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Lagrange’s Four-Square Theorem
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Summary. This article provides a formalized proof of the so-called “the
four-square theorem”, namely any natural number can be expressed by a sum of
four squares, which was proved by Lagrange in 1770. An informal proof of the
theorem can be found in the number theory literature, e.g. in [14], [1] or [23].

This theorem is item #19 from the “Formalizing 100 Theorems” list mainta-
ined by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/ .
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The notation and terminology used in this paper have been introduced in the
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[13], [24], [25], [22], and [11].

1. Preliminaries

Let n be a natural number. We say that n is a sum of four squares if and
only if

(Def. 1) There exist natural numbers n1, n2, n3, n4 such that n = n12 + n22 +
n3
2 + n42.

Note that there exists a natural number which is a sum of four squares.
Let y be an integer object. Let us note that |y| is natural.
Now we state the proposition:

(1) Let us consider natural numbers n1, n2, n3, n4, m1, m2, m3, m4. Then
(n12+n22+n32+n42) · (m12+m22+m32+m42) = (n1 ·m1−n2 ·m2−
n3 ·m3 − n4 ·m4)2 + (n1 ·m2 + n2 ·m1 + n3 ·m4 − n4 ·m3)2 + (n1 ·m3 −
n2 ·m4 + n3 ·m1 + n4 ·m2)2 + (n1 ·m4 + n2 ·m3 − n3 ·m2 + n4 ·m1)2.
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Let m, n be natural numbers. Let us note that m ·n is a sum of four squares
and there exists a prime natural number which is odd.

From now on i, j, k, v, w denote natural numbers, j1, j2, m, n, s, t, x, y
denote integers, and p denotes an odd prime natural number.

Let us consider p. The functor ModMap(p) yielding a function from Z into
Zp is defined by

(Def. 2) Let us consider an element x of Z. Then it(x) = x mod p.

Let us consider v. The functor Lag4SqF(v) yielding a finite sequence of
elements of Z is defined by

(Def. 3) (i) len it = v, and

(ii) for every natural number i such that i ∈ dom it holds it(i) = (i−1)2.

The functor Lag4SqG(v) yielding a finite sequence of elements of Z is defined
by

(Def. 4) (i) len it = v, and

(ii) for every natural number i such that i ∈ dom it holds it(i) = −1 −
(i− 1)2.

Now we state the propositions:

(2) Lag4SqF(v) is one-to-one.

(3) Lag4SqG(v) is one-to-one.

In the sequel a denotes a real number and b denotes an integer.
Let us consider an odd prime natural number p, a natural number s, j1, and

j2. Now we state the propositions:

(4) If 2 · s = p+ 1 and j1, j2 ∈ rng Lag4SqF(s), then j1 = j2 or j1 mod p 6=
j2 mod p. Proof: Consider s such that p+1 = 2·s. For every integers j1, j2
such that j1, j2 ∈ rng Lag4SqF(s) and j1 6= j2 holds j1 mod p 6= j2 mod p
by [21, (3), (55)], [16, (80)], [18, (22)]. �

(5) If 2 · s = p+ 1 and j1, j2 ∈ rng Lag4SqG(s), then j1 = j2 or j1 mod p 6=
j2 mod p. Proof: Consider s such that p+ 1 = 2 · s. For every j1 and j2
such that j1, j2 ∈ rng Lag4SqG(s) and j1 6= j2 holds j1 mod p 6= j2 mod p
by [21, (3), (55)], [16, (80)], [20, (7)]. �

2. Any Prime Number can be Expressed as a Sum of Four Squares

Now we state the propositions:

(6) There exist natural numbers x1, x2, x3, x4, h such that

(i) 0 < h < p, and

(ii) h · p = x12 + x22 + x32 + x42.
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Proof: Consider s such that 2 · s = p + 1. Set f = Lag4SqF(s). Set
g = Lag4SqG(s). f is one-to-one. g is one-to-one. rng f misses rng g.

rng(g a f) = p + 1 by [2, (70)], [6, (57), (31)], [3, (35), (36)]. Set A =
dom(ModMap(p)� rng(g a f)). Set B = rng(ModMap(p)� rng(g a f)). De-
fine P[object, object] ≡ there exists an element m1 of Z such that $1 ∈ A
and $2 = m1 and (ModMap(p)� rng(g a f))($1) = m1. For every object x
such that x ∈ A there exists an object y such that y ∈ B and P[x, y] by [8,
(3)]. Consider h being a function from A into B such that for every object
x such that x ∈ A holds P[x, h(x)] from [9, Sch. 1]. Consider m1, m2 being
objects such that m1 ∈ A and m2 ∈ A and m1 6= m2 and h(m1) = h(m2).
If m1 ∈ rng f , then m2 ∈ rng g. If m1 ∈ rng g, then m2 ∈ rng f . There
exist natural numbers x1, x2, x3, x4, h such that h > 0 and h < p and
h · p = x12 + x22 + x32 + x42 by [20, (7)], [21, (3)]. �

(7) Let us consider natural numbers x1, h. Suppose 1 < h. Then there exists
an integer y1 such that

(i) x1 mod h = y1 mod h, and

(ii) −h < 2 · y1 ¬ h, and

(iii) x12 mod h = y12 mod h.

Proof: Consider q1, r1 being integers such that x1 = h ·q1+r1 and 0 ¬ r1
and r1 < h. There exists an integer y1 such that x1 mod h = y1 mod h
and −h < 2 · y1 ¬ h and x12 mod h = y12 mod h by [21, (3)], [18, (23)].
�

(8) Let us consider natural numbers i1, i2, c. If i1 ¬ c and i2 ¬ c, then
i1 + i2 < 2 · c or i1 = c and i2 = c.

(9) Let us consider natural numbers i1, i2, i3, i4, c. Suppose

(i) i1 ¬ c, and

(ii) i2 ¬ c, and

(iii) i3 ¬ c, and

(iv) i4 ¬ c.
Then

(v) i1 + i2 + i3 + i4 < 4 · c, or

(vi) i1 = c and i2 = c and i3 = c and i4 = c.

The theorem is a consequence of (8).

Let us consider natural numbers x1, h and an integer y1. Now we state the
propositions:

(10) Suppose 1 < h and x1 mod h = y1 mod h and −h < 2 ·y1 and (2 ·y1)2 =
h2. Then

(i) 2 · y1 = h, and
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(ii) there exists a natural number m1 such that 2 · x1 = (2 ·m1 + 1) · h.
(11) If 1 < h and x1 mod h = y1 mod h and y1 = 0, then there exists an

integer m1 such that x1 = h ·m1.
Now we state the proposition:

(12) Let us consider an odd prime number p and natural numbers x1, x2, x3,
x4, h. Suppose

(i) 1 < h < p, and

(ii) h · p = x12 + x22 + x32 + x42.

Then there exist integers y1, y2, y3, y4 and there exists a natural number
r such that 0 < r < h and r · p = y12 + y22 + y32 + y42. The theorem is a
consequence of (7), (9), (10), and (11).

Let us consider a prime number p. Now we state the propositions:

(13) If p is even, then p = 2.

(14) There exist natural numbers x1, x2, x3, x4 such that p = x12 + x22 +
x3
2 + x42.

Now we state the proposition:

(15) Let us consider prime numbers p1, p2. Then there exist natural numbers
x1, x2, x3, x4 such that p1 · p2 = x12 + x22 + x32 + x42. The theorem is a
consequence of (14).

Let p1, p2 be prime numbers. Let us observe that p1 · p2 is a sum of four
squares.

Now we state the proposition:

(16) Let us consider a prime number p and a natural number n. Then there
exist natural numbers x1, x2, x3, x4 such that pn = x12+x22+x32+x42.
Proof: Define P[natural number] ≡ there exist natural numbers x1, x2,
x3, x4 such that p$1 = x12+ x22+ x32+ x42. For every natural number n
such that P[n] holds P[n+ 1] by (14), [7, (75)], [16, (6)]. P[0] by [16, (4)].
For every natural number n, P[n] from [4, Sch. 2]. �

Let p be a prime number and n be a natural number. Observe that pn is a
sum of four squares.

3. Proof of Lagrange’s theorem

Now we state the proposition:

(17) Let us consider a non zero natural number n. Then there exist natural
numbers x1, x2, x3, x4 such that

∏
PPF(n) = x12 + x22 + x32 + x42.

Proof: Define P[natural number] ≡ for every non zero natural number

n such that support PPF(n) = $1 there exist natural numbers x1, x2, x3,
x4 such that

∏
PPF(n) = x12 + x22 + x32 + x42. P[0] by [15, (20)]. For
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every natural number k such that P[k] holds P[k + 1] by [15, (34), (28),
(25)]. For every natural number k, P[k] from [4, Sch. 2]. �

Now we state the proposition:

(18) Lagrange’s four-square theorem:
Let us consider a natural number n. Then there exist natural numbers
x1, x2, x3, x4 such that n = x12 + x22 + x32 + x42. The theorem is a
consequence of (17).

One can verify that every natural number is a sum of four squares.
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