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Summary. This article is the first in a series formalizing some results in
my joint work with Prof. Joanna Golińska-Pilarek ([12] and [13]) concerning a
logic proposed by Prof. Andrzej Grzegorczyk ([14]).

We present some mathematical folklore about representing formulas in “Po-
lish notation”, that is, with operators of fixed arity prepended to their arguments.
This notation, which was published by Jan Łukasiewicz in [15], eliminates the
need for parentheses and is generally well suited for rigorous reasoning about
syntactic properties of formulas.
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The notation and terminology used in this paper have been introduced in the
following articles: [5], [1], [4], [11], [7], [8], [3], [9], [16], [19], [17], [18], and [10].

1. Preliminaries

From now on k, m, n denote natural numbers, a, b, c, c1, c2 denote objects,
x, y, z, X, Y, Z denote sets, D denotes a non empty set, p, q, r, s, t, u, v
denote finite sequences, P , Q, R, P1, P2, Q1, Q2, R1, R2 denote finite sequence-
membered sets, and S, T denote non empty, finite sequence-membered sets.

Let D be a non empty set and P , Q be subsets of D∗. The functor _(D,P,Q)
yielding a subset of D∗ is defined by the term
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(Def. 1) {pa q, where p is a finite sequence of elements of D, q is a finite sequence
of elements of D : p ∈ P and q ∈ Q}.

Let us consider P and Q. The functor P a Q yielding a finite sequence-
membered set is defined by

(Def. 2) for every a, a ∈ it iff there exists p and there exists q such that a = pa q

and p ∈ P and q ∈ Q.

Let β be an empty set. One can check that β a P is empty and P a β is
empty.

Let us consider S and T . One can check that S a T is non empty.
Now we state the propositions:

(1) If p a q = r a s, then there exists t such that p a t = r or p = r a t.

(2) (P a Q) a R = P a (Q a R).
Proof: For every a, a ∈ (P a Q) a R iff a ∈ P a (Q a R) by [4, (32)]. �

Note that {∅} is non empty and finite sequence-membered.

(3) (i) P a {∅} = P , and

(ii) {∅} a P = P .
Proof: For every a, a ∈ P a {∅} iff a ∈ P by [4, (34)]. For every a,
a ∈ {∅} a P iff a ∈ P by [4, (34)]. �

Let us consider P . The functor P __ yielding a function is defined by

(Def. 3) dom it = N and it(0) = {∅} and for every n, there exists Q such that
Q = it(n) and it(n+ 1) = Q a P .

Let us consider n. The functor P _ n yielding a finite sequence-membered
set is defined by the term

(Def. 4) (P __)(n).

Now we state the proposition:

(4) ∅ ∈ P _ 0.

Let us consider P . Let n be a zero natural number. Note that P _ n is non
empty.

Let β be an empty set and n be a non zero natural number. One can verify
that β _ n is empty.

Let us consider P . The functor P ∗ yielding a non empty, finite sequence-
membered set is defined by the term

(Def. 5)
⋃

the set of all P _ n where n is a natural number.

(5) a ∈ P ∗ if and only if there exists n such that a ∈ P _ n.

Let us consider P .

(6) (i) P _ 0 = {∅}, and

(ii) for every n, P _ (n+ 1) = (P _ n) a P .
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(7) P _ 1 = P . The theorem is a consequence of (6) and (3).

(8) P _ n ⊆ P ∗.
(9) (i) ∅ ∈ P ∗, and

(ii) P ⊆ P ∗.
The theorem is a consequence of (4), (5), and (7).

(10) P _ (m+ n) = (P _ m) a (P _ n).
Proof: Define X [natural number] ≡ P _ (m+ $1) = (P _m) a (P _ $1).
X [0]. For every k such that X [k] holds X [k + 1]. For every k, X [k] from
[2, Sch. 2]. �

(11) If p ∈ P _ m and q ∈ P _ n, then p a q ∈ P _ (m+ n). The theorem is
a consequence of (10).

(12) If p, q ∈ P ∗, then p a q ∈ P ∗. The theorem is a consequence of (5) and
(11).

(13) If P ⊆ R∗ and Q ⊆ R∗, then P aQ ⊆ R∗. The theorem is a consequence
of (12).

(14) If Q ⊆ P ∗, then Q_ n ⊆ P ∗.
Proof: Define X [natural number] ≡ Q_ $1 ⊆ P ∗. X [0]. For every k such
that X [k] holds X [k + 1]. For every k, X [k] from [2, Sch. 2]. �

(15) If Q ⊆ P ∗, then Q∗ ⊆ P ∗. The theorem is a consequence of (5) and (14).

(16) If P1 ⊆ P2 and Q1 ⊆ Q2, then P1
a Q1 ⊆ P2 a Q2.

(17) If P ⊆ Q, then for every n, P _ n ⊆ Q_ n.
Proof: Define S[natural number] ≡ P _ $1 ⊆ Q _ $1. P _ 0 = {∅}. For
every n such that S[n] holds S[n + 1]. For every n, S[n] from [2, Sch. 2].
�

Let us consider S and n. Let us observe that S _ n is non empty and finite
sequence-membered.

2. The Language

In the sequel α denotes a function from P into N and U , V , W denote subsets
of P ∗.

Let us consider P , α, and U . The Polish-expression layer(P , α, U) yielding
a subset of P ∗ is defined by

(Def. 6) for every a, a ∈ it iff a ∈ P ∗ and there exists p and there exists q and
there exists n such that a = pa q and p ∈ P and n = α(p) and q ∈ U _ n.

Now we state the proposition:

(18) Suppose p ∈ P and n = α(p) and q ∈ U_n. Then paq ∈ the Polish-expres-
sion layer(P , α, U). The theorem is a consequence of (14), (9), and (12).
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Let us consider P and α. The Polish atoms(P , α) yielding a subset of P ∗ is
defined by

(Def. 7) for every a, a ∈ it iff a ∈ P and α(a) = 0.

The Polish operations(P , α) yielding a subset of P is defined by the term

(Def. 8) {t, where t is an element of P ∗ : t ∈ P and α(t) 6= 0}.

Now we state the propositions:

(19) The Polish atoms(P , α) ⊆ the Polish-expression layer(P , α, U). The
theorem is a consequence of (4) and (18).

(20) Suppose U ⊆ V . Then the Polish-expression layer(P , α, U) ⊆ the Polish-
expression layer(P , α, V ). The theorem is a consequence of (17).

(21) Suppose u ∈ the Polish-expression layer(P , α, U). Then there exists p
and there exists q such that p ∈ P and u = p a q.

Let us consider P and α. The Polish-expression hierarchy(P , α) yielding
a function is defined by

(Def. 9) dom it = N and it(0) = the Polish atoms(P , α) and for every n, there
exists U such that U = it(n) and it(n + 1) = the Polish-expression
layer(P , α, U).

Let us consider n. The Polish-expression hierarchy(P , α, n) yielding a subset
of P ∗ is defined by the term

(Def. 10) (the Polish-expression hierarchy(P , α))(n).

Now we state the proposition:

(22) The Polish-expression hierarchy(P , α, 0) = the Polish atoms(P , α).

Let us consider P , α, and n. Now we state the propositions:

(23) The Polish-expression hierarchy(P , α, n + 1) = the Polish-expression
layer(P , α, the Polish-expression hierarchy(P , α, n)).

(24) The Polish-expression hierarchy(P , α, n) ⊆ the Polish-expression
hierarchy(P , α, n+ 1).
Proof: Define S[natural number] ≡ the Polish-expression hierarchy(P ,
α, $1) ⊆ the Polish-expression hierarchy(P , α, $1 + 1). S[0]. For every k

such that S[k] holds S[k + 1]. For every k, S[k] from [2, Sch. 2]. �

Now we state the proposition:

(25) The Polish-expression hierarchy(P , α, n) ⊆ the Polish-expression
hierarchy(P , α, n+m).
Proof: Define S[natural number] ≡ the Polish-expression hierarchy(P ,
α, n) ⊆ the Polish-expression hierarchy(P , α, n + $1). For every k such
that S[k] holds S[k + 1]. For every k, S[k] from [2, Sch. 2]. �
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Let us consider P and α. The Polish-expression set(P , α) yielding a subset
of P ∗ is defined by the term

(Def. 11)
⋃

the set of all the Polish-expression hierarchy(P , α, n) where n is
a natural number.

Now we state the propositions:

(26) The Polish-expression hierarchy(P , α, n) ⊆ the Polish-expression set(P ,
α).

(27) Suppose q ∈ (the Polish-expression set(P , α))_ n. Then there exists m
such that q ∈ (the Polish-expression hierarchy(P , α, m))_ n.
Proof: Define S[natural number] ≡ for every q such that q ∈ (the Polish-
expression set(P , α))_$1 there existsm such that q ∈ (the Polish-expression
hierarchy(P , α, m))_ $1. S[0]. For every k such that S[k] holds S[k + 1].
For every k, S[k] from [2, Sch. 2]. �

(28) Suppose a ∈ the Polish-expression set(P , α). Then there exists n such
that a ∈ the Polish-expression hierarchy(P , α, n + 1). The theorem is a
consequence of (24).

Let us consider P and α.
A Polish expression of P and α is an element of the Polish-expression set(P ,

α). Let us consider n and t. Assume t ∈ P . The Polish operation(P , α, n, t)
yielding a function from (the Polish-expression set(P , α))_ n into P ∗ is defined
by

(Def. 12) for every q such that q ∈ dom it holds it(q) = t a q.

Let us consider X and Y. Let F be a partial function from X to 2Y . One can
check that F is disjoint valued if and only if the condition (Def. 13) is satisfied.

(Def. 13) for every a and b such that a, b ∈ domF and a 6= b holds F (a) misses
F (b).

Let X be a set. One can check that there exists a finite sequence of elements
of 2X which is disjoint valued.

Now we state the proposition:

(29) Let us consider a set X, a disjoint valued finite sequence B of elements
of 2X , a, b, and c. If a ∈ B(b) and a ∈ B(c), then b = c and b ∈ domB.

Let us consider X. Let B be a disjoint valued finite sequence of elements of
2X . The arity from list B yielding a function from X into N is defined by

(Def. 14) for every a such that a ∈ X holds there exists n such that a ∈ B(n) and
a ∈ B(it(a)) or there exists no n such that a ∈ B(n) and it(a) = 0.

Now we state the propositions:

(30) Let us consider a disjoint valued finite sequence B of elements of 2X ,
and a. Suppose a ∈ X. Then (the arity from list B)(a) 6= 0 if and only if
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there exists n such that a ∈ B(n). The theorem is a consequence of (29).

(31) Let us consider a disjoint valued finite sequence B of elements of 2X ,
a, and n. Suppose a ∈ B(n). Then (the arity from list B)(a) = n. The
theorem is a consequence of (29).

(32) Suppose r ∈ the Polish-expression set(P , α). Then there exists n and
there exists p and there exists q such that p ∈ P and n = α(p) and
q ∈ (the Polish-expression set(P , α))_ n and r = p a q. The theorem is a
consequence of (28), (23), (26), and (17).

Let us consider P , α, and Q. We say that Q is α-closed if and only if

(Def. 15) for every p, n, and q such that p ∈ P and n = α(p) and q ∈ Q_ n holds
p a q ∈ Q.

Now we state the propositions:

(33) The Polish-expression set(P , α) is α-closed. The theorem is a consequ-
ence of (27), (18), (23), and (26).

(34) If Q is α-closed, then the Polish atoms(P , α) ⊆ Q. The theorem is a
consequence of (4).

(35) If Q is α-closed, then the Polish-expression hierarchy(P , α, n) ⊆ Q.
Proof: Define X [natural number] ≡ the Polish-expression hierarchy(P ,
α, $1) ⊆ Q. X [0]. For every k such that X [k] holds X [k + 1]. For every k,
X [k] from [2, Sch. 2]. �

(36) The Polish atoms(P , α) ⊆ the Polish-expression set(P , α). The theorem
is a consequence of (33) and (34).

(37) If Q is α-closed, then the Polish-expression set(P , α) ⊆ Q. The theorem
is a consequence of (28) and (35).

(38) Suppose r ∈ the Polish-expression set(P , α). Then there exists n and
there exists t and there exists q such that t ∈ P and n = α(t) and r =
(the Polish operation(P , α, n, t))(q). The theorem is a consequence of
(28), (23), (26), and (17).

(39) Suppose p ∈ P and n = α(p) and q ∈ (the Polish-expression set(P , α))_

n. Then (the Polish operation(P , α, n, p))(q) ∈ the Polish-expression
set(P , α). The theorem is a consequence of (33).

The scheme AInd deals with a finite sequence-membered set P and a function
α from P into N and a unary predicate X and states that

(Sch. 1) For every a such that a ∈ the Polish-expression set(P, α) holds X [a]

provided

• for every p, q, and n such that p ∈ P and n = α(p) and

q ∈ (the Polish-expression set(P, α))_ n holds X [p a q].
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3. Parsing

In the sequel k, l, m, n, i, j denote natural numbers, a, b, c, c1, c2 denote
objects, x, y, z, X, Y, Z denote sets, D, D1, D2 denote non empty sets, p, q, r,
s, t, u, v denote finite sequences, and P , Q, R denote finite sequence-membered
sets.

Let us consider P . We say that P is antichain-like if and only if

(Def. 16) for every p and q such that p, p a q ∈ P holds q = ∅.
Now we state the propositions:

(40) P is antichain-like if and only if for every p and q such that p, p a q ∈ P
holds p = p a q.
Proof: If P is antichain-like, then for every p and q such that p, pa q ∈ P
holds p = p a q by [4, (34)]. �

(41) If P ⊆ Q and Q is antichain-like, then P is antichain-like.

Note that every finite sequence-membered set which is trivial is also antichain-
like.

Now we state the proposition:

(42) If P = {a}, then P is antichain-like.

Note that there exists a non empty, finite sequence-membered set which is
antichain-like and every finite sequence-membered set which is empty is also
antichain-like.

An antichain is an antichain-like, finite sequence-membered set. In the sequel
B, C denote antichains.

Let us consider B. One can verify that every subset of B is antichain-like
and finite sequence-membered.

A Polish-language is a non empty antichain. From now on S, T denote
Polish-languages.

Let D be a non empty set and ψ be a subset of D∗. Note that ψ is antichain-
like if and only if the condition (Def. 17) is satisfied.

(Def. 17) for every finite sequence g of elements of D and for every finite sequence
h of elements of D such that g, g a h ∈ ψ holds h = εD.

Now we state the proposition:

(43) If p a q = r a s and p, r ∈ B, then p = r and q = s. The theorem is a
consequence of (1) and (40).

Let us consider B and C. Note that B a C is antichain-like.
Now we state the propositions:

(44) If for every p and q such that p, q ∈ P holds dom p = dom q, then P is
antichain-like.
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Proof: For every p and q such that p, p a q ∈ P holds p = p a q by [4,
(21)]. �

(45) If for every p such that p ∈ P holds dom p = a, then P is antichain-like.
The theorem is a consequence of (44).

(46) If ∅ ∈ B, then B = {∅}.
Proof: For every a such that a ∈ B holds a = ∅ by [4, (34)]. �

Let us consider B and n. Note that B _ n is antichain-like.
Let us consider T . Let us observe that there exists a subset of T ∗ which is

non empty and antichain-like and T _ n is non empty.
A Polish-language of T is a non empty, antichain-like subset of T ∗.
A Polish arity-function of T is a function from T into N and is defined by

(Def. 18) there exists a such that a ∈ T and it(a) = 0.

One can verify that every Polish-language of T is non empty, antichain-like,
and finite sequence-membered.

In the sequel α denotes a Polish arity-function of T and U , V , W denote
Polish-languages of T .

Let us consider T and α. Let t be an element of T . Let us observe that the
functor α(t) yields a natural number. Let us consider U . Note that the Polish-
expression layer(T , α, U) is defined by

(Def. 19) for every a, a ∈ it iff there exists an element t of T and there exists
an element u of T ∗ such that a = t a u and u ∈ U _ α(t).

Let us consider B and p. We say that p is B-headed if and only if

(Def. 20) there exists q and there exists r such that q ∈ B and p = q a r.

Let us consider P . We say that P is B-headed if and only if

(Def. 21) for every p such that p ∈ P holds p is B-headed.

Now we state the propositions:

(47) If p is B-headed and B ⊆ C, then p is C-headed.

(48) If P is B-headed and B ⊆ C, then P is C-headed.

Let us consider B and P . Observe that B a P is B-headed.
Now we state the propositions:

(49) If p is (B a C)-headed, then p is B-headed.

(50) B is B-headed. The theorem is a consequence of (3).

Let us considerB. Let us observe that there exists a finite sequence-membered
set which is B-headed.

Let P be a B-headed, finite sequence-membered set. Let us note that every
subset of P is B-headed.

Let us consider S. Let us observe that there exists a finite sequence-membered
set which is non empty and S-headed.
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Now we state the proposition:

(51) S _ (m+ n) is (S _ m)-headed. The theorem is a consequence of (10).

Let us consider S and p. The functor S-head(p) yielding a finite sequence is
defined by

(Def. 22) (i) it ∈ S and there exists r such that p = it a r, if p is S-headed,

(ii) it = ∅, otherwise.
The functor S-tail(p) yielding a finite sequence is defined by

(Def. 23) p = (S-head(p)) a it .
Now we state the propositions:

(52) If s ∈ S, then S-head(s a t) = s and S-tail(s a t) = t.

(53) If s ∈ S, then S-head(s) = s and S-tail(s) = ∅. The theorem is a
consequence of (52).

Let us consider S, T , and u. Now we state the propositions:

(54) If u ∈ S a T , then S-head(u) ∈ S and S-tail(u) ∈ T . The theorem is a
consequence of (52).

(55) If S ⊆ T and u is S-headed, then S-head(u) = T -head(u) and S-tail(u) =
T -tail(u). The theorem is a consequence of (52).

Now we state the propositions:

(56) Suppose s is S-headed. Then

(i) s a t is S-headed, and

(ii) S-head(s a t) = S-head(s), and

(iii) S-tail(s a t) = (S-tail(s)) a t.

The theorem is a consequence of (52).

(57) If m+ 1 ¬ n and s ∈ S _ n, then s is (S _m)-headed and S _m-tail(s)
is S-headed. The theorem is a consequence of (51), (10), (54), and (7).

(58) (i) s is (S _ 0)-headed, and

(ii) S _ 0-head(s) = ∅, and

(iii) S _ 0-tail(s) = s.
The theorem is a consequence of (4) and (52).

Let us consider T and α. One can verify that the Polish atoms(T , α) is non
empty and antichain-like.

Let us consider U . Let us observe that the Polish-expression layer(T , α, U)
is non empty and antichain-like.

One can verify that the Polish-expression layer(T , α, U) yields a Polish-
language of T . The Polish operations(T , α) yielding a subset of T is defined by
the term



170 taneli huuskonen

(Def. 24) {t, where t is an element of T : α(t) 6= 0}.

Let us consider n. Let us note that the Polish-expression hierarchy(T , α, n)
is antichain-like and non empty.

One can check that the Polish-expression hierarchy(T , α, n) yields a Polish-
language of T . The functor Polish-WFF-set(T, α) yielding a Polish-language of
T is defined by the term

(Def. 25) the Polish-expression set(T , α).

A Polish WFF of T and α is an element of Polish-WFF-set(T, α). Let t
be an element of T . The Polish operation(T , α, t) yielding a function from
Polish-WFF-set(T, α)_ α(t) into Polish-WFF-set(T, α) is defined by the term

(Def. 26) the Polish operation(T , α, α(t), t).

Assume α(t) = 1. The functor Polish-unOp(T, α, t) yielding a unary opera-
tion on Polish-WFF-set(T, α) is defined by the term

(Def. 27) the Polish operation(T , α, t).

Assume α(t) = 2. The functor Polish-binOp(T, α, t) yielding a binary ope-
ration on Polish-WFF-set(T, α) is defined by

(Def. 28) for every u and v such that u, v ∈ Polish-WFF-set(T, α) holds it(u, v) =
(the Polish operation(T , α, t))(u a v).

In the sequel ϕ, ψ denote Polish WFFs of T and α.
Let us consider X and Y. Let F be a partial function from X to 2Y . We say

that F is exhaustive if and only if

(Def. 29) for every a such that a ∈ Y there exists b such that b ∈ domF and
a ∈ F (b).

Let X be a non empty set. Observe that there exists a finite sequence of
elements of 2X which is non exhaustive and disjoint valued.

Now we state the proposition:

(59) Let us consider a partial function F from X to 2Y . Then F is not exhau-
stive if and only if there exists a such that a ∈ Y and for every b such that
b ∈ domF holds a /∈ F (b).

Let us consider T . Let B be a non exhaustive, disjoint valued finite sequence
of elements of 2T . The Polish arity from list B yielding a Polish arity-function
of T is defined by the term

(Def. 30) the arity from list B.

One can check that there exists an antichain-like, finite sequence-membered
set which has non empty elements and there exists a Polish-language which is
non trivial and every antichain-like, finite sequence-membered set which is non
trivial has also non empty elements.
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Let us consider S, n, and m. Let p be an element of S _ (n + 1 + m). The
functor decomp(S, n,m, p) yielding an element of S is defined by the term

(Def. 31) S-head(S _ n-tail(p)).

Let p be an element of S _ n. The functor decomp(S, n, p) yielding a finite
sequence of elements of S is defined by

(Def. 32) dom it = Seg n and for every m such that m ∈ Seg n there exists k such
that m = k + 1 and it(m) = S-head(S _ k-tail(p)).

Now we state the propositions:

(60) Let us consider an element s of S _ n, and an element t of T _ n. If
S ⊆ T and s = t, then decomp(S, n, s) = decomp(T, n, t).
Proof: Set p = decomp(S, n, s). Set q = decomp(T, n, t). For every a such
that a ∈ Seg n holds p(a) = q(a) by (17), [4, (1)], (57), (55). �

(61) Let us consider an element q of S _ 0. Then decomp(S, 0, q) = ∅.
(62) Let us consider an element q of S _ n. Then len decomp(S, n, q) = n.

(63) Let us consider an element q of S _ 1. Then decomp(S, 1, q) = 〈q〉. The
theorem is a consequence of (7), (58), (53), and (62).

(64) Let us consider elements p, q of S, and an element r of S _ 2. Suppose
r = p a q. Then decomp(S, 2, r) = 〈p, q〉. The theorem is a consequence of
(58), (52), (7), (53), and (62).

(65) Polish-WFF-set(T, α) is T -headed. The theorem is a consequence of (28),
(23), and (21).

(66) The Polish-expression hierarchy(T , α, n) is T -headed. The theorem is a
consequence of (26) and (65).

Let us consider T , α, and ϕ. The functor Polish-WFF-headϕ yielding an ele-
ment of T is defined by the term

(Def. 33) T -head(ϕ).

Let us consider n. Let ϕ be an element of the Polish-expression hierarchy(T ,
α, n). The functor Polish-WFF-headϕ yielding an element of T is defined by
the term

(Def. 34) T -head(ϕ).

Let us consider ϕ. The Polish arity ϕ yielding a natural number is defined
by the term

(Def. 35) α(Polish-WFF-headϕ).

Let us consider n. Let ϕ be an element of the Polish-expression hierarchy(T ,
α, n). The Polish arity ϕ yielding a natural number is defined by the term

(Def. 36) α(Polish-WFF-headϕ).

Now we state the propositions:
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(67) T -tail(ϕ) ∈ Polish-WFF-set(T, α)_ (the Polish arity ϕ). The theorem is
a consequence of (32) and (52).

(68) Let us consider an element ϕ of the Polish-expression hierarchy(T , α,
n + 1). Then T -tail(ϕ) ∈ (the Polish-expression hierarchy(T , α, n)) _

(the Polish arity ϕ). The theorem is a consequence of (23) and (52).

Let us consider T , α, and ϕ. The functor (T, α) -tailϕ yielding an element
of Polish-WFF-set(T, α)_ (the Polish arity ϕ) is defined by the term

(Def. 37) T -tail(ϕ).

Now we state the proposition:

(69) If T -head(ϕ) ∈ the Polish atoms(T , α), then ϕ = T -head(ϕ). The the-
orem is a consequence of (67) and (6).

Let us consider T , α, and n. Let ϕ be an element of the Polish-expression
hierarchy(T , α, n+1). The functor (T, α) -tailϕ yielding an element of (the Polish-
expression hierarchy(T , α, n))_ (the Polish arity ϕ) is defined by the term

(Def. 38) T -tail(ϕ).

Let us consider ϕ. The functor Polish-WFF-argsϕ yielding a finite sequence
of elements of Polish-WFF-set(T, α) is defined by the term

(Def. 39) decomp(Polish-WFF-set(T, α), the Polish arity ϕ, (T, α) -tailϕ).

Let us consider n. Let ϕ be an element of the Polish-expression hierarchy(T ,
α, n+ 1). The functor Polish-WFF-argsϕ yielding a finite sequence of elements
of the Polish-expression hierarchy(T , α, n) is defined by the term

(Def. 40) decomp(the Polish-expression hierarchy(T , α, n), the Polish arity ϕ,
(T, α) -tailϕ).

Now we state the propositions:

(70) Let us consider an element t of T , and u.
Suppose u ∈ Polish-WFF-set(T, α)_ α(t).
Then T -tail((the Polish operation(T , α, t))(u)) = u. The theorem is a
consequence of (52).

(71) Suppose ϕ ∈ the Polish-expression hierarchy(T , α, n+ 1).
Then rng Polish-WFF-argsϕ ⊆ the Polish-expression hierarchy(T , α, n).
The theorem is a consequence of (60) and (26).

(72) Let us consider a finite sequence p, a function f from Y into D, and
a function g from Z into D. Suppose rng p ⊆ Y and rng p ⊆ Z and for
every a such that a ∈ rng p holds f(a) = g(a). Then f · p = g · p.
Proof: Reconsider p1 = p as a finite sequence of elements of Y. Reconsider
q = f · p1 as a finite sequence. Reconsider p2 = p as a finite sequence of
elements of Z. Reconsider r = g ·p2 as a finite sequence. q = r by [6, (33)],
[4, (1)], [7, (13), (3)]. �
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Let us consider T , α, and D. The Polish recursion-domain(α, D) yielding
a subset of T ×D∗ is defined by the term

(Def. 41) {〈〈t, p〉〉, where t is an element of T , p is a finite sequence of elements of
D : len p = α(t)}.

A Polish recursion-function of α andD is a function from the Polish recursion-
domain(α, D) into D. From now on f denotes a Polish recursion-function of α
and D and γ, γ1, γ2 denote functions from Polish-WFF-set(T, α) into D.

Let us consider T , α, D, f , and γ. We say that γ is f -recursive if and only if

(Def. 42) for every ϕ, γ(ϕ) = f(〈〈T -head(ϕ), γ · Polish-WFF-argsϕ〉〉).
Now we state the proposition:

(73) If γ1 is f -recursive and γ2 is f -recursive, then γ1 = γ2. The theorem is a
consequence of (36), (17), (33), (52), (60), (72), and (37).

From now on L denotes a non trivial Polish-language, β denotes a Polish
arity-function of L, g denotes a Polish recursion-function of β and D, J , J1
denote subsets of Polish-WFF-set(L, β), H denotes a function from J into D,
H1 denotes a function from J1 into D.

Let us consider L, β, D, g, J , and H. We say that H is g-recursive if and
only if

(Def. 43) for every Polish WFF ϕ of L and β such that ϕ ∈ J and rng
Polish-WFF-argsϕ ⊆ J holds
H(ϕ) = g(〈〈L-head(ϕ), H · Polish-WFF-argsϕ〉〉).

Now we state the propositions:

(74) There exists J and there exists H such that J = the Polish-expression
hierarchy(L, β, n) and H is g-recursive.
Proof: Define X [natural number] ≡ there exists J and there existsH such
that J = the Polish-expression hierarchy(L, β, $1) and H is g-recursive.
For every n, X [n] from [2, Sch. 2]. �

(75) There exists a function γ from Polish-WFF-set(L, β) into D such that γ
is g-recursive.
Proof: Set W = Polish-WFF-set(L, β). Define X [object, object] ≡ there
exists n and there exists J1 and there exists H1 such that J1 = the Polish-
expression hierarchy(L, β, n) and H1 is g-recursive and $1 ∈ J1 and $2 =
H1($1). For every a such that a ∈ W there exists b such that b ∈ D and
X [a, b] by (28), (74), [8, (5)]. Consider γ being a function from W into D
such that for every a such that a ∈W holds X [a, γ(a)] from [8, Sch. 1]. �

(76) Let us consider an element t of L. Then the Polish operation(L, β, t) is
one-to-one.
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Proof: Set f = the Polish operation(L, β, t). For every a and b such that
a, b ∈ dom f and f(a) = f(b) holds a = b by [4, (33)]. �

(77) Let us consider elements t, u of L. Suppose rng(the Polish operation(L,
β, t)) meets rng(the Polish operation(L, β, u)). Then t = u. The theorem
is a consequence of (43).

(78) Let us consider an element t of L, and a. Suppose a ∈ dom(the Polish
operation(L, β, t)). Then there exists p such that

(i) p = (the Polish operation(L, β, t))(a), and

(ii) L-head(p) = t.

The theorem is a consequence of (52).

Let us consider L, β, an element t of L, and a Polish WFF ϕ of L and β.
Now we state the proposition:

(79) Polish-WFF-headϕ = t if and only if there exists an element u of
Polish-WFF-set(L, β) _ β(t) such that ϕ = (the Polish operation(L, β,
t))(u). The theorem is a consequence of (52).

Let us assume that β(t) = 1. Now we state the propositions:

(80) If Polish-WFF-headϕ = t, then there exists a Polish WFF ψ of L and
β such that ϕ = (Polish-unOp(L, β, t))(ψ). The theorem is a consequence
of (79) and (7).

(81) (i) Polish-WFF-head((Polish-unOp(L, β, t))(ϕ)) = t, and

(ii) Polish-WFF-args((Polish-unOp(L, β, t))(ϕ)) = 〈ϕ〉.
The theorem is a consequence of (7), (79), (70), and (63).

Now we state the proposition:

(82) Suppose β(t) = 2. Then suppose Polish-WFF-headϕ = t. Then there
exist Polish WFFs ψ, H of L and β such that ϕ = (Polish-binOp(L, β, t))
(ψ,H). The theorem is a consequence of (79), (6), and (7).

Now we state the propositions:

(83) Let us consider an element t of L. Suppose β(t) = 2. Let us consider
Polish WFFs ϕ, ψ of L and β. Then

(i) Polish-WFF-head(Polish-binOp(L, β, t))(ϕ,ψ) = t, and

(ii) Polish-WFF-args(Polish-binOp(L, β, t))(ϕ,ψ) = 〈ϕ,ψ〉.

The theorem is a consequence of (7), (11), (79), (64), and (70).

(84) Let us consider a Polish WFF ϕ of L and β. Then ϕ ∈ the Polish
atoms(L, β) if and only if the Polish arity ϕ = 0. The theorem is a conse-
quence of (53), (67), and (6).
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(85) Let us consider a function γ from Polish-WFF-set(L, β) into D, an ele-
ment t of L, and a Polish WFF ϕ of L and β. Suppose γ is g-recursive and
β(t) = 1. Then γ((Polish-unOp(L, β, t))(ϕ)) = g(t, 〈γ(ϕ)〉). The theorem
is a consequence of (81).

Let us consider S. Let p be a finite sequence of elements of S. The functor
Flat(p) yielding an element of S _ len p is defined by

(Def. 44) decomp(S, len p, it) = p.

Let us consider L and β.
A substitution of L and β is a partial function from the Polish atoms(L,

β) to Polish-WFF-set(L, β). Let s be a substitution of L and β. The functor
Subst s yielding a Polish recursion-function of β and Polish-WFF-set(L, β) is
defined by

(Def. 45) for every element t of L and for every finite sequence p of elements
of Polish-WFF-set(L, β) such that len p = β(t) holds if t ∈ dom s, then
it(t, p) = s(t) and if t /∈ dom s, then it(t, p) = t a Flat(p).

Let ϕ be a Polish WFF of L and β. The functor s[ϕ] yielding a Polish WFF
of L and β is defined by

(Def. 46) there exists a function H from Polish-WFF-set(L, β) into
Polish-WFF-set(L, β) such that H is (Subst s)-recursive and it = H(ϕ).

Now we state the proposition:

(86) Let us consider a substitution s of L and β, and a Polish WFF ϕ of L
and β. If s = ∅, then s[ϕ] = ϕ.
Proof: Set W = Polish-WFF-set(L, β). Set g = Subst s. Set γ = idW . γ
is g-recursive by (62), [6, (32), (33)], [7, (3), (17), (13)]. �
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