Difference of Function on Vector Space over \mathbb{F}

Kenichi Arai
Tokyo University of Science
Chiba, Japan

Ken Wakabayashi
Shinshu University
Nagano, Japan

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Abstract

Summary. In [11, the definitions of forward difference, backward difference, and central difference as difference operations for functions on \mathbb{R} were formalized. However, the definitions of forward difference, backward difference, and central difference for functions on vector spaces over \mathbb{F} have not been formalized. In cryptology, these definitions are very important in evaluating the security of cryptographic systems [3, 10. Differential cryptanalysis [4] that undertakes a general purpose attack against block ciphers [13] can be formalized using these definitions. In this article, we formalize the definitions of forward difference, backward difference, and central difference for functions on vector spaces over \mathbb{F}. Moreover, we formalize some facts about these definitions.

MSC: 39A70 15A03 03B35
Keywords: Mizar formalization; difference of function on vector space over \mathbb{F}
MML identifier: VSDIFF_1, version: 8.1.03 5.25.1220

The notation and terminology used in this paper have been introduced in the following articles: [12], [15], 5], 6], [16], [1], 2], [7], [19], [20], [17], [14], [18], [9], [21], and [8.

From now on C denotes a non empty set, G_{1} denotes a field, V denotes a vector space over G_{1}, v, u denote elements of V, W denotes a subset of V, and f, f_{1}, f_{2}, f_{3} denote partial functions from C to V.

[^0]Let us consider C, G_{1}, and V. Let f be a partial function from C to V and r be an element of G_{1}. The functor $r \cdot f$ yielding a partial function from C to V is defined by
(Def. 1) $\quad \operatorname{dom} i t=\operatorname{dom} f$ and for every element c of C such that $c \in \operatorname{dom}$ it holds $i t_{c}=r \cdot f_{c}$.
Let f be a function from C into V. One can check that $r \cdot f$ is total.
Let us consider v and W. The functor $v \oplus W$ yielding a subset of V is defined by the term
(Def. 2) $\quad\{v+u: u \in W\}$.
Let F, G be fields, V be a vector space over F, W be a vector space over G, f be a partial function from V to W, and h be an element of V. The functor $\operatorname{Shift}(f, h)$ yielding a partial function from V to W is defined by
(Def. 3) $\quad \operatorname{dom} i t=-h \oplus \operatorname{dom} f$ and for every element x of V such that $x \in$ $-h \oplus \operatorname{dom} f$ holds $i t(x)=f(x+h)$.
Now we state the proposition:
(1) Let us consider an element x of V and a subset A of V. If $A=$ the carrier of V, then $x \oplus A=A$.
Proof: For every object $y, y \in x \oplus A$ iff $y \in A$ by [17, (29), (15), (13)].
Let F, G be fields, V be a vector space over F, W be a vector space over G, f be a function from V into W, and h be an element of V. One can verify that the functor $\operatorname{Shift}(f, h)$ yields a function from V into W and is defined by
(Def. 4) for every element x of $V, i t(x)=f(x+h)$.
Let f be a partial function from V to W. The functor $\Delta_{h}[f]$ yielding a partial function from V to W is defined by the term
(Def. 5) $\quad \operatorname{Shift}(f, h)-f$.
Let f be a function from V into W. Observe that $\Delta_{h}[f]$ is quasi total.
Let f be a partial function from V to W. The functor $\nabla_{h}[f]$ yielding a partial function from V to W is defined by the term
(Def. 6) $f-\operatorname{Shift}(f,-h)$.
Let f be a function from V into W. Let us note that $\nabla_{h}[f]$ is quasi total.
Let f be a partial function from V to W. The functor $\delta_{h}[f]$ yielding a partial function from V to W is defined by the term
(Def. 7) $\quad \operatorname{Shift}\left(f,\left(2 \cdot 1_{F}\right)^{-1} \cdot h\right)-\operatorname{Shift}\left(f,-\left(2 \cdot 1_{F}\right)^{-1} \cdot h\right)$.
Let f be a function from V into W. One can check that $\delta_{h}[f]$ is quasi total.
The forward difference of f and h yielding a sequence of partial functions from the carrier of V into the carrier of W is defined by
(Def. 8) $\quad i t(0)=f$ and for every natural number n, it $(n+1)=\Delta_{h}[i t(n)]$.

We introduce $\vec{\Delta}_{h}[f]$ as a synonym of the forward difference of f and h.
From now on F, G denote fields, V denotes a vector space over F, W denotes a vector space over G, f, f_{1}, f_{2} denote functions from V into W, x, h denote elements of V, and r, r_{1}, r_{2} denote elements of G.

Now we state the propositions:
(2) Let us consider a partial function f from V to W. If $x, x+h \in \operatorname{dom} f$, then $\left(\Delta_{h}[f]\right)_{x}=f_{x+h}-f_{x}$.
(3) Let us consider a natural number n. Then $\left(\vec{\Delta}_{h}[f]\right)(n)$ is a function from V into W.
Proof: Define \mathcal{X} [natural number $] \equiv\left(\vec{\Delta}_{h}[f]\right)\left(\$_{1}\right)$ is a function from V into W. For every natural number k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$. For every natural number $n, \mathcal{X}[n]$ from [1, Sch. 2].
(4) $\left(\Delta_{h}[f]\right)_{x}=f_{x+h}-f_{x}$. The theorem is a consequence of (2).
(5) $\left(\nabla_{h}[f]\right)_{x}=f_{x}-f_{x-h}$.
(6) $\quad\left(\delta_{h}[f]\right)_{x}=f_{x+\left(2 \cdot 1_{F}\right)^{-1} \cdot h}-f_{x-\left(2 \cdot 1_{F}\right)^{-1} \cdot h}$.

From now on n, m, k denote natural numbers.
Now we state the propositions:
(7) If f is constant, then for every $x,\left(\vec{\Delta}_{h}[f]\right)(n+1)_{x}=0_{W}$.

Proof: For every $x, f_{x+h}-f_{x}=0_{W}$ by [17, (15)]. For every $x,\left(\vec{\Delta}_{h}[f]\right)(n+$ $1)_{x}=0_{W}$ by (3), (4), [17, (15)].
(8) $\quad\left(\vec{\Delta}_{h}[r \cdot f]\right)(n+1)_{x}=r \cdot\left(\vec{\Delta}_{h}[f]\right)(n+1)_{x}$.

Proof: Define \mathcal{X} [natural number] \equiv for every $x,\left(\vec{\Delta}_{h}[r \cdot f]\right)\left(\$_{1}+1\right)_{x}=$ $r \cdot\left(\vec{\Delta}_{h}[f]\right)\left(\$_{1}+1\right)_{x}$. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$ by (3), (4), [9, (23)]. $\mathcal{X}[0]$ by (4), [9, (23)]. For every $n, \mathcal{X}[n]$ from [1, Sch. 2].
(9) $\left(\vec{\Delta}_{h}\left[f_{1}+f_{2}\right]\right)(n+1)_{x}=\left(\vec{\Delta}_{h}\left[f_{1}\right]\right)(n+1)_{x}+\left(\vec{\Delta}_{h}\left[f_{2}\right]\right)(n+1)_{x}$.
Proof: Define \mathcal{X} [natural number] \equiv for every $x,\left(\vec{\Delta}_{h}\left[f_{1}+f_{2}\right]\right)\left(\$_{1}+1\right)_{x}=$ $\left(\vec{\Delta}_{h}\left[f_{1}\right]\right)\left(\$_{1}+1\right)_{x}+\left(\vec{\Delta}_{h}\left[f_{2}\right]\right)\left(\$_{1}+1\right)_{x}$. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$ by (3), (4), [17, (27), (28)]. $\mathcal{X}[0]$ by (4), [17, (27), (28)]. For every $n, \mathcal{X}[n]$ from [1, Sch. 2].
(10) $\quad\left(\vec{\Delta}_{h}\left[f_{1}-f_{2}\right]\right)(n+1)_{x}=\left(\vec{\Delta}_{h}\left[f_{1}\right]\right)(n+1)_{x}-\left(\vec{\Delta}_{h}\left[f_{2}\right]\right)(n+1)_{x}$.

Proof: Define \mathcal{X} [natural number] \equiv for every $x,\left(\vec{\Delta}_{h}\left[f_{1}-f_{2}\right]\right)\left(\$_{1}+1\right)_{x}=$ $\left(\vec{\Delta}_{h}\left[f_{1}\right]\right)\left(\$_{1}+1\right)_{x}-\left(\vec{\Delta}_{h}\left[f_{2}\right]\right)\left(\$_{1}+1\right)_{x} . \mathcal{X}[0]$ by $(4),[17,(29),(27)]$. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$ by (3), (4), [17, (29)]. For every $n, \mathcal{X}[n]$ from [1, Sch. 2].
(11) $\left(\vec{\Delta}_{h}\left[r_{1} \cdot f_{1}+r_{2} \cdot f_{2}\right]\right)(n+1)_{x}=r_{1} \cdot\left(\vec{\Delta}_{h}\left[f_{1}\right]\right)(n+1)_{x}+r_{2} \cdot\left(\vec{\Delta}_{h}\left[f_{2}\right]\right)(n+1)_{x}$. The theorem is a consequence of (3), (9), and (8).
(12) $\left(\vec{\Delta}_{h}[f]\right)(1)_{x}=(\operatorname{Shift}(f, h))_{x}-f_{x}$. The theorem is a consequence of (4).

Let F, G be fields, V be a vector space over F, h be an element of V, W be a vector space over G, and f be a function from V into W. The backward difference of f and h yielding a sequence of partial functions from the carrier of V into the carrier of W is defined by
(Def. 9) $\quad i t(0)=f$ and for every natural number n, it $(n+1)=\nabla_{h}[i t(n)]$.
The backward difference of f and h yielding a sequence of partial functions from the carrier of V into the carrier of W is defined by
(Def. 10) $\quad i t(0)=f$ and for every natural number n, it $(n+1)=\nabla_{h}[i t(n)]$.
We introduce $\vec{\nabla}_{h}[f]$ as a synonym of the backward difference of f and h.
Now we state the propositions:
(13) Let us consider a natural number n. Then $\left(\vec{\nabla}_{h}[f]\right)(n)$ is a function from V into W.
Proof: Define \mathcal{X} [natural number] $\equiv\left(\vec{\nabla}_{h}[f]\right)\left(\$_{1}\right)$ is a function from V into W. For every natural number k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$. For every natural number $n, \mathcal{X}[n]$ from [1, Sch. 2].
(14) If f is constant, then for every $x,\left(\vec{\nabla}_{h}[f]\right)(n+1)_{x}=0_{W}$.

Proof: For every $x, f_{x}-f_{x-h}=0_{W}$ by [17, (15)]. For every $x,\left(\vec{\nabla}_{h}[f]\right)(n+$ $1)_{x}=0_{W}$ by (13), (5), [17, (15)].
$\left(\vec{\nabla}_{h}[r \cdot f]\right)(n+1)_{x}=r \cdot\left(\vec{\nabla}_{h}[f]\right)(n+1)_{x}$.
Proof: Define \mathcal{X} [natural number] \equiv for every $x,\left(\vec{\nabla}_{h}[r \cdot f]\right)\left(\$_{1}+1\right)_{x}=$ $r \cdot\left(\vec{\nabla}_{h}[f]\right)\left(\$_{1}+1\right)_{x}$. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$ by (13), (5), [9, (23)]. $\mathcal{X}[0]$ by (5), [9, (23)]. For every $n, \mathcal{X}[n]$ from [1, Sch. 2].

$$
\begin{equation*}
\left(\vec{\nabla}_{h}\left[f_{1}+f_{2}\right]\right)(n+1)_{x}=\left(\vec{\nabla}_{h}\left[f_{1}\right]\right)(n+1)_{x}+\left(\vec{\nabla}_{h}\left[f_{2}\right]\right)(n+1)_{x} \tag{16}
\end{equation*}
$$

Proof: Define \mathcal{X} [natural number] \equiv for every $x,\left(\vec{\nabla}_{h}\left[f_{1}+f_{2}\right]\right)\left(\$_{1}+1\right)_{x}=$ $\left(\vec{\nabla}_{h}\left[f_{1}\right]\right)\left(\$_{1}+1\right)_{x}+\left(\vec{\nabla}_{h}\left[f_{2}\right]\right)\left(\$_{1}+1\right)_{x}$. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$ by (13), (5), [17, (27), (28)]. $\mathcal{X}[0]$ by (5), [17, (27), (28)]. For every $n, \mathcal{X}[n]$ from [1, Sch. 2].
$\left(\vec{\nabla}_{h}\left[f_{1}-f_{2}\right]\right)(n+1)_{x}=\left(\vec{\nabla}_{h}\left[f_{1}\right]\right)(n+1)_{x}-\left(\vec{\nabla}_{h}\left[f_{2}\right]\right)(n+1)_{x}$.
Proof: Define \mathcal{X} [natural number] \equiv for every $x,\left(\vec{\nabla}_{h}\left[f_{1}-f_{2}\right]\right)\left(\$_{1}+1\right)_{x}=$ $\left(\vec{\nabla}_{h}\left[f_{1}\right]\right)\left(\$_{1}+1\right)_{x}-\left(\vec{\nabla}_{h}\left[f_{2}\right]\right)\left(\$_{1}+1\right)_{x} . \mathcal{X}[0]$ by (5), [17, (29), (27)]. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$ by (13), (5), [17, (29), (27)]. For every n, $\mathcal{X}[n]$ from [1, Sch. 2].

$$
\begin{equation*}
\left(\vec{\nabla}_{h}\left[r_{1} \cdot f_{1}+r_{2} \cdot f_{2}\right]\right)(n+1)_{x}=r_{1} \cdot\left(\vec{\nabla}_{h}\left[f_{1}\right]\right)(n+1)_{x}+r_{2} \cdot\left(\vec{\nabla}_{h}\left[f_{2}\right]\right)(n+1)_{x} \tag{18}
\end{equation*}
$$

The theorem is a consequence of (16) and (15).
(19) $\left(\vec{\nabla}_{h}[f]\right)(1)_{x}=f_{x}-(\operatorname{Shift}(f,-h))_{x}$. The theorem is a consequence of (5).

Let F, G be fields, V be a vector space over F, h be an element of V, W be a vector space over G, and f be a partial function from V to W. The central
difference of f and h yielding a sequence of partial functions from the carrier of V into the carrier of W is defined by
(Def. 11) $\quad i t(0)=f$ and for every natural number n, it $(n+1)=\delta_{h}[i t(n)]$.
We introduce $\vec{\delta}_{h}[f]$ as a synonym of the central difference of f and h.
Now we state the propositions:
(20) Let us consider a natural number n. Then $\left(\vec{\delta}_{h}[f]\right)(n)$ is a function from V into W.
Proof: Define \mathcal{X} [natural number] $\equiv\left(\vec{\delta}_{h}[f]\right)\left(\$_{1}\right)$ is a function from V into W. For every natural number k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$. For every natural number $n, \mathcal{X}[n]$ from [1, Sch. 2].
(21) If f is constant, then for every $x,\left(\vec{\delta}_{h}[f]\right)(n+1)_{x}=0_{W}$.

Proof: Define \mathcal{X} [natural number] \equiv for every $x,\left(\vec{\delta}_{h}[f]\right)\left(\$_{1}+1\right)_{x}=0_{W}$. For every $x, f_{x+\left(2 \cdot 1_{F}\right)^{-1} \cdot h}-f_{x-\left(2 \cdot 1_{F}\right)^{-1} \cdot h}=0_{W}$ by [17, (15)]. $\mathcal{X}[0]$. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$ by (20), (6), [17, (13)]. For every $n, \mathcal{X}[n]$ from [1, Sch. 2].
(22) $\quad\left(\vec{\delta}_{h}[r \cdot f]\right)(n+1)_{x}=r \cdot\left(\vec{\delta}_{h}[f]\right)(n+1)_{x}$.

Proof: Define \mathcal{X} [natural number] \equiv for every $x,\left(\vec{\delta}_{h}[r \cdot f]\right)\left(\$_{1}+1\right)_{x}=$ $r \cdot\left(\vec{\delta}_{h}[f]\right)\left(\$_{1}+1\right)_{x}$. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$ by $(20),(6)$, [9, (23)]. $\mathcal{X}[0]$ by (6), [9, (23)]. For every $n, \mathcal{X}[n]$ from [1, Sch. 2].
(23) $\left(\vec{\delta}_{h}\left[f_{1}+f_{2}\right]\right)(n+1)_{x}=\left(\vec{\delta}_{h}\left[f_{1}\right]\right)(n+1)_{x}+\left(\vec{\delta}_{h}\left[f_{2}\right]\right)(n+1)_{x}$.

Proof: Define \mathcal{X} [natural number] \equiv for every $x,\left(\vec{\delta}_{h}\left[f_{1}+f_{2}\right]\right)\left(\$_{1}+1\right)_{x}=$ $\left(\vec{\delta}_{h}\left[f_{1}\right]\right)\left(\$_{1}+1\right)_{x}+\left(\vec{\delta}_{h}\left[f_{2}\right]\right)\left(\$_{1}+1\right)_{x}$. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$ by (20), (6), [17, (27), (28)]. $\mathcal{X}[0]$ by (6), [17, (27), (28)]. For every $n, \mathcal{X}[n]$ from [1, Sch. 2].

$$
\left(\vec{\delta}_{h}\left[f_{1}-f_{2}\right]\right)(n+1)_{x}=\left(\vec{\delta}_{h}\left[f_{1}\right]\right)(n+1)_{x}-\left(\vec{\delta}_{h}\left[f_{2}\right]\right)(n+1)_{x}
$$

Proof: Define \mathcal{X} [natural number] \equiv for every $x,\left(\vec{\delta}_{h}\left[f_{1}-f_{2}\right]\right)\left(\$_{1}+1\right)_{x}=$ $\left(\vec{\delta}_{h}\left[f_{1}\right]\right)\left(\$_{1}+1\right)_{x}-\left(\vec{\delta}_{h}\left[f_{2}\right]\right)\left(\$_{1}+1\right)_{x} . \mathcal{X}[0]$ by (6), [17, (29), (27), (28)]. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$ by (20), (6), [17, (29), (27), (28)]. For every $n, \mathcal{X}[n]$ from [1, Sch. 2]. \square
(25) $\left(\vec{\delta}_{h}\left[r_{1} \cdot f_{1}+r_{2} \cdot f_{2}\right]\right)(n+1)_{x}=r_{1} \cdot\left(\vec{\delta}_{h}\left[f_{1}\right]\right)(n+1)_{x}+r_{2} \cdot\left(\vec{\delta}_{h}\left[f_{2}\right]\right)(n+1)_{x}$. The theorem is a consequence of (23) and (22).
(26) $\quad\left(\vec{\delta}_{h}[f]\right)(1)_{x}=\left(\operatorname{Shift}\left(f,\left(2 \cdot 1_{F}\right)^{-1} \cdot h\right)\right)_{x}-\left(\operatorname{Shift}\left(f,-\left(2 \cdot 1_{F}\right)^{-1} \cdot h\right)\right)_{x}$. The theorem is a consequence of (6).
(27) $\quad\left(\vec{\Delta}_{h}[f]\right)(n)_{x}=\left(\vec{\nabla}_{h}[f]\right)(n)_{x+n \cdot h}$.

Proof: Define \mathcal{X} [natural number] \equiv for every $x,\left(\vec{\Delta}_{h}[f]\right)\left(\$_{1}\right)_{x}$
$=\left(\vec{\nabla}_{h}[f]\right)\left(\$_{1}\right)_{x+\$_{1} \cdot h}$. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$ by $(3),[15$, (13), (15)], [17, (4), (15), (28)]. $\mathcal{X}[0]$ by [17, (4)], [15, (12)]. For every n, $\mathcal{X}[n]$ from [1, Sch. 2].

Let us assume that $1_{F} \neq-1_{F}$. Now we state the propositions:
$\left(\vec{\Delta}_{h}[f]\right)(2 \cdot n)_{x}=\left(\vec{\delta}_{h}[f]\right)(2 \cdot n)_{x+n \cdot h}$.
Proof: Define \mathcal{X} [natural number] \equiv for every $x,\left(\vec{\Delta}_{h}[f]\right)\left(2 \cdot \$_{1}\right)_{x}=\left(\vec{\delta}_{h}[f]\right)(2$. $\left.\$_{1}\right)_{x+\$_{1} \cdot h}$. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$ by [15, (13), (15)], [17, (27), (28), (15)]. $\mathcal{X}[0]$ by [17, (4)], [15, (12)]. For every $n, \mathcal{X}[n]$ from [1, Sch. 2].

$$
\begin{equation*}
\left(\vec{\Delta}_{h}[f]\right)(2 \cdot n+1)_{x}=\left(\vec{\delta}_{h}[f]\right)(2 \cdot n+1)_{x+n \cdot h+\left(2 \cdot 1_{F}\right)^{-1} \cdot h} \tag{29}
\end{equation*}
$$

Proof: $2 \cdot 1_{F} \neq 0_{F}$ by [15, (13), (15)]. $\left(\vec{\delta}_{h}[f]\right)(2 \cdot n)$ is a function from V into $W .\left(\vec{\Delta}_{h}[f]\right)(2 \cdot n)$ is a function from V into W.

Acknowledgement: We sincerely thank Professor Yasunari Shidama for his helpful advices.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers, Formalized Mathematics, 1(1):91-96, 1990.
[3] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems. Lecture Notes in Computer Science, 537:2-21, 1991.
[4] E. Biham and A. Shamir. Differential cryptanalysis of the full 16 -round DES. Lecture Notes in Computer Science, 740:487-496, 1993.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
[6] Czesław Byliński. Functions from a set to a set Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński. Partial functions, Formalized Mathematics, 1(2):357-367, 1990.
[8] Czesław Byliński. Some basic properties of sets Formalized Mathematics, 1(1):47-53, 1990.
[9] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[10] X. Lai. Higher order derivatives and differential cryptoanalysis. Communications and Cryptography, pages 227-233, 1994.
[11] Bo Li, Yan Zhang, and Xiquan Liang. Difference and difference quotient. Formalized Mathematics, 14(3):115-119, 2006. doi $10.2478 / \mathrm{v} 10037-006-0014-\mathrm{z}$
[12] Michał Muzalewski and Wojciech Skaba. From loops to Abelian multiplicative groups with zero Formalized Mathematics, 1(5):833-840, 1990.
[13] Hiroyuki Okazaki and Yasunari Shidama. Formalization of the data encryption standard. Formalized Mathematics, 20(2):125-146, 2012. doi $10.2478 / \mathrm{v} 10037-012-0016-\mathrm{y}$
[14] Beata Perkowska. Functional sequence from a domain to a domain Formalized Mathematics, 3(1):17-21, 1992.
[15] Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559-564, 2001.
[16] Wojciech A. Trybulec. Groups Formalized Mathematics, 1(5):821-827, 1990.
[17] Wojciech A. Trybulec. Vectors in real linear space Formalized Mathematics, 1(2):291-296, 1990.
[18] Zinaida Trybulec. Properties of subsets Formalized Mathematics, 1(1):67-71, 1990.
[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
[20] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[21] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions Formalized Mathematics, 3(2):171-175, 1992.

Received September 26, 2014

[^0]: ${ }^{1}$ This work was supported by JSPS KAKENHI Grant Number 26730067.

