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Summary. In the article the formal characterization of preference spaces
[1] is given. As the preference relation is one of the very basic notions of mathe-
matical economics [9], it prepares some ground for a more thorough formalization
of consumer theory (although some work has already been done – see [17]). There
was an attempt to formalize similar results in Mizar, but this work seems still
unfinished [18].

There are many approaches to preferences in literature. We modelled them
in a rather illustrative way (similar structures were considered in [8]): either the
consumer (strictly) prefers an alternative, or they are of equal interest; he/she
could also have no opinion of the choice. Then our structures are based on three
relations on the (arbitrary, not necessarily finite) set of alternatives. The com-
pleteness property can however also be modelled, although we rather follow [2]
which is more general [12]. Additionally we assume all three relations are disjoint
and their set-theoretic union gives a whole universe of alternatives.

We constructed some positive and negative examples of preference structures;
the main aim of the article however is to give the characterization of consumer
preference structures in terms of a binary relation, called characteristic relation
[10], and to show the way the corresponding structure can be obtained only
using this relation. Finally, we show the connection between tournament and
total spaces and usual properties of the ordering relations.
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1. Preliminaries

Let X, Y , Z be sets. We say that X, Y , and Z are mutually disjoint if and
only if

(Def. 1) (i) X misses Y , and

(ii) Y misses Z, and

(iii) X misses Z.

Now we state the proposition:

(1) Let us consider a set A. Then ∅, A, and ∅ are mutually disjoint.

Let us observe that every set which is 2-element is also non empty.
Now we state the propositions:

(2) Let us consider sets a, b. Suppose a 6= b. Then {〈〈a, a〉〉, 〈〈b, b〉〉} 6= {〈〈a,
a〉〉, 〈〈a, b〉〉, 〈〈b, a〉〉, 〈〈b, b〉〉}.

(3) Let us consider a 2-element set A and elements a, b of A. If a 6= b, then
A = {a, b}.

(4) Let us consider a 2-element set A. Then there exist elements a, b of A
such that

(i) a 6= b, and

(ii) A = {a, b}.
(5) Let us consider a non trivial set A. Then there exist elements a, b of A

such that a 6= b.

(6) Let us consider sets x1, x2, x3, x4. Then ({x1} ∪ {x2}) ∪ {x3, x4} =
{x3, x1, x2, x4}.

(7) Let us consider sets a, b. Suppose a 6= b. Then {〈〈a, a〉〉, 〈〈b, b〉〉} misses {〈〈a,
b〉〉, 〈〈b, a〉〉}.

(8) Let us consider a 2-element set A and elements a, b of A. Suppose a 6= b.
Then idA = {〈〈a, a〉〉, 〈〈b, b〉〉}. The theorem is a consequence of (3).

(9) Let us consider elements a, b and a binary relation R. Suppose R = {〈〈a,
b〉〉}. Then R` = {〈〈b, a〉〉}.

(10) Let us consider sets a, b. Then a 6= b if and only if {〈〈a, b〉〉} misses {〈〈a,
a〉〉, 〈〈b, b〉〉}. Proof: If a 6= b, then {〈〈a, b〉〉} misses {〈〈a, a〉〉, 〈〈b, b〉〉}. �

(11) Let us consider a non empty set X, a binary relation R on X, and
elements x, y of X. Suppose 〈〈x, y〉〉 /∈ Rc. Then 〈〈x, y〉〉 ∈ R.

(12) Let us consider a non empty set X and a binary relation R on X. Then
R ∩ (R`)c, R ∩R`, and Rc ∩ (R`)c are mutually disjoint.

(13) Let us consider binary relations P , R. If P misses R, then P` misses
R`.

Let us consider a non empty set X and a binary relation R on X. Now we
state the propositions:
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(14) R = (((R`)c)`)c.

(15) R` = ((Rc)`)c.

(16) ((R`)c)` = Rc.

2. Properties of Binary Relations

Let X be a set. Observe that there exists an order in X which is connected
and linear order.

Now we state the propositions:

(17) Let us consider a non empty set X and a total reflexive binary relation
R on X. Then R` is total.

(18) Let us consider a non empty set X and a total binary relation R on X.
Then fieldR = X.

Let us consider a binary relation R. Now we state the propositions:

(19) R is irreflexive if and only if for every element x such that x ∈ fieldR
holds 〈〈x, x〉〉 /∈ R.

(20) R is symmetric if and only if for every elements x, y such that 〈〈x, y〉〉 ∈ R
holds 〈〈y, x〉〉 ∈ R.

Now we state the propositions:

(21) Let us consider a set X and a binary relation R on X. Then R ∩ R` is
symmetric.

(22) Let us consider a binary relation R. Then R is asymmetric if and only if
for every elements x, y such that 〈〈x, y〉〉 ∈ R holds 〈〈y, x〉〉 /∈ R. Proof: If
R is asymmetric, then for every elements x, y such that 〈〈x, y〉〉 ∈ R holds
〈〈y, x〉〉 /∈ R by [19, (15)]. If for every elements x, y such that 〈〈x, y〉〉 ∈ R
holds 〈〈y, x〉〉 /∈ R, then R is asymmetric. �

(23) Let us consider elements a, b. If a 6= b, then {〈〈a, b〉〉} is asymmetric. The
theorem is a consequence of (22). Proof: Set R = {〈〈a, b〉〉}. For every
elements x, y such that 〈〈x, y〉〉 ∈ R holds 〈〈y, x〉〉 /∈ R. �

(24) Let us consider a non empty set X and a binary relation R on X. Then
R ∩ (R`)c is asymmetric. The theorem is a consequence of (22).

Let us consider a non empty set X and a total reflexive binary relation R

on X. Now we state the propositions:

(25) R ∩R` is reflexive.

(26) R ∩R` is total.

Now we state the propositions:

(27) Let us consider elements a, b. Suppose a 6= b. Then {〈〈a, b〉〉, 〈〈b, a〉〉} is
irreflexive and symmetric. The theorem is a consequence of (20). Proof:
Reconsider R = {〈〈a, b〉〉, 〈〈b, a〉〉} as a binary relation. For every elements x,
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y such that 〈〈x, y〉〉 ∈ R holds 〈〈y, x〉〉 ∈ R. For every element x such that
x ∈ fieldR holds 〈〈x, x〉〉 /∈ R. �

(28) Let us consider a non empty set X, a total binary relation R on X, and
a binary relation S on X. Then R ∪ S is total.

(29) Let us consider a non empty set X and a total reflexive binary relation
R on X. Then Rc ∩ (R`)c is irreflexive and symmetric. The theorem is a
consequence of (11) and (20). Proof: For every elements x, y such that
〈〈x, y〉〉 ∈ Rc ∩ (R`)c holds 〈〈y, x〉〉 ∈ Rc ∩ (R`)c by [6, (87)]. �

(30) Let us consider a set X and a binary relation R on X. If R is symmetric,
then Rc is symmetric. The theorem is a consequence of (11) and (20).
Proof: For every elements x, y such that 〈〈x, y〉〉 ∈ Rc holds 〈〈y, x〉〉 ∈ Rc

by [19, (15)], [16, (23)]. �

(31) Let us consider an element X and a binary relation R. Then R is anti-
symmetric if and only if for every elements x, y such that 〈〈x, y〉〉, 〈〈y, x〉〉 ∈ R
holds x = y. Proof: If R is antisymmetric, then for every elements x, y
such that 〈〈x, y〉〉, 〈〈y, x〉〉 ∈ R holds x = y by [19, (15)]. �

(32) Let us consider a set A and an asymmetric binary relation R on A. Then
R ∪ idA is antisymmetric. The theorem is a consequence of (22) and (31).
Proof: For every elements x, y such that 〈〈x, y〉〉, 〈〈y, x〉〉 ∈ R ∪ idA holds
x = y. �

(33) Let us consider an element X and a binary relation R. Then R is connec-
ted if and only if for every elements x, y such that x 6= y and x, y ∈ fieldR
holds 〈〈x, y〉〉 ∈ R or 〈〈y, x〉〉 ∈ R.

(34) Let us consider a binary relation R. Then R is connected if and only if
fieldR× fieldR = (R ∪R`) ∪ idfieldR.

(35) Let us consider a set A and an asymmetric binary relation R on A.
Then R misses R`. The theorem is a consequence of (22). Proof: For
every elements x, y, 〈〈x, y〉〉 /∈ R ∩R`. �

(36) Let us consider binary relations R, P . If R misses P and P is symmetric,
then R` misses P . The theorem is a consequence of (13).

Let us consider a set X and an asymmetric binary relation R on X. Now we
state the propositions:

(37) R misses idX .

(38) R ·R misses idX .

Let X be a set and R be a binary relation on X. The functor SymClR
yielding a binary relation on X is defined by the term

(Def. 2) R ∪R`.

Let R be a total binary relation on X. Note that SymClR is total.
Let R be a binary relation on X. One can verify that SymClR is symmetric.
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3. Preference Structures

We consider pure preference structures which extend 1-sorted structures and
are systems

〈〈a carrier, a preference relation〉〉

where the carrier is a set, the preference relation is a binary relation on the
carrier.

We consider preference-indifference structures which extend pure preference
structures and alternative relational structures and are systems

〈〈a carrier, a preference relation, an alternative relation〉〉

where the carrier is a set, the preference relation and the alternative relation
are binary relations on the carrier.

We consider preference structures which extend preference-indifference struc-
tures, relational structures, and pure preference structures and are systems

〈〈a carrier, a preference relation, an alternative relation, an internal relation〉〉

where the carrier is a set, the preference relation and the alternative relation
and the internal relation are binary relations on the carrier.

Let us note that there exists a preference-indifference structure which is
non empty and strict and there exists a preference-indifference structure which
is empty and strict and there exists a pure preference structure which is non
empty and strict and there exists a pure preference structure which is empty
and strict and there exists a preference-indifference structure which is non empty
and strict and there exists a preference structure which is non empty and strict.

Let X be a preference structure. We say that X is preference-like if and on-
ly if

(Def. 3) (i) the preference relation of X is asymmetric, and

(ii) the alternative relation of X is a tolerance of the carrier of X, and

(iii) the internal relation of X is irreflexive and symmetric, and

(iv) the preference relation of X, the alternative relation of X, and the
internal relation of X are mutually disjoint, and

(v) (((the preference relation of X) ∪ (the preference relation of X)`) ∪
the alternative relation of X) ∪ the internal relation of X = ∇α,

where α is the carrier of X.

LetX be a set. The functor PrefSpaceX yielding a strict preference structure
is defined by the term

(Def. 4) 〈〈X, ∅X,X ,∇X , ∅X,X〉〉.
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Let A be a non empty set. Observe that PrefSpaceA is non empty and
preference-like and there exists a preference structure which is non empty, strict,
and preference-like.

A preference space is a preference-like preference structure. Note that every
preference structure which is empty is also preference-like and PrefSpace ∅ is
empty and preference-like and there exists a preference space which is empty.

Let A be a trivial non empty set. Let us observe that PrefSpaceA is trivial.
Let us observe that PrefSpaceA is non empty and preference-like.

4. Constructing Examples

Let A be a set. The functor IdPrefSpaceA yielding a strict preference struc-
ture is defined by

(Def. 5) (i) the carrier of it = A, and

(ii) the preference relation of it = ∅, and

(iii) the alternative relation of it = idA, and

(iv) the internal relation of it = ∅.
LetA be a non trivial set. Let us observe that IdPrefSpaceA is non preference-

like.
Let A be a 2-element set and a, b be elements of A.

The functor PrefSpace(A, a, b) yielding a strict preference structure is defined
by

(Def. 6) (i) the carrier of it = A, and

(ii) the preference relation of it = {〈〈a, b〉〉}, and

(iii) the alternative relation of it = {〈〈a, a〉〉, 〈〈b, b〉〉}, and

(iv) the internal relation of it = ∅.
Now we state the proposition:

(39) Let us consider a 2-element set A and elements a, b of A. If a 6= b, then
PrefSpace(A, a, b) is preference-like. The theorem is a consequence of (8),
(10), (9), (3), (6), and (23).

Let A be a non empty set and a, b be elements of A.
The functor IntPrefSpace(A, a, b) yielding a strict preference structure is defined
by

(Def. 7) (i) the carrier of it = A, and

(ii) the preference relation of it = ∅, and

(iii) the alternative relation of it = {〈〈a, a〉〉, 〈〈b, b〉〉}, and

(iv) the internal relation of it = {〈〈a, b〉〉, 〈〈b, a〉〉}.
Now we state the proposition:
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(40) Let us consider a 2-element set A and elements a, b of A. Suppose a 6= b.
Then IntPrefSpace(A, a, b) is non empty and preference-like. The theorem
is a consequence of (8), (7), (3), and (27).

5. Characteristic Relation of a Preference Space

Let P be a preference-indifference structure. The functor CharRelP yielding
a binary relation on the carrier of P is defined by the term

(Def. 8) (The preference relation of P ) ∪ (the alternative relation of P ).

We say that P is PI-preference-like if and only if

(Def. 9) (i) the preference relation of P is asymmetric, and

(ii) the alternative relation of P is a tolerance of the carrier of P , and

(iii) (the preference relation of P ) ∩ (the alternative relation of P ) = ∅,
and

(iv) ((the preference relation of P ) ∪ (the preference relation of P )`) ∪
the alternative relation of P = ∇α,

where α is the carrier of P .

Observe that there exists a non empty strict preference-indifference struc-
ture which is PI-preference-like and there exists an empty strict preference-
indifference structure which is PI-preference-like.

Let us consider a non empty preference-indifference structure P . Now we
state the propositions:

(41) Suppose P is PI-preference-like. Then the preference relation of P =
CharRelP ∩ ((CharRelP )`)c.

(42) Suppose P is PI-preference-like. Then the alternative relation of P =
CharRelP ∩ (CharRelP )`.

Let us consider a non empty preference structure P . Now we state the pro-
positions:

(43) Suppose P is preference-like.
Then the preference relation of P = CharRelP ∩ ((CharRelP )`)c.

(44) Suppose P is preference-like.
Then the alternative relation of P = CharRelP ∩ (CharRelP )`.

(45) Suppose P is preference-like.
Then the internal relation of P = (CharRelP )c ∩ ((CharRelP )`)c.



230 eliza niewiadomska and adam grabowski

6. Generating Preference Space from Arbitrary (Characteristic)
Relation

Let X be a set and R be a binary relation on X. The functor Aux(R) yielding
a binary relation on X is defined by the term

(Def. 10) SymCl((R ∩ (R`)c ∪ (R ∩ (R`)c)`) ∪R ∩R`)c.

Now we state the proposition:

(46) Let us consider a non empty set X and a binary relation R on X. Then
((R ∩ (R`)c ∪ (R ∩ (R`)c)`) ∪R ∩R`) ∪Aux(R) = ∇X .

Let us consider a non empty set X and a total reflexive binary relation R

on X. Now we state the propositions:

(47) Aux(R) = (R`)c ∩Rc ∪ (Rc)` ∩ (Rc ∪R`).

(48) R ∩ (R`)c misses Aux(R).

(49) Aux(R) is irreflexive and symmetric.

Let X be a non empty set and R be a total reflexive binary relation on X.
One can check that Aux(R) is irreflexive and symmetric.

Let us consider a non empty set X and a total reflexive binary relation R

on X. Now we state the propositions:

(50) R ∩R` misses Aux(R).

(51) R ∩ (R`)c, R ∩R`, and Aux(R) are mutually disjoint.

LetX be a set and P be a binary relation onX. The functor CharPrefSpaceP
yielding a strict preference structure is defined by

(Def. 11) (i) the carrier of it = X, and

(ii) the preference relation of it = P ∩ (P`)c, and

(iii) the alternative relation of it = P ∩ P`, and

(iv) the internal relation of it = Aux(P ).

Now we state the proposition:

(52) Let us consider a non empty set A and a total reflexive binary rela-
tion R on A. Then CharPrefSpaceR is preference-like. The theorem is a
consequence of (24), (46), (51), (26), and (21).

Let X be a non empty set and P be a binary relation on X. Let us observe
that CharPrefSpaceP is non empty.

Let P be a total reflexive binary relation on X.
Let us note that CharPrefSpaceP is preference-like.
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7. Flat Preference Spaces

Let P be a preference structure. We say that P is flat if and only if

(Def. 12) (i) the alternative relation of P = idα, and

(ii) there exists an element a of P such that the preference relation of
P = {a} × ((the carrier of P ) \ {a}) and the internal relation of
P = ((the carrier of P ) \ {a})× ((the carrier of P ) \ {a}),

where α is the carrier of P .

Now we state the proposition:

(53) Let us consider a trivial set A. Then IdPrefSpaceA = PrefSpaceA.

Let A be a trivial non empty set. One can check that IdPrefSpaceA is non
empty and preference-like.

One can check that IdPrefSpaceA is flat.

8. Tournament Preference Spaces

Let P be a preference structure. We say that P is tournament-like if and
only if

(Def. 13) (i) the alternative relation of P = idα, and

(ii) the internal relation of P = ∅,
where α is the carrier of P .

One can check that every preference structure which is empty is also tour-
nament-like and every preference structure which is tournament-like is also void
and there exists an empty preference space which is tournament-like and there
exists a non empty preference space which is tournament-like.

Now we state the proposition:

(54) Let us consider a non empty preference space P . Then P is tournament-
like if and only if CharRelP is connected, antisymmetric, and total. The
theorem is a consequence of (33), (32), (35), (34), and (45). Proof: If P
is tournament-like, then CharRelP is connected, antisymmetric, and total
by [6, (87)]. If CharRelP is connected, total, and antisymmetric, then P

is tournament-like by [21, (22)], [19, (23)], [21, (13)]. �

9. Total Preference Spaces

Let P be a preference structure. We say that P is total if and only if

(Def. 14) (i) the preference relation of P is transitive, and

(ii) the alternative relation of P = idα, and
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(iii) the internal relation of P = ∅,
where α is the carrier of P .

Let us observe that every preference structure which is total is also void and
every preference structure which is total is also tournament-like and PrefSpace ∅
is total.

Let A be a set. One can verify that IdPrefSpaceA is total.
Let A be a trivial non empty set. Let us note that PrefSpaceA is total and

there exists an empty preference space which is total and there exists a non
empty preference space which is total.

Now we state the proposition:

(55) Let us consider a non empty preference space P . Then P is total if and
only if CharRelP is a connected order in the carrier of P . The theorem
is a consequence of (35), (37), (38), and (36). Proof: If P is total, then
CharRelP is a connected order in the carrier of P by [15, (12)], [21, (13)],
[19, (18), (23)]. If CharRelP is a connected order in the carrier of P , then
P is total by [15, (12)], [21, (13), (1), (22)]. �
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