C @. The theorem is a
consequence of (4).

(35) If Q is a-closed, then the Polish-expression hierarchy(P, a, n) C Q.
PROOF: Define X'[natural number] = the Polish-expression hierarchy (P,
a, $1) C Q. X]0]. For every k such that X'[k] holds X[k + 1]. For every k,
X[k] from [2, Sch. 2]. O

(36) The Polish atoms(P, «) C the Polish-expression set(P, «). The theorem
is a consequence of (33) and (34).

(37) If Q is a-closed, then the Polish-expression set(P, ) C Q. The theorem
is a consequence of (28) and (35).

(38) Suppose r € the Polish-expression set(P, «). Then there exists n and
there exists ¢ and there exists g such that ¢ € P and n = «a(t) and r =
(the Polish operation(P, «, n, t))(q). The theorem is a consequence of
(28), (23), (26), and (17).

(39) Suppose p € P and n = o(p) and g € (the Polish-expression set(P, «)) ™
n. Then (the Polish operation(P, «, n, p))(q) € the Polish-expression
set(P, a). The theorem is a consequence of (33).

The scheme AInd deals with a finite sequence-membered set P and a function
« from P into N and a unary predicate X and states that
(Sch. 1) For every a such that a € the Polish-expression set(P, a) holds X|[a]
provided

e for every p, ¢, and n such that p € P and n = a(p) and
q € (the Polish-expression set(P, a))) ~ n holds X[p ™ ¢].
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3. PARSING

In the sequel k, I, m, n, i, 5 denote natural numbers, a, b, ¢, c1, co denote
objects, x, y, z, X, Y, Z denote sets, D, Dy, Dy denote non empty sets, p, q, r,
s, t, u, v denote finite sequences, and P, @, R denote finite sequence-membered
sets.

Let us consider P. We say that P is antichain-like if and only if

(Def. 16) for every p and ¢ such that p, p ~ ¢ € P holds ¢ = 0.

Now we state the propositions:

(40) P is antichain-like if and only if for every p and ¢ such that p, p~q € P
holds p=p " q.
Proor: If P is antichain-like, then for every p and ¢ such that p, p~q € P
holds p=p "¢ by [4 (34)]. O

(41) If P C @ and @ is antichain-like, then P is antichain-like.

Note that every finite sequence-membered set which is trivial is also antichain-
like.

Now we state the proposition:

(42) 1If P = {a}, then P is antichain-like.

Note that there exists a non empty, finite sequence-membered set which is
antichain-like and every finite sequence-membered set which is empty is also
antichain-like.

An antichain is an antichain-like, finite sequence-membered set. In the sequel
B, C' denote antichains.

Let us consider B. One can verify that every subset of B is antichain-like
and finite sequence-membered.

A Polish-language is a non empty antichain. From now on S, T denote
Polish-languages.

Let D be a non empty set and ¥ be a subset of D*. Note that v is antichain-
like if and only if the condition (Def. 17) is satisfied.

(Def. 17) for every finite sequence g of elements of D and for every finite sequence
h of elements of D such that g, g~ h € ¥ holds h = ep.
Now we state the proposition:
(43) If p~gq=r"sand p, r € B, then p = r and ¢ = s. The theorem is a
consequence of (1) and (40).
Let us consider B and C. Note that B ~ C is antichain-like.
Now we state the propositions:

(44) If for every p and ¢ such that p, ¢ € P holds domp = dom ¢, then P is
antichain-like.
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PRrROOF: For every p and ¢ such that p, p ~ ¢ € P holds p = p ™~ ¢ by [4,
(21)]. O
(45) If for every p such that p € P holds domp = a, then P is antichain-like.
The theorem is a consequence of (44).
(46) If 0 € B, then B = {0}.
PROOF: For every a such that a € B holds a = 0 by [4, (34)]. O
Let us consider B and n. Note that B ™ n is antichain-like.
Let us consider T'. Let us observe that there exists a subset of T which is
non empty and antichain-like and 7" ™ n is non empty.
A Polish-language of T' is a non empty, antichain-like subset of 7.
A Polish arity-function of T is a function from 7T into N and is defined by
(Def. 18) there exists a such that a € T" and it(a) = 0.
One can verify that every Polish-language of T' is non empty, antichain-like,
and finite sequence-membered.
In the sequel « denotes a Polish arity-function of T" and U, V', W denote
Polish-languages of T
Let us consider T' and «. Let ¢t be an element of T'. Let us observe that the
functor a(t) yields a natural number. Let us consider U. Note that the Polish-
expression layer(7T, «, U) is defined by
(Def. 19) for every a, a € it iff there exists an element ¢ of T and there exists
an element u of T* such that a =t~ w and u € U ™ a(t).
Let us consider B and p. We say that p is B-headed if and only if
(Def. 20) there exists ¢ and there exists r such that g € Band p=¢q " r.
Let us consider P. We say that P is B-headed if and only if
(Def. 21) for every p such that p € P holds p is B-headed.
Now we state the propositions:
(47) If p is B-headed and B C C, then p is C-headed.
(48) If P is B-headed and B C C, then P is C-headed.
Let us consider B and P. Observe that B~ P is B-headed.
Now we state the propositions:
(49) If pis (B~ C)-headed, then p is B-headed.
(50) B is B-headed. The theorem is a consequence of (3).
Let us consider B. Let us observe that there exists a finite sequence-membered
set which is B-headed.
Let P be a B-headed, finite sequence-membered set. Let us note that every
subset of P is B-headed.
Let us consider S. Let us observe that there exists a finite sequence-membered
set which is non empty and S-headed.
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Now we state the proposition:
(51) S~ (m+mn)is (S m)-headed. The theorem is a consequence of (10).

Let us consider S and p. The functor S-head(p) yielding a finite sequence is
defined by

(Def. 22) (i) it € S and there exists r such that p = it ~r, if p is S-headed,
(ii) it = 0, otherwise.
The functor S-tail(p) yielding a finite sequence is defined by
(Def. 23) p = (S-head(p)) " it.
Now we state the propositions:
(52) If s € S, then S-head(s "~ t) = s and S-tail(s " t) = t¢.
(563) If s € S, then S-head(s) = s and S-tail(s) = 0. The theorem is a
consequence of (52).
Let us consider .S, T', and u. Now we state the propositions:

(54) If w € S™ T, then S-head(u) € S and S-tail(u) € T. The theorem is a
consequence of (52).
(55) If S C T and u is S-headed, then S-head(u) = T-head(u) and S-tail(u) =
T-tail(u). The theorem is a consequence of (52).
Now we state the propositions:
(56) Suppose s is S-headed. Then

(i) s~ tis S-headed, and

(ii) S-head(s ™ t) = S-head(s), and
(iii) S-tail(s ~t) = (S-tail(s)) " t.
The theorem is a consequence of (52).

(57) Ifm+1<mnandseS n,then sis (S~ m)-headed and S m-tail(s)
is S-headed. The theorem is a consequence of (51), (10), (54), and (7).
(58) (i) sis (S~ 0)-headed, and
(ii) S 0-head(s) =0, and
(iii) S 7 O-tail(s) = s.
The theorem is a consequence of (4) and (52).
Let us consider T" and «. One can verify that the Polish atoms(7’, «) is non
empty and antichain-like.
Let us consider U. Let us observe that the Polish-expression layer(T, «, U)
is non empty and antichain-like.
One can verify that the Polish-expression layer(7T', «, U) yields a Polish-
language of T'. The Polish operations(7’, ) yielding a subset of T' is defined by
the term
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(Def. 24) {t, where t is an element of T : «(t) # 0}.
Let us consider n. Let us note that the Polish-expression hierarchy (7, «, n)
is antichain-like and non empty.
One can check that the Polish-expression hierarchy (T, a, n) yields a Polish-
language of T'. The functor Polish-WFF-set (7', ) yielding a Polish-language of
T is defined by the term
(Def. 25) the Polish-expression set(T, «).

A Polish WFF of T and « is an element of Polish-WFF-set(T, «). Let t
be an element of 7. The Polish operation(7, «, t) yielding a function from
Polish-WFF-set (T, o) ~ a(t) into Polish-WFF-set (T, «) is defined by the term

(Def. 26) the Polish operation(7’, a, a(t), t).

Assume «(t) = 1. The functor Polish-unOp(7T, «, t) yielding a unary opera-

tion on Polish-WFF-set(T, «) is defined by the term
(Def. 27) the Polish operation(T', «, t).
Assume «a(t) = 2. The functor Polish-binOp(T, «, t) yielding a binary ope-
ration on Polish-WFF-set(T, «) is defined by
(Def. 28) for every u and v such that u, v € Polish-WFF-set (T, &) holds it(u,v) =
(the Polish operation(T’, «, t))(u " v).
In the sequel ¢, ¥ denote Polish WFFs of T" and «.

Let us consider X and Y. Let F be a partial function from X to 2. We say
that F' is exhaustive if and only if

(Def. 29) for every a such that a € Y there exists b such that b € dom F' and
a € F(b).
Let X be a non empty set. Observe that there exists a finite sequence of
elements of 2% which is non exhaustive and disjoint valued.
Now we state the proposition:

(59) Let us consider a partial function F' from X to 2¥. Then F is not exhau-

stive if and only if there exists a such that a € Y and for every b such that
b € dom F holds a ¢ F(b).

Let us consider T'. Let B be a non exhaustive, disjoint valued finite sequence
of elements of 2. The Polish arity from list B yielding a Polish arity-function
of T is defined by the term

(Def. 30) the arity from list B.

One can check that there exists an antichain-like, finite sequence-membered
set which has non empty elements and there exists a Polish-language which is
non trivial and every antichain-like, finite sequence-membered set which is non
trivial has also non empty elements.
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Let us consider S, n, and m. Let p be an element of S ™ (n+ 1+ m). The
functor decomp(S, n, m, p) yielding an element of S is defined by the term

(Def. 31) S-head(S ~ n-tail(p)).
Let p be an element of S ™ n. The functor decomp(S, n,p) yielding a finite
sequence of elements of S is defined by
(Def. 32) dom it = Segn and for every m such that m € Segn there exists k such
that m = k 4+ 1 and it(m) = S-head(S ~ k-tail(p)).
Now we state the propositions:

(60) Let us consider an element s of S ~ n, and an element ¢ of T ™ n. If
S C T and s = t, then decomp(S, n, s) = decomp(T, n,t).
PROOF: Set p = decomp(S, n, s). Set ¢ = decomp(7T', n, t). For every a such
that a € Segn holds p(a) = q(a) by (17), [4, (1)], (57), (55). O

(61) Let us consider an element ¢ of S~ 0. Then decomp(S,0, q) = 0.
(62) Let us consider an element ¢ of S ™ n. Then len decomp(S, n, q) = n.

(63) Let us consider an element g of S~ 1. Then decomp(S,1,q) = (¢). The
theorem is a consequence of (7), (58), (53), and (62).

(64) Let us consider elements p, ¢ of S, and an element r of S ™ 2. Suppose
r =p " q. Then decomp(S,2,7) = (p, q). The theorem is a consequence of
(58), (52), (7), (53), and (62).

(65) Polish-WFF-set(T, ) is T-headed. The theorem is a consequence of (28),
(23), and (21).

(66) The Polish-expression hierarchy(T, «, n) is T-headed. The theorem is a
consequence of (26) and (65).

Let us consider T', ar, and ¢. The functor Polish-WFF-head ¢ yielding an ele-
ment of T is defined by the term

(Def. 33) T-head(y).

Let us consider n. Let ¢ be an element of the Polish-expression hierarchy(7T',
a, n). The functor Polish-WFF-head ¢ yielding an element of T is defined by
the term

(Def. 34) T-head(yp).

Let us consider ¢. The Polish arity ¢ yielding a natural number is defined
by the term

(Def. 35) «(Polish-WFF-head ¢).

Let us consider n. Let ¢ be an element of the Polish-expression hierarchy (7,
a, n). The Polish arity ¢ yielding a natural number is defined by the term

(Def. 36) «(Polish-WFF-head ¢).

Now we state the propositions:
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(67) T-tail(p) € Polish-WFF-set(T, &) ~ (the Polish arity ¢). The theorem is
a consequence of (32) and (52).

(68) Let us consider an element ¢ of the Polish-expression hierarchy(T, «,
n + 1). Then T-tail(¢) € (the Polish-expression hierarchy (7, «, n)) ™
(the Polish arity ¢). The theorem is a consequence of (23) and (52).

Let us consider T', «, and . The functor (7', «)-tail ¢ yielding an element
of Polish-WFF-set(T, ) ™ (the Polish arity ¢) is defined by the term

(Def. 37) T-tail(y).
Now we state the proposition:

(69) If T-head(y) € the Polish atoms(7’, «), then ¢ = T-head(y). The the-
orem is a consequence of (67) and (6).

Let us consider T', a, and n. Let ¢ be an element of the Polish-expression
hierarchy (7', o, n+1). The functor (T, «) -tail ¢ yielding an element of (the Polish-
expression hierarchy(T', a,, n)) — (the Polish arity ) is defined by the term

(Def. 38) T-tail(y).

Let us consider . The functor Polish-WFF-args ¢ yielding a finite sequence
of elements of Polish-WFF-set (T, ) is defined by the term

(Def. 39) decomp(Polish-WFF-set(T, «), the Polish arity ¢, (T, ) -tail ).

Let us consider n. Let ¢ be an element of the Polish-expression hierarchy(7T',
a, n+1). The functor Polish-WFF-args ¢ yielding a finite sequence of elements
of the Polish-expression hierarchy (7', «, n) is defined by the term

(Def. 40) decomp(the Polish-expression hierarchy(T', a, n), the Polish arity ¢,
(T, o) -tail ).
Now we state the propositions:

(70) Let us consider an element ¢ of T', and u.
Suppose u € Polish-WFF-set(T, o) ™ a(t).
Then T-tail((the Polish operation(7’, «, t))(u)) = u. The theorem is a
consequence of (52).

(71) Suppose ¢ € the Polish-expression hierarchy (7', o, n + 1).

Then rng Polish-WFF-args ¢ C the Polish-expression hierarchy (7', a, n).
The theorem is a consequence of (60) and (26).

(72) Let us consider a finite sequence p, a function f from Y into D, and
a function g from Z into D. Suppose rngp C Y and rngp C Z and for
every a such that a € rngp holds f(a) = g(a). Then f-p=g-p.

PROOF: Reconsider p; = p as a finite sequence of elements of Y. Reconsider
q = f - p1 as a finite sequence. Reconsider ps = p as a finite sequence of

elements of Z. Reconsider r = g-ps as a finite sequence. ¢ = r by [0}, (33)],
4 (D], [7, (13), (3)]. O
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Let us consider T, a, and D. The Polish recursion-domain(«, D) yielding
a subset of T' x D* is defined by the term

(Def. 41) {{(t, p), where ¢ is an element of T', p is a finite sequence of elements of
D :lenp = «(t)}.

A Polish recursion-function of o and D is a function from the Polish recursion-
domain(a, D) into D. From now on f denotes a Polish recursion-function of «
and D and v, 71, 72 denote functions from Polish-WFF-set(T, «) into D.

Let us consider T, o, D, f, and . We say that v is f-recursive if and only if

(Def. 42) for every ¢, v(¢) = f((T-head(y), v - Polish-WFF-args ¢)).
Now we state the proposition:

(73) If v1 is f-recursive and v is f-recursive, then y; = 75. The theorem is a
consequence of (36), (17), (33), (52), (60), (72), and (37).

From now on L denotes a non trivial Polish-language, 5 denotes a Polish
arity-function of L, g denotes a Polish recursion-function of 5 and D, J, J;
denote subsets of Polish-WFF-set(L, 3), H denotes a function from J into D,
H; denotes a function from J; into D.

Let us consider L, 8, D, g, J, and H. We say that H is g-recursive if and
only if

(Def. 43) for every Polish WFF ¢ of L and 3 such that ¢ € J and rng
Polish-WFF-args ¢ C J holds
H(p) = g({L-head(y), H - Polish-WFF-args ¢)).
Now we state the propositions:

(74) There exists J and there exists H such that J = the Polish-expression
hierarchy(L, 8, n) and H is g-recursive.
PROOF: Define X [natural number| = there exists J and there exists H such
that J = the Polish-expression hierarchy(L, 3, $1) and H is g-recursive.
For every n, X[n| from [2, Sch. 2]. O

(75) There exists a function 7 from Polish-WFF-set(L, 3) into D such that ~y
is g-recursive.
PROOF: Set W = Polish-WFF-set(L, 3). Define X[object, object] = there
exists n and there exists J; and there exists H; such that J; = the Polish-
expression hierarchy(L, 3, n) and H; is g-recursive and $; € J; and $2 =
H;($1). For every a such that a € W there exists b such that b € D and
X[a,b] by (28), (74), [8, (5)]. Consider v being a function from W into D
such that for every a such that a € W holds Xa,~(a)] from [8, Sch. 1]. O

(76) Let us consider an element ¢ of L. Then the Polish operation(L, (3, t) is
one-to-one.
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PROOF: Set f = the Polish operation(L, (3, t). For every a and b such that
a, b e dom f and f(a) = f(b) holds a = b by [4, (33)]. O

(77) Let us consider elements ¢, u of L. Suppose rng(the Polish operation(L,
B, t)) meets rng(the Polish operation(L, 3, w)). Then ¢t = u. The theorem
is a consequence of (43).

(78) Let us consider an element ¢ of L, and a. Suppose a € dom(the Polish
operation(L, 3, t)). Then there exists p such that
(i) p = (the Polish operation(L, 3, t))(a), and
(ii) L-head(p) =
The theorem is a consequence of (52).

Let us consider L, §, an element ¢ of L, and a Polish WFF ¢ of L and (.
Now we state the proposition:

(79) Polish-WFF-head¢ = t if and only if there exists an element u of
Polish-WFF-set(L, 3) ~ ((t) such that ¢ = (the Polish operation(L, 3,
t))(u). The theorem is a consequence of (52).

Let us assume that (t) = 1. Now we state the propositions:
(80) If Polish-WFF-head ¢ = t, then there exists a Polish WFF 1 of L and
B such that ¢ = (Polish-unOp(L, 3,t))(¢). The theorem is a consequence
of (79) and (7).
(81) (i) Polish-WFF-head((Polish-unOp(L, 3,t))(y)) =t,
(ii) Polish-WFF-args((Polish-unOp(L, 3,t))(¢)) = ().
The theorem is a consequence of (7), (79), (70), and (63

and

)-

Now we state the proposition:

(82) Suppose [(t) = 2. Then suppose Polish-WFF-head ¢ = ¢. Then there
exist Polish WFFs ¢, H of L and (3 such that ¢ = (Polish-binOp(L, 3,t))
(1, H). The theorem is a consequence of (79), (6), and (7).

Now we state the propositions:
(83) Let us consider an element ¢ of L. Suppose 3(t) = 2. Let us consider
Polish WFFs ¢, ¥ of L and 8. Then
(i) Polish-WFF-head(Polish-binOp(L, 3,t))(¢, %) = t, and
(ii) Polish-WFF-args(Polish-binOp(L, 3,t)) (¢, %) = (p, ).
The theorem is a consequence of (7), (11), (79), (64), and (70).

(84) Let us consider a Polish WFF ¢ of L and 5. Then ¢ € the Polish
atoms(L, () if and only if the Polish arity ¢ = 0. The theorem is a conse-
quence of (53), (67), and (6).
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(85) Let us consider a function 7 from Polish-WFF-set(L, 3) into D, an ele-
ment ¢t of L, and a Polish WFF ¢ of L and 3. Suppose v is g-recursive and
B(t) = 1. Then ~((Polish-unOp(L, 3,t))(¢)) = g(t, (7(¢))). The theorem
is a consequence of (81).

Let us consider S. Let p be a finite sequence of elements of S. The functor

Flat(p) yielding an element of S ™ lenp is defined by
(Def. 44) decomp(S,lenp,it) = p.

Let us consider L and (5.

A substitution of L and [ is a partial function from the Polish atoms(L,
B) to Polish-WFF-set(L, 3). Let s be a substitution of L and . The functor
Subst s yielding a Polish recursion-function of 3 and Polish-WFF-set(L, 3) is
defined by

(Def. 45) for every element ¢ of L and for every finite sequence p of elements
of Polish-WFF-set(L, 3) such that lenp = (3(¢) holds if ¢ € dom s, then
it(t,p) = s(t) and if ¢t ¢ dom s, then it(t,p) =t~ Flat(p).

Let ¢ be a Polish WFF of L and 3. The functor s[y| yielding a Polish WFF
of L and ( is defined by

(Def. 46) there exists a function H from Polish-WFF-set(L, 3) into
Polish-WFF-set(L, 3) such that H is (Subst s)-recursive and it = H(y).

Now we state the proposition:

(86) Let us consider a substitution s of L and /3, and a Polish WFF ¢ of L
and 3. If s = (), then s[¢] = ¢.
PROOF: Set W = Polish-WFF-set(L, 3). Set g = Subst s. Set v = idy. v
is g-recursive by (62), [6, (32), (33)], [7, (3), (17), (13)]. O
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