Double Sequences and Limits ${ }^{11}$

Noboru Endou
Gifu National College of Thechnology
Japan

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Abstract

Summary. Double sequences are important extension of the ordinary notion of a sequence. In this article we formalized three types of limits of double sequences and the theory of these limits.

MSC: 54A20 03B35
Keywords: formalization of basic metric space; limits of double sequences
MML identifier: DBLSEQ_1, version: 8.1.02 5.19.1189
The notation and terminology used in this paper have been introduced in the following articles: [3, 4], [13], [5, [15, [6, [7, [16], 10], [1], 2], 8], [1], 18], [12], 17], and (9].

In this paper R, R_{1}, R_{2} denote functions from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}, r_{1}, r_{2} denote convergent sequences of real numbers, n, m, N, M denote natural numbers, and e, r denote real numbers.

Let us consider R. We say that R is p-convergent if and only if
(Def. 1) There exists a real number p such that for every real number e such that $0<e$ there exists a natural number N such that for every natural numbers n, m such that $n \geqslant N$ and $m \geqslant N$ holds $|R(n, m)-p|<e$.
Assume R is p-convergent. The functor $\mathrm{P}-\lim R$ yielding a real number is defined by
(Def. 2) Let us consider a real number e. Suppose $0<e$. Then there exists a natural number N such that for every natural numbers n, m such that $n \geqslant N$ and $m \geqslant N$ holds $|R(n, m)-i t|<e$.

[^0]We say that R is convergent in the first coordinate if and only if (Def. 3) Let us consider an element m of \mathbb{N}. Then curry ${ }^{\prime}(R, m)$ is convergent.

We say that R is convergent in the second coordinate if and only if
(Def. 4) Let us consider an element n of \mathbb{N}. Then curry (R, n) is convergent.
The lim in the first coordinate of R yielding a function from \mathbb{N} into \mathbb{R} is defined by
(Def. 5) Let us consider an element m of \mathbb{N}. Then $i t(m)=\lim _{\operatorname{curry}}(R, m)$.
The \lim in the second coordinate of R yielding a function from \mathbb{N} into \mathbb{R} is defined by
(Def. 6) Let us consider an element n of \mathbb{N}. Then $i t(n)=\lim \operatorname{curry}(R, n)$.
Assume the lim in the first coordinate of R is convergent. The first coordinate major iterated lim of R yielding a real number is defined by
(Def. 7) Let us consider a real number e. Suppose $0<e$. Then there exists a natural number M such that for every natural number m such that $m \geqslant M$ holds $\mid($ the lim in the first coordinate of $R)(m)-i t \mid<e$.
Assume the lim in the second coordinate of R is convergent. The second coordinate major iterated \lim of R yielding a real number is defined by
(Def. 8) Let us consider a real number e. Suppose $0<e$. Then there exists a natural number N such that for every natural number n such that $n \geqslant N$ holds |(the lim in the second coordinate of $R)(n)-i t \mid<e$.
Let R be a function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}. We say that R is uniformly convergent in the first coordinate if and only if
(Def. 9) (i) R is convergent in the first coordinate, and
(ii) for every real number e such that $e>0$ there exists a natural number M such that for every natural number m such that $m \geqslant M$ for every natural number $n, \mid R(n, m)-$ (the lim in the first coordinate of $R)(n) \mid<e$.
We say that R is uniformly convergent in the second coordinate if and only if
(Def. 10) (i) R is convergent in the second coordinate, and
(ii) for every real number e such that $e>0$ there exists a natural number N such that for every natural number n such that $n \geqslant N$ for every natural number $m, \mid R(n, m)$ - (the lim in the second coordinate of $R)(m) \mid<e$.
Let us consider R. We say that R is non-decreasing if and only if
(Def. 11) Let us consider natural numbers $n_{1}, m_{1}, n_{2}, m_{2}$. If $n_{1} \geqslant n_{2}$ and $m_{1} \geqslant m_{2}$, then $R\left(n_{1}, m_{1}\right) \geqslant R\left(n_{2}, m_{2}\right)$.
We say that R is non-increasing if and only if
(Def. 12) Let us consider natural numbers $n_{1}, m_{1}, n_{2}, m_{2}$. If $n_{1} \geqslant n_{2}$ and $m_{1} \geqslant m_{2}$, then $R\left(n_{1}, m_{1}\right) \leqslant R\left(n_{2}, m_{2}\right)$.

Now we state the proposition:
(1) Let us consider real numbers a, b, c. If $a \leqslant b \leqslant c$, then $|b| \leqslant|a|$ or $|b| \leqslant|c|$.
Note that every function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R} which is non-decreasing and p-convergent is also lower bounded and upper bounded and every function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R} which is non-increasing and p-convergent is also lower bounded and upper bounded.

Let r be an element of \mathbb{R}. Let us note that $\mathbb{N} \times \mathbb{N} \longmapsto r$ is p-convergent convergent in the first coordinate and convergent in the second coordinate as a function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}.

Now we state the proposition:
(2) Let us consider an element r of \mathbb{R}. Then $\operatorname{P-lim}(\mathbb{N} \times \mathbb{N} \longmapsto r)=r$. Proof: Set $R=\mathbb{N} \times \mathbb{N} \longmapsto r$. For every natural numbers $n, m, R(n, m)=r$ by [15, (70)].
Note that there exists a function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R} which is p-convergent, convergent in the first coordinate, and convergent in the second coordinate.

In this paper P_{1} denotes a p-convergent function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}.
Let P_{4} be a p-convergent convergent in the second coordinate function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}. Note that the lim in the second coordinate of P_{4} is convergent.

Now we state the proposition:
(3) Suppose R is p-convergent and convergent in the second coordinate. Then $\mathrm{P}-\lim R=$ the second coordinate major iterated \lim of R. Proof: Consider z being a real number such that for every e such that $0<e$ there exists a natural number N_{1} such that for every n and m such that $n \geqslant N_{1}$ and $m \geqslant N_{1}$ holds $|R(n, m)-z|<e$. For every e such that $0<e$ there exists N such that for every n such that $n \geqslant N$ holds |(the lim in the second coordinate of $R)(n)-z \mid<e$ by [4, (63), (60)]. For every e such that $0<e$ there exists N such that for every n such that $n \geqslant N$ holds $\mid($ the \lim in the second coordinate of $R)(n)-\mathrm{P}-\lim R \mid<e$ by [4, (60), (63)].

Let P_{3} be a p-convergent convergent in the first coordinate function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}. Let us note that the lim in the first coordinate of P_{3} is convergent.

Now we state the proposition:
(4) Suppose R is p-convergent and convergent in the first coordinate. Then P-lim $R=$ the first coordinate major iterated \lim of R. Proof: Consider z being a real number such that for every e such that $0<e$ there exists a natural number N_{1} such that for every n and m such that $n \geqslant N_{1}$ and $m \geqslant N_{1}$ holds $|R(n, m)-z|<e$. For every e such that $0<e$ there exists N such that for every n such that $n \geqslant N$ holds |(the lim in the first coordinate of $R)(n)-z \mid<e$ by [4, (63), (60)]. For every e such that $0<e$
there exists N such that for every n such that $n \geqslant N$ holds |(the lim in the first coordinate of $R)(n)-\mathrm{P}-\lim R \mid<e$ by [4, (60), (63)].
One can verify that every function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R} which is non-decreasing and upper bounded is also p-convergent convergent in the first coordinate and convergent in the second coordinate and every function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R} which is non-increasing and lower bounded is also p-convergent convergent in the first coordinate and convergent in the second coordinate.

Now we state the propositions:
(5) Suppose R is uniformly convergent in the first coordinate and the lim in the first coordinate of R is convergent. Then
(i) R is p-convergent, and
(ii) $\mathrm{P}-\lim R=$ the first coordinate major iterated \lim of R.
(6) Suppose R is uniformly convergent in the second coordinate and the lim in the second coordinate of R is convergent. Then
(i) R is p-convergent, and
(ii) $\mathrm{P}-\lim R=$ the second coordinate major iterated \lim of R.

Let us consider R. We say that R is Cauchy if and only if
(Def. 13) Let us consider a real number e. Suppose $e>0$. Then there exists a natural number N such that for every natural numbers $n_{1}, n_{2}, m_{1}, m_{2}$ such that $N \leqslant n_{1} \leqslant n_{2}$ and $N \leqslant m_{1} \leqslant m_{2}$ holds $\left|R\left(n_{2}, m_{2}\right)-R\left(n_{1}, m_{1}\right)\right|<e$.
Now we state the propositions:
(7) $\quad R$ is p-convergent if and only if R is Cauchy. Proof: Define \mathcal{R} (element of $\mathbb{N})=R\left(\$_{1}, \$_{1}\right)$. Consider s_{1} being a function from \mathbb{N} into \mathbb{R} such that for every element n of $\mathbb{N}, s_{1}(n)=\mathcal{R}(n)$ from [7, Sch. 4]. Reconsider $z=\lim s_{1}$ as a complex number. For every e such that $0<e$ there exists N such that for every n and m such that $n \geqslant N$ and $m \geqslant N$ holds $|R(n, m)-z|<e$ by [4, (63)].
(8) Let us consider a function R from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}. Suppose
(i) R is non-decreasing, or
(ii) R is non-increasing.

Then R is p-convergent if and only if R is lower bounded and upper bounded.
Let X, Y be non empty sets, H be a binary operation on Y, and f, g be functions from X into Y. Observe that the functor $H_{f, g}$ yields a function from $X \times X$ into Y. Now we state the propositions:
(i) $\cdot \mathbb{R}_{r_{1}, r_{2}}$ is convergent in the first coordinate and convergent in the second coordinate, and
(ii) the lim in the first coordinate of $\cdot \mathbb{R} r_{1}, r_{2}$ is convergent, and
(iii) the first coordinate major iterated \lim of $\cdot \mathbb{R} r_{1}, r_{2}=\lim r_{1} \cdot \lim r_{2}$, and
(iv) the lim in the second coordinate of $\cdot \mathbb{R} r_{1}, r_{2}$ is convergent, and
(v) the second coordinate major iterated \lim of $\cdot \mathbb{R} r_{1}, r_{2}=\lim r_{1} \cdot \lim r_{2}$, and
(vi) $\cdot \mathbb{R} r_{1}, r_{2}$ is p-convergent, and
(vii) P-lim $\cdot \mathbb{R} r_{1}, r_{2}=\lim r_{1} \cdot \lim r_{2}$.

Proof: Set $R=\cdot \mathbb{R}_{1}, r_{2}$. For every n and $m, R(n, m)=r_{1}(n) \cdot r_{2}(m)$ by [5, (77)]. For every element m of \mathbb{N} and for every real number e such that $0<e$ there exists N such that for every n such that $n \geqslant N$ holds $\mid\left(\right.$ curry $\left.^{\prime}(R, m)\right)(n)-\lim r_{1} \cdot r_{2}(m) \mid<e$ by [4, (47), (65), (44)]. For every element m of \mathbb{N}, curry $^{\prime}(R, m)$ is convergent. For every element m of \mathbb{N} and for every real number e such that $0<e$ there exists N such that for every n such that $n \geqslant N$ holds $\left|(\operatorname{curry}(R, m))(n)-r_{1}(m) \cdot \lim r_{2}\right|<e$ by [4, (47), (65), (44)]. For every element m of \mathbb{N}, curry (R, m) is convergent. For every e such that $0<e$ there exists N such that for every n such that $n \geqslant N$ holds $\mid($ the \lim in the first coordinate of $R)(n)-\lim r_{1} \cdot \lim r_{2} \mid<e$ by [4, (46), (65)]. For every e such that $0<e$ there exists N such that for every n such that $n \geqslant N$ holds |(the lim in the second coordinate of $R)(n)-\lim r_{1} \cdot \lim r_{2} \mid<e$ by [4, (46), (65)]. For every e such that $0<e$ there exists N such that for every n and m such that $n \geqslant N$ and $m \geqslant N$ holds $\left|R(n, m)-\lim r_{1} \cdot \lim r_{2}\right|<e$ by [12, (3)], [4, (63), (46), (65)].
(i) $+_{\mathbb{R} r_{1}, r_{2}}$ is convergent in the first coordinate and convergent in the second coordinate, and
(ii) the lim in the first coordinate of $+_{\mathbb{R} r_{1}, r_{2}}$ is convergent, and
(iii) the first coordinate major iterated \lim of $+_{\mathbb{R}} r_{1}, r_{2}=\lim r_{1}+\lim r_{2}$, and
(iv) the lim in the second coordinate of $+\mathbb{R} r_{1}, r_{2}$ is convergent, and
(v) the second coordinate major iterated \lim of $+_{\mathbb{R}} r_{1}, r_{2}=\lim r_{1}+\lim r_{2}$, and
(vi) $+_{\mathbb{R} r_{1}, r_{2}}$ is p-convergent, and
(vii) P-lim $+\mathbb{R} r_{1}, r_{2}=\lim r_{1}+\lim r_{2}$.

Proof: Set $R=+_{\mathbb{R} r_{1}, r_{2}}$. For every n and $m, R(n, m)=r_{1}(n)+r_{2}(m)$ by [5, (77)]. For every element m of \mathbb{N} and for every real number e such that $0<e$ there exists a natural number N such that for every natural number n such that $n \geqslant N$ holds $\left|\left(\operatorname{curry}^{\prime}(R, m)\right)(n)-\left(\lim r_{1}+r_{2}(m)\right)\right|<e$. For every element m of \mathbb{N}, curry ${ }^{\prime}(R, m)$ is convergent. For every element m of \mathbb{N} and for every real number e such that $0<e$ there exists N such that for every n such that $n \geqslant N$ holds $\left|(\operatorname{curry}(R, m))(n)-\left(r_{1}(m)+\lim r_{2}\right)\right|<e$. For every element m of \mathbb{N}, curry (R, m) is convergent. For every e such
that $0<e$ there exists N such that for every n such that $n \geqslant N$ holds $\mid($ the \lim in the first coordinate of $R)(n)-\left(\lim r_{1}+\lim r_{2}\right) \mid<e$. For every e such that $0<e$ there exists N such that for every n such that $n \geqslant N$ holds \mid (the \lim in the second coordinate of $R)(n)-\left(\lim r_{1}+\lim r_{2}\right) \mid<e$. For every e such that $0<e$ there exists N such that for every n and m such that $n \geqslant N$ and $m \geqslant N$ holds $\left|R(n, m)-\left(\lim r_{1}+\lim r_{2}\right)\right|<e$ by [4, (56)].
(11) Suppose R_{1} is p-convergent and R_{2} is p-convergent. Then
(i) $R_{1}+R_{2}$ is p-convergent, and
(ii) P-lim $\left(R_{1}+R_{2}\right)=\mathrm{P}-\lim R_{1}+\mathrm{P}-\lim R_{2}$.
(12) Suppose R_{1} is p-convergent and R_{2} is p-convergent. Then
(i) $R_{1}-R_{2}$ is p-convergent, and
(ii) P-lim $\left(R_{1}-R_{2}\right)=\mathrm{P}-\lim R_{1}-\mathrm{P}-\lim R_{2}$.
(13) Let us consider a function R from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R} and a real number r. Suppose R is p-convergent. Then
(i) $r \cdot R$ is p-convergent, and
(ii) $\mathrm{P}-\lim (r \cdot R)=r \cdot \mathrm{P}-\lim R$.
(14) If R is p-convergent and for every natural numbers $n, m, R(n, m) \geqslant r$, then P-lim $R \geqslant r$.
(15) Suppose R_{1} is p-convergent and R_{2} is p-convergent and for every natural numbers $n, m, R_{1}(n, m) \leqslant R_{2}(n, m)$. Then P-lim $R_{1} \leqslant \mathrm{P}-\lim R_{2}$. The theorem is a consequence of (12) and (14).
(16) Suppose R_{1} is p-convergent and R_{2} is p -convergent and P-lim $R_{1}=$ P-lim R_{2} and for every natural numbers $n, m, R_{1}(n, m) \leqslant R(n, m) \leqslant$ $R_{2}(n, m)$. Then
(i) R is p-convergent, and
(ii) $\mathrm{P}-\lim R=\mathrm{P}-\lim R_{1}$.

Proof: For every e such that $0<e$ there exists N such that for every n and m such that $n \geqslant N$ and $m \geqslant N$ holds $\left|R(n, m)-\mathrm{P}-\lim R_{1}\right|<e$ by [14, (4), (5), (1)].
Let X be a non empty set and s_{1} be a function from $\mathbb{N} \times \mathbb{N}$ into X. A subsequence of s_{1} is a function from $\mathbb{N} \times \mathbb{N}$ into X and is defined by
(Def. 14) There exist increasing sequences N, M of \mathbb{N} such that for every natural numbers $n, m, i t(n, m)=s_{1}(N(n), M(m))$.
Let us consider P_{1}. Observe that every subsequence of P_{1} is p-convergent. Now we state the proposition:
(17) Let us consider a subsequence P_{2} of P_{1}. Then P-lim $P_{2}=\mathrm{P}-\lim P_{1}$.

Let R be a convergent in the first coordinate function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}. Note that every subsequence of R is convergent in the first coordinate.

Now we state the proposition:
(18) Let us consider a subsequence R_{1} of R. Suppose
(i) R is convergent in the first coordinate, and
(ii) the lim in the first coordinate of R is convergent.

Then
(iii) the lim in the first coordinate of R_{1} is convergent, and
(iv) the first coordinate major iterated \lim of $R_{1}=$ the first coordinate major iterated \lim of R.
Proof: Consider I_{1}, I_{2} being increasing sequences of \mathbb{N} such that for every natural numbers $n, m, R_{1}(n, m)=R\left(I_{1}(n), I_{2}(m)\right)$. For every e such that $0<e$ there exists N such that for every m such that $m \geqslant N$ holds |(the lim in the first coordinate of $\left.R_{1}\right)(m)$ - the first coordinate major iterated \lim of $R \mid<e$. \square
Let R be a convergent in the second coordinate function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}. One can check that every subsequence of R is convergent in the second coordinate.

Now we state the proposition:
(19) Let us consider a subsequence R_{1} of R. Suppose
(i) R is convergent in the second coordinate, and
(ii) the lim in the second coordinate of R is convergent.

Then
(iii) the lim in the second coordinate of R_{1} is convergent, and
(iv) the second coordinate major iterated \lim of $R_{1}=$ the second coordinate major iterated lim of R.

Proof: Consider I_{1}, I_{2} being increasing sequences of \mathbb{N} such that for every n and $m, R_{1}(n, m)=R\left(I_{1}(n), I_{2}(m)\right)$. For every e such that $0<e$ there exists N such that for every m such that $m \geqslant N$ holds |(the lim in the second coordinate of $\left.R_{1}\right)(m)$ - the second coordinate major iterated lim of $R \mid<e$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers Formalized Mathematics, 1(1):91-96, 1990.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[4] Czesław Byliński. The complex numbers, Formalized Mathematics, 1(3):507-513, 1990.
[5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[6] Czesław Byliński. Functions and their basic properties Formalized Mathematics, 1(1): 55-65, 1990.
[7] Czesław Byliński. Functions from a set to a set Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Partial functions Formalized Mathematics, 1(2):357-367, 1990.
[9] Czesław Byliński. Some basic properties of sets Formalized Mathematics, 1(1):47-53, 1990.
[10] Noboru Endou, Keiko Narita, and Yasunari Shidama. The Lebesgue monotone convergence theorem. Formalized Mathematics, 16(2):167-175, 2008. doi $10.2478 / \mathrm{v} 10037-008-$ 0023-1.
[11] Andrzej Kondracki. Basic properties of rational numbers Formalized Mathematics, 1(5): 841-845, 1990.
[12] Jarosław Kotowicz. Convergent sequences and the limit of sequences Formalized Mathematics, 1(2):273-275, 1990.
[13] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences Formalızed Mathematıcs, 6(2):265-268, 1997.
[14] Jan Popiołek. Some properties of functions modul and signum Formalized Mathematics, 1(2):263-264, 1990.
[15] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.
[16] Michał J. Trybulec. Integers Formalized Mathematics, 1(3):501-505, 1990.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[18] Edmund Woronowicz. Relations and their basic properties Formalized Mathematics, 1 (1):73-83, 1990.

Received August 31, 2013

[^0]: ${ }^{1}$ This work was supported by JSPS KAKENHI 23500029.

