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Summary. The binary set {0, 1} together with modulo-2 addition and
multiplication is called a binary field, which is denoted by F2. The binary field
F2 is defined in [1]. A vector space over F2 is called a binary vector space. The
set of all binary vectors of length n forms an n-dimensional vector space Vn over
F2. Binary fields and n-dimensional binary vector spaces play an important role
in practical computer science, for example, coding theory [15] and cryptology.
In cryptology, binary fields and n-dimensional binary vector spaces are very im-
portant in proving the security of cryptographic systems [13]. In this article we
define the n-dimensional binary vector space Vn. Moreover, we formalize some
facts about the n-dimensional binary vector space Vn.

MSC: 15A03 03B35

Keywords: formalization of binary vector space

MML identifier: NBVECTSP, version: 8.1.01 5.13.1174

The notation and terminology used in this paper have been introduced in the
following articles: [6], [1], [2], [16], [5], [7], [11], [17], [8], [9], [18], [24], [14], [4],
[25], [26], [19], [23], [12], [20], [21], [22], [27], and [10].

In this paper m, n, s denote non zero elements of N.
Now we state the proposition:

(1) Let us consider elements u1, v1, w1 of Booleann. Then Op-XOR((Op-XOR
(u1, v1)), w1) = Op-XOR(u1, (Op-XOR(v1, w1))).

Let n be a non zero element of N. The functor XORB(n) yielding a binary
operation on Booleann is defined by

(Def. 1) Let us consider elements x, y of Booleann. Then it(x, y) = Op-XOR(x, y).

The functor ZeroB(n) yielding an element of Booleann is defined by the term

(Def. 2) n 7→ 0.

1This research was presented during the 2013 International Conference on Foundations of
Computer Science FCS’13 in Las Vegas, USA.
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The functor n-binary additive group yielding a strict additive loop structure
is defined by the term

(Def. 3) 〈Booleann,XORB(n),ZeroB(n)〉.
Let us consider an element u1 of Booleann. Now we state the propositions:

(2) Op-XOR(u1,ZeroB(n)) = u1.

(3) Op-XOR(u1, u1) = ZeroB(n).

Let n be a non zero element of N. Note that n-binary additive group is add-
associative right zeroed right complementable Abelian and non empty and every
element of Z2 is Boolean.

Let u, v be elements of Z2. We identify u⊕ v with u+ v. We identify u ∧ v
with u · v. Let n be a non zero element of N. The functor MLTB(n) yielding a
function from (the carrier of Z2)× Booleann into Booleann is defined by

(Def. 4) Let us consider an element a of Boolean, an element x of Booleann, and
a set i. If i ∈ Seg n, then it(a, x)(i) = a ∧ x(i).

The functor n-binary vector space yielding a vector space over Z2 is defined
by the term

(Def. 5) 〈Booleann,XORB(n),ZeroB(n),MLTB(n)〉.
Let us note that n-binary vector space is finite.
Let us note that every subspace of n-binary vector space is finite.
Now we state the propositions:

(4) Let us consider a natural number n. Then
∑
n 7→ 0Z2 = 0Z2 .

(5) Let us consider a finite sequence x of elements of Z2, an element v of Z2,
and a natural number j. Suppose

(i) lenx = m, and

(ii) j ∈ Segm, and

(iii) for every natural number i such that i ∈ Segm holds if i = j, then
x(i) = v and if i 6= j, then x(i) = 0Z2 .

Then
∑
x = v. The theorem is a consequence of (4). Proof: Define

P[natural number] ≡ for every non zero element m of N for every fini-
te sequence x of elements of Z2 for every element v of Z2 for every natural
number j such that $1 = m and lenx = m and j ∈ Segm and for every
natural number i such that i ∈ Segm holds if i = j, then x(i) = v and if
i 6= j, then x(i) = 0Z2 holds

∑
x = v. For every natural number k such

that P[k] holds P[k + 1] by [3, (11)], [5, (59), (5), (1)]. For every natural
number k, P[k] from [3, Sch. 2]. �

(6) Let us consider a (the carrier of n-binary vector space)-valued finite se-
quence L and a natural number j. Suppose

(i) lenL = m, and

(ii) m ¬ n, and
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(iii) j ∈ Seg n.

Then there exists a finite sequence x of elements of Z2 such that

(iv) lenx = m, and

(v) for every natural number i such that i ∈ Segm there exists an element
K of Booleann such that K = L(i) and x(i) = K(j).

Proof: Define Q[natural number, set] ≡ there exists an element K of
Booleann such that K = L($1) and $2 = K(j). For every natural number
i such that i ∈ Segm there exists an element y of Boolean such that
Q[i, y]. Consider x being a finite sequence of elements of Boolean such
that domx = Segm and for every natural number i such that i ∈ Segm
holds Q[i, x(i)] from [5, Sch. 5]. �

(7) Let us consider a (the carrier of n-binary vector space)-valued finite se-
quence L, an element S of Booleann, and a natural number j. Suppose

(i) lenL = m, and

(ii) m ¬ n, and

(iii) S =
∑
L, and

(iv) j ∈ Seg n.

Then there exists a finite sequence x of elements of Z2 such that

(v) lenx = m, and

(vi) S(j) =
∑
x, and

(vii) for every natural number i such that i ∈ Segm there exists an element
K of Booleann such that K = L(i) and x(i) = K(j).

The theorem is a consequence of (6). Proof: Consider x being a finite
sequence of elements of Z2 such that lenx = m and for every natural
number i such that i ∈ Segm there exists an element K of Booleann

such that K = L(i) and x(i) = K(j). Consider f being a function
from N into n-binary vector space such that

∑
L = f(lenL) and f(0) =

0n-binary vector space and for every natural number j and for every element
v of n-binary vector space such that j < lenL and v = L(j + 1) holds
f(j + 1) = f(j) + v. Define Q[natural number, set] ≡ there exists an ele-
ment K of Booleann such that K = f($1) and $2 = K(j). For every ele-
ment i of N, there exists an element y of the carrier of Z2 such that Q[i, y]
by [1, (3)]. Consider g being a function from N into Z2 such that for every
element i of N, Q[i, g(i)] from [9, Sch. 3]. Set Sj = S(j). Sj = g(lenx).
g(0) = 0Z2 by [1, (5)]. For every natural number k and for every element
v2 of Z2 such that k < lenx and v2 = x(k + 1) holds g(k + 1) = g(k) + v2
by [3, (11), (13)]. �

(8) Suppose m ¬ n. Then there exists a finite sequence A of elements of
Booleann such that
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(i) lenA = m, and

(ii) A is one-to-one, and

(iii) rngA = m, and

(iv) for every natural numbers i, j such that i ∈ Segm and j ∈ Seg n
holds if i = j, then A(i)(j) = true and if i 6= j, then A(i)(j) = false.

Proof: Define P[natural number, function] ≡ for every natural number
j such that j ∈ Seg n holds if $1 = j, then $2(j) = true and if $1 6= j,
then $2(j) = false. For every natural number k such that k ∈ Segm there
exists an element x of Booleann such that P[k, x]. Consider A being a
finite sequence of elements of Booleann such that domA = Segm and for
every natural number k such that k ∈ Segm holds P[k,A(k)] from [5,
Sch. 5]. For every elements x, y such that x, y ∈ domA and A(x) = A(y)
holds x = y by [5, (5)]. �

(9) Let us consider a finite sequence A of elements of Booleann, a finite
subset B of n-binary vector space, a linear combination l of B, and an
element S of Booleann. Suppose

(i) rngA = B, and

(ii) m ¬ n, and

(iii) lenA = m, and

(iv) S =
∑
l, and

(v) A is one-to-one, and

(vi) for every natural numbers i, j such that i ∈ Seg n and j ∈ Segm
holds if i = j, then A(i)(j) = true and if i 6= j, then A(i)(j) = false.

Let us consider a natural number j. If j ∈ Segm, then S(j) = l(A(j)).
The theorem is a consequence of (7) and (5). Proof: Set V = n-binary
vector space. Reconsider F1 = A as a finite sequence of elements of V .
Consider x being a finite sequence of elements of Z2 such that lenx = m
and S(j) =

∑
x and for every natural number i such that i ∈ Segm

there exists an element K of Booleann such that K = (l · F1)(i) and
x(i) = K(j). For every natural number i such that i ∈ Segm holds if
i = j, then x(i) = l(A(j)) and if i 6= j, then x(i) = 0Z2 by [5, (5)], [1, (3),
(5)]. �

(10) Let us consider a finite sequence A of elements of Booleann and a finite
subset B of n-binary vector space. Suppose

(i) rngA = B, and

(ii) m ¬ n, and

(iii) lenA = m, and

(iv) A is one-to-one, and
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(v) for every natural numbers i, j such that i ∈ Seg n and j ∈ Segm
holds if i = j, then A(i)(j) = true and if i 6= j, then A(i)(j) = false.

Then B is linearly independent. The theorem is a consequence of (9).
Proof: Set V = n-binary vector space. For every linear combination l of
B such that

∑
l = 0V holds the support of l = ∅ by [1, (5)]. �

(11) Let us consider a finite sequenceA of elements of Booleann, a finite subset
B of n-binary vector space, and an element v of Booleann. Suppose

(i) rngA = B, and

(ii) lenA = n, and

(iii) A is one-to-one.

Then there exists a linear combination l of B such that for every na-
tural number j such that j ∈ Seg n holds v(j) = l(A(j)). Proof: Set
V = n-binary vector space. Define Q[element, element] ≡ there exists a
natural number j such that j ∈ Seg n and $1 = A(j) and $2 = v(j).
For every element x such that x ∈ B there exists an element y such that
y ∈ the carrier of Z2 and Q[x, y] by [1, (3)]. Consider l1 being a function
from B into the carrier of Z2 such that for every element x such that
x ∈ B holds Q[x, l1(x)] from [9, Sch. 1]. For every natural number j such
that j ∈ Seg n holds l1(A(j)) = v(j) by [8, (3)]. Set f = (the carrier of
V ) 7−→ 0Z2 . Set l = f+·l1. For every element v of V such that v /∈ B holds
l(v) = 0Z2 by [17, (7)]. For every element x such that x ∈ the support
of l holds x ∈ B. For every natural number j such that j ∈ Seg n holds
v(j) = l(A(j)) by [8, (3)]. �

(12) Let us consider a finite sequence A of elements of Booleann and a finite
subset B of n-binary vector space. Suppose

(i) rngA = B, and

(ii) lenA = n, and

(iii) A is one-to-one, and

(iv) for every natural numbers i, j such that i, j ∈ Seg n holds if i = j,
then A(i)(j) = true and if i 6= j, then A(i)(j) = false.

Then Lin(B) = 〈the carrier of n-binary vector space, the addition of n-bi−
nary vector space, the zero of n-binary vector space, the left multiplication
of n-binary vector space〉. The theorem is a consequence of (11) and (9).
Proof: Set V = n-binary vector space. For every element x, x ∈ the carrier
of Lin(B) iff x ∈ the carrier of V by [5, (13)], [22, (7)]. �

(13) There exists a finite subset B of n-binary vector space such that

(i) B is a basis of n-binary vector space, and

(ii) B = n, and
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(iii) there exists a finite sequence A of elements of Booleann such that
lenA = n and A is one-to-one and rngA = n and rngA = B and for
every natural numbers i, j such that i, j ∈ Seg n holds if i = j, then
A(i)(j) = true and if i 6= j, then A(i)(j) = false.

The theorem is a consequence of (8), (10), and (12).

(14) (i) n-binary vector space is finite dimensional, and

(ii) dim(n-binary vector space) = n.
The theorem is a consequence of (13).

Let n be a non zero element of N. One can verify that n-binary vector space
is finite dimensional.

Now we state the proposition:

(15) Let us consider a finite sequence A of elements of Booleann and a subset
C of n-binary vector space. Suppose

(i) lenA = n, and

(ii) A is one-to-one, and

(iii) rngA = n, and

(iv) for every natural numbers i, j such that i, j ∈ Seg n holds if i = j,
then A(i)(j) = true and if i 6= j, then A(i)(j) = false, and

(v) C ⊆ rngA.

Then

(vi) Lin(C) is a subspace of n-binary vector space, and

(vii) C is a basis of Lin(C), and

(viii) dim(Lin(C)) = C .

The theorem is a consequence of (10).
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