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Summary. In [11], the definitions of forward difference, backward diffe-
rence, and central difference as difference operations for functions on R were
formalized. However, the definitions of forward difference, backward difference,
and central difference for functions on vector spaces over F have not been formali-
zed. In cryptology, these definitions are very important in evaluating the security
of cryptographic systems [3], [10]. Differential cryptanalysis [4] that undertakes
a general purpose attack against block ciphers [13] can be formalized using the-
se definitions. In this article, we formalize the definitions of forward difference,
backward difference, and central difference for functions on vector spaces over F.
Moreover, we formalize some facts about these definitions.
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The notation and terminology used in this paper have been introduced in the
following articles: [12], [15], [5], [6], [16], [1], [2], [7], [19], [20], [17], [14], [18], [9],
[21], and [8].

From now on C denotes a non empty set, G1 denotes a field, V denotes a
vector space over G1, v, u denote elements of V , W denotes a subset of V , and
f , f1, f2, f3 denote partial functions from C to V .
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Let us consider C, G1, and V . Let f be a partial function from C to V and
r be an element of G1. The functor r · f yielding a partial function from C to
V is defined by

(Def. 1) dom it = dom f and for every element c of C such that c ∈ dom it holds
itc = r · fc.

Let f be a function from C into V . One can check that r · f is total.
Let us consider v and W . The functor v⊕W yielding a subset of V is defined

by the term

(Def. 2) {v + u : u ∈W}.

Let F , G be fields, V be a vector space over F , W be a vector space over G,
f be a partial function from V to W , and h be an element of V . The functor
Shift(f, h) yielding a partial function from V to W is defined by

(Def. 3) dom it = −h ⊕ dom f and for every element x of V such that x ∈
−h⊕ dom f holds it(x) = f(x+ h).

Now we state the proposition:

(1) Let us consider an element x of V and a subset A of V . If A = the carrier
of V , then x⊕A = A.
Proof: For every object y, y ∈ x⊕A iff y ∈ A by [17, (29), (15), (13)]. �

Let F , G be fields, V be a vector space over F , W be a vector space over G,
f be a function from V into W , and h be an element of V . One can verify that
the functor Shift(f, h) yields a function from V into W and is defined by

(Def. 4) for every element x of V , it(x) = f(x+ h).

Let f be a partial function from V to W . The functor ∆h[f ] yielding a partial
function from V to W is defined by the term

(Def. 5) Shift(f, h)− f .

Let f be a function from V into W . Observe that ∆h[f ] is quasi total.
Let f be a partial function from V to W . The functor∇h[f ] yielding a partial

function from V to W is defined by the term

(Def. 6) f − Shift(f,−h).

Let f be a function from V into W . Let us note that ∇h[f ] is quasi total.
Let f be a partial function from V to W . The functor δh[f ] yielding a partial

function from V to W is defined by the term

(Def. 7) Shift(f, (2 · 1F )−1 · h)− Shift(f,−(2 · 1F )−1 · h).

Let f be a function from V into W . One can check that δh[f ] is quasi total.
The forward difference of f and h yielding a sequence of partial functions

from the carrier of V into the carrier of W is defined by

(Def. 8) it(0) = f and for every natural number n, it(n+ 1) = ∆h[it(n)].
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We introduce ~∆h[f ] as a synonym of the forward difference of f and h.
From now on F , G denote fields, V denotes a vector space over F , W denotes

a vector space over G, f , f1, f2 denote functions from V into W , x, h denote
elements of V , and r, r1, r2 denote elements of G.

Now we state the propositions:

(2) Let us consider a partial function f from V to W . If x, x + h ∈ dom f ,
then (∆h[f ])x = fx+h − fx.

(3) Let us consider a natural number n. Then (~∆h[f ])(n) is a function from
V into W .
Proof: Define X [natural number] ≡ (~∆h[f ])($1) is a function from V into
W . For every natural number k such that X [k] holds X [k + 1]. For every
natural number n, X [n] from [1, Sch. 2]. �

(4) (∆h[f ])x = fx+h − fx. The theorem is a consequence of (2).

(5) (∇h[f ])x = fx − fx−h.
(6) (δh[f ])x = fx+(2·1F )−1·h − fx−(2·1F )−1·h.
From now on n, m, k denote natural numbers.
Now we state the propositions:

(7) If f is constant, then for every x, (~∆h[f ])(n+ 1)x = 0W .
Proof: For every x, fx+h−fx = 0W by [17, (15)]. For every x, (~∆h[f ])(n+
1)x = 0W by (3), (4), [17, (15)]. �

(8) (~∆h[r · f ])(n+ 1)x = r · (~∆h[f ])(n+ 1)x.
Proof: Define X [natural number] ≡ for every x, (~∆h[r · f ])($1 + 1)x =
r · (~∆h[f ])($1+ 1)x. For every k such that X [k] holds X [k+ 1] by (3), (4),
[9, (23)]. X [0] by (4), [9, (23)]. For every n, X [n] from [1, Sch. 2]. �

(9) (~∆h[f1 + f2])(n+ 1)x = (~∆h[f1])(n+ 1)x + (~∆h[f2])(n+ 1)x.
Proof: Define X [natural number] ≡ for every x, (~∆h[f1+ f2])($1+ 1)x =
(~∆h[f1])($1 + 1)x + (~∆h[f2])($1 + 1)x. For every k such that X [k] holds
X [k+ 1] by (3), (4), [17, (27), (28)]. X [0] by (4), [17, (27), (28)]. For every
n, X [n] from [1, Sch. 2]. �

(10) (~∆h[f1 − f2])(n+ 1)x = (~∆h[f1])(n+ 1)x − (~∆h[f2])(n+ 1)x.
Proof: Define X [natural number] ≡ for every x, (~∆h[f1− f2])($1+ 1)x =
(~∆h[f1])($1+1)x−(~∆h[f2])($1+1)x. X [0] by (4), [17, (29), (27)]. For every
k such that X [k] holds X [k + 1] by (3), (4), [17, (29)]. For every n, X [n]
from [1, Sch. 2]. �

(11) (~∆h[r1 ·f1+r2 ·f2])(n+1)x = r1 · (~∆h[f1])(n+1)x+r2 · (~∆h[f2])(n+1)x.
The theorem is a consequence of (3), (9), and (8).

(12) (~∆h[f ])(1)x = (Shift(f, h))x − fx. The theorem is a consequence of (4).
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Let F , G be fields, V be a vector space over F , h be an element of V , W
be a vector space over G, and f be a function from V into W . The backward
difference of f and h yielding a sequence of partial functions from the carrier of
V into the carrier of W is defined by

(Def. 9) it(0) = f and for every natural number n, it(n+ 1) = ∇h[it(n)].

The backward difference of f and h yielding a sequence of partial functions
from the carrier of V into the carrier of W is defined by

(Def. 10) it(0) = f and for every natural number n, it(n+ 1) = ∇h[it(n)].

We introduce ~∇h[f ] as a synonym of the backward difference of f and h.
Now we state the propositions:

(13) Let us consider a natural number n. Then (~∇h[f ])(n) is a function from
V into W .
Proof: Define X [natural number] ≡ (~∇h[f ])($1) is a function from V into
W . For every natural number k such that X [k] holds X [k + 1]. For every
natural number n, X [n] from [1, Sch. 2]. �

(14) If f is constant, then for every x, (~∇h[f ])(n+ 1)x = 0W .
Proof: For every x, fx−fx−h = 0W by [17, (15)]. For every x, (~∇h[f ])(n+
1)x = 0W by (13), (5), [17, (15)]. �

(15) (~∇h[r · f ])(n+ 1)x = r · (~∇h[f ])(n+ 1)x.
Proof: Define X [natural number] ≡ for every x, (~∇h[r · f ])($1 + 1)x =
r · (~∇h[f ])($1+1)x. For every k such that X [k] holds X [k+1] by (13), (5),
[9, (23)]. X [0] by (5), [9, (23)]. For every n, X [n] from [1, Sch. 2]. �

(16) (~∇h[f1 + f2])(n+ 1)x = (~∇h[f1])(n+ 1)x + (~∇h[f2])(n+ 1)x.
Proof: Define X [natural number] ≡ for every x, (~∇h[f1+ f2])($1+ 1)x =
(~∇h[f1])($1 + 1)x + (~∇h[f2])($1 + 1)x. For every k such that X [k] holds
X [k+1] by (13), (5), [17, (27), (28)]. X [0] by (5), [17, (27), (28)]. For every
n, X [n] from [1, Sch. 2]. �

(17) (~∇h[f1 − f2])(n+ 1)x = (~∇h[f1])(n+ 1)x − (~∇h[f2])(n+ 1)x.
Proof: Define X [natural number] ≡ for every x, (~∇h[f1− f2])($1+ 1)x =
(~∇h[f1])($1+1)x−(~∇h[f2])($1+1)x. X [0] by (5), [17, (29), (27)]. For every
k such that X [k] holds X [k + 1] by (13), (5), [17, (29), (27)]. For every n,
X [n] from [1, Sch. 2]. �

(18) (~∇h[r1 ·f1+r2 ·f2])(n+1)x = r1 · (~∇h[f1])(n+1)x+r2 · (~∇h[f2])(n+1)x.
The theorem is a consequence of (16) and (15).

(19) (~∇h[f ])(1)x = fx− (Shift(f,−h))x. The theorem is a consequence of (5).

Let F , G be fields, V be a vector space over F , h be an element of V , W be
a vector space over G, and f be a partial function from V to W . The central
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difference of f and h yielding a sequence of partial functions from the carrier of
V into the carrier of W is defined by

(Def. 11) it(0) = f and for every natural number n, it(n+ 1) = δh[it(n)].

We introduce ~δh[f ] as a synonym of the central difference of f and h.
Now we state the propositions:

(20) Let us consider a natural number n. Then (~δh[f ])(n) is a function from
V into W .
Proof: Define X [natural number] ≡ (~δh[f ])($1) is a function from V into
W . For every natural number k such that X [k] holds X [k + 1]. For every
natural number n, X [n] from [1, Sch. 2]. �

(21) If f is constant, then for every x, (~δh[f ])(n+ 1)x = 0W .
Proof: Define X [natural number] ≡ for every x, (~δh[f ])($1 + 1)x = 0W .
For every x, fx+(2·1F )−1·h−fx−(2·1F )−1·h = 0W by [17, (15)]. X [0]. For every
k such that X [k] holds X [k + 1] by (20), (6), [17, (13)]. For every n, X [n]
from [1, Sch. 2]. �

(22) (~δh[r · f ])(n+ 1)x = r · (~δh[f ])(n+ 1)x.
Proof: Define X [natural number] ≡ for every x, (~δh[r · f ])($1 + 1)x =
r · (~δh[f ])($1+ 1)x. For every k such that X [k] holds X [k+ 1] by (20), (6),
[9, (23)]. X [0] by (6), [9, (23)]. For every n, X [n] from [1, Sch. 2]. �

(23) (~δh[f1 + f2])(n+ 1)x = (~δh[f1])(n+ 1)x + (~δh[f2])(n+ 1)x.
Proof: Define X [natural number] ≡ for every x, (~δh[f1 + f2])($1 + 1)x =
(~δh[f1])($1+1)x+(~δh[f2])($1+1)x. For every k such that X [k] holds X [k+1]
by (20), (6), [17, (27), (28)]. X [0] by (6), [17, (27), (28)]. For every n, X [n]
from [1, Sch. 2]. �

(24) (~δh[f1 − f2])(n+ 1)x = (~δh[f1])(n+ 1)x − (~δh[f2])(n+ 1)x.
Proof: Define X [natural number] ≡ for every x, (~δh[f1 − f2])($1 + 1)x =
(~δh[f1])($1+ 1)x− (~δh[f2])($1+ 1)x. X [0] by (6), [17, (29), (27), (28)]. For
every k such that X [k] holds X [k + 1] by (20), (6), [17, (29), (27), (28)].
For every n, X [n] from [1, Sch. 2]. �

(25) (~δh[r1 · f1 + r2 · f2])(n+ 1)x = r1 · (~δh[f1])(n+ 1)x + r2 · (~δh[f2])(n+ 1)x.
The theorem is a consequence of (23) and (22).

(26) (~δh[f ])(1)x = (Shift(f, (2 · 1F )−1 · h))x − (Shift(f,−(2 · 1F )−1 · h))x. The
theorem is a consequence of (6).

(27) (~∆h[f ])(n)x = (~∇h[f ])(n)x+n·h.
Proof: Define X [natural number] ≡ for every x, (~∆h[f ])($1)x
= (~∇h[f ])($1)x+$1·h. For every k such that X [k] holds X [k+1] by (3), [15,
(13), (15)], [17, (4), (15), (28)]. X [0] by [17, (4)], [15, (12)]. For every n,
X [n] from [1, Sch. 2]. �
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Let us assume that 1F 6= −1F . Now we state the propositions:

(28) (~∆h[f ])(2 · n)x = (~δh[f ])(2 · n)x+n·h.
Proof: Define X [natural number] ≡ for every x, (~∆h[f ])(2·$1)x = (~δh[f ])(2·
$1)x+$1·h. For every k such that X [k] holds X [k + 1] by [15, (13), (15)],
[17, (27), (28), (15)]. X [0] by [17, (4)], [15, (12)]. For every n, X [n] from
[1, Sch. 2]. �

(29) (~∆h[f ])(2 · n+ 1)x = (~δh[f ])(2 · n+ 1)x+n·h+(2·1F )−1·h.

Proof: 2 · 1F 6= 0F by [15, (13), (15)]. (~δh[f ])(2 · n) is a function from V

into W . (~∆h[f ])(2 · n) is a function from V into W . �
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