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Summary. In this article we deal with the Riemann integral of functions
from R into a real Banach space. The last theorem establishes the integrability
of continuous functions on the closed interval of reals. To prove the integrability
we defined uniform continuity for functions from R into a real normed space, and
proved related theorems. We also stated some properties of finite sequences of
elements of a real normed space and finite sequences of real numbers.

In addition we proved some theorems about the convergence of sequences.
We applied definitions introduced in the previous article [21] to the proof of
integrability.
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1. Some Properties of Continuous Functions

In this paper s1, s2, q1 denote sequences of real numbers.
Let X be a real normed space and f be a partial function from R to the

carrier of X. We say that f is uniformly continuous if and only if
1This work was supported by JSPS KAKENHI 22300285 and 23500029.
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(Def. 1) Let us consider a real number r. Suppose 0 < r. Then there exists a real
number s such that

(i) 0 < s, and

(ii) for every real numbers x1, x2 such that x1, x2 ∈ dom f and |x1−x2| <
s holds ‖fx1 − fx2‖ < r.

Now we state the propositions:

(1) Let us consider a set X, a real normed space Y , and a partial function f
from R to the carrier of Y . Then f�X is uniformly continuous if and only
if for every real number r such that 0 < r there exists a real number s such
that 0 < s and for every real numbers x1, x2 such that x1, x2 ∈ dom(f�X)
and |x1 − x2| < s holds ‖fx1 − fx2‖ < r. Proof: If f�X is uniformly
continuous, then for every real number r such that 0 < r there exists a
real number s such that 0 < s and for every real numbers x1, x2 such
that x1, x2 ∈ dom(f�X) and |x1 − x2| < s holds ‖fx1 − fx2‖ < r by [11,
(80)]. Consider s being a real number such that 0 < s and for every real
numbers x1, x2 such that x1, x2 ∈ dom(f�X) and |x1 − x2| < s holds
‖fx1 − fx2‖ < r. �

(2) Let us consider sets X, X1, a real normed space Y , and a partial function
f from R to the carrier of Y . Suppose

(i) f�X is uniformly continuous, and

(ii) X1 ⊆ X.

Then f�X1 is uniformly continuous. The theorem is a consequence of (1).

(3) Let us consider a real normed space X, a partial function f from R to
the carrier of X, and a subset Z of R. Suppose

(i) Z ⊆ dom f , and

(ii) Z is compact, and

(iii) f�Z is continuous.

Then f�Z is uniformly continuous. The theorem is a consequence of (1).

2. Some Properties of Sequences

Now we state the proposition:

(4) Let us consider a real normed space X, natural numbers n, m, a function
a from Seg n × Segm into X, and finite sequences p, q of elements of X.
Suppose

(i) dom p = Seg n, and
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(ii) for every natural number i such that i ∈ dom p there exists a finite
sequence r of elements of X such that dom r = Segm and p(i) =

∑
r

and for every natural number j such that j ∈ dom r holds r(j) =
a(i, j), and

(iii) dom q = Segm, and

(iv) for every natural number j such that j ∈ dom q there exists a finite
sequence s of elements of X such that dom s = Seg n and q(j) =

∑
s

and for every natural number i such that i ∈ dom s holds s(i) =
a(i, j).

Then
∑
p =
∑
q. Proof: Define P[natural number] ≡ for every natural

number m for every function a from Seg $1 × Segm into X for every
finite sequences p, q of elements of X such that dom p = Seg $1 and for
every natural number i such that i ∈ dom p there exists a finite sequence
r of elements of X such that dom r = Segm and p(i) =

∑
r and for

every natural number j such that j ∈ dom r holds r(j) = a(i, j) and
dom q = Segm and for every natural number j such that j ∈ dom q there
exists a finite sequence s of elements of X such that dom s = Seg $1 and
q(j) =

∑
s and for every natural number i such that i ∈ dom s holds

s(i) = a(i, j) holds
∑
p =
∑
q. For every natural number n such that P[n]

holds P[n + 1] by [4, (5)], [2, (11)], [13, (95)]. For every natural number
n, P[n] from [2, Sch. 2]. �

Let A be a subset of R. The extension of vol(A) yielding a real number is
defined by the term

(Def. 2)

{
0, if A is empty,
vol(A), otherwise.

In the sequel n denotes an element of N and a, b denote real numbers.
Now we state the propositions:

(5) Let us consider a real bounded subset A of R. Then 0 ¬ the extension
of vol(A).

(6) Let us consider a non empty closed interval subset A of R, a Division D
of A, and a finite sequence q of elements of R. Suppose

(i) dom q = Seg lenD, and

(ii) for every natural number i such that i ∈ Seg lenD holds q(i) =
vol(divset(D, i)).

Then
∑
q = vol(A). Proof: Set p = lower volume(χA,A, D). For every

natural number k such that k ∈ dom q holds q(k) = p(k) by [15, (19)]. �

(7) Let us consider a real normed space Y , a point E of Y , a finite sequence
q of elements of R, and a finite sequence S of elements of Y . Suppose

(i) lenS = len q, and
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(ii) for every natural number i such that i ∈ domS there exists a real
number r such that r = q(i) and S(i) = r · E.

Then
∑
S =
∑
q ·E. Proof: Define P[natural number] ≡ for every finite

sequence q of elements of R for every finite sequence S of elements of Y
such that $1 = lenS and lenS = len q and for every natural number i
such that i ∈ domS there exists a real number r such that r = q(i) and
S(i) = r · E holds

∑
S =
∑
q · E. P[0] by [30, (10)], [12, (72)], [30, (43)].

For every natural number i, P[i] from [2, Sch. 2]. �

(8) Let us consider a non empty closed interval subset A of R, a Division D
of A, a non empty closed interval subset B of R, and a finite sequence v
of elements of R. Suppose

(i) B ⊆ A, and

(ii) lenD = len v, and

(iii) for every natural number i such that
i ∈ dom v holds v(i) = the extension of vol(B ∩ divset(D, i)).

Then
∑
v = vol(B). The theorem is a consequence of (5). Proof: Define

P[natural number] ≡ for every non empty closed interval subset A of R for
every Division D of A for every non empty closed interval subset B of R for
every finite sequence v of elements of R such that $1 = lenD and B ⊆ A

and lenD = len v and for every natural number k such that k ∈ dom v

holds v(k) = the extension of vol(B ∩ divset(D, k)) holds
∑
v = vol(B).

For every natural number i such that P[i] holds P[i+ 1] by [29, (29)], [4,
(4)], [2, (11)]. For every natural number i, P[i] from [2, Sch. 2]. �

(9) Let us consider a real normed space Y , a finite sequence x3 of elements
of Y , and a finite sequence y of elements of R. Suppose

(i) lenx3 = len y, and

(ii) for every element i of N such that i ∈ domx3 there exists a point v
of Y such that v = x3i and y(i) = ‖v‖.

Then ‖
∑
x3‖ ¬

∑
y. Proof: Define P[natural number] ≡ for every finite

sequence x3 of elements of Y for every finite sequence y of elements of
R such that $1 = lenx3 and lenx3 = len y and for every element i of N
such that i ∈ domx3 there exists a point v of Y such that v = x3i and
y(i) = ‖v‖ holds ‖

∑
x3‖ ¬

∑
y. P[0] by [30, (43)], [12, (72)]. For every

natural number i, P[i] from [2, Sch. 2]. �

(10) Let us consider a real normed space Y , a finite sequence p of elements
of Y , and a finite sequence q of elements of R. Suppose

(i) len p = len q, and

(ii) for every natural number j such that j ∈ dom p holds ‖pj‖ ¬ q(j).
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Then ‖
∑
p‖ ¬

∑
q. The theorem is a consequence of (9). Proof: Define

Q[natural number, set] ≡ there exists a point v of Y such that v = p$1 and
$2 = ‖v‖. For every natural number i such that i ∈ Seg len p there exists
an element x of R such that Q[i, x]. Consider u being a finite sequence of
elements of R such that domu = Seg len p and for every natural number i
such that i ∈ Seg len p holds Q[i, u(i)] from [4, Sch. 5]. For every element
i of N such that i ∈ dom p there exists a point v of Y such that v = pi
and u(i) = ‖v‖. �

(11) Let us consider an element j of N, a non empty closed interval subset A of
R, and a Division D1 of A. Suppose j ∈ domD1. Then vol(divset(D1, j)) ¬
δD1 .

(12) Let us consider a non empty closed interval subset A of R, a Division
D of A, and a real number r. Suppose δD < r. Let us consider a natural
number i and real numbers s, t. If i ∈ domD and s, t ∈ divset(D, i), then
|s− t| < r. The theorem is a consequence of (11).

(13) Let us consider a real Banach space X, a non empty closed interval
subset A of R, and a function h from A into the carrier of X. Suppose
a real number r. Suppose 0 < r. Then there exists a real number s such
that

(i) 0 < s, and

(ii) for every real numbers x1, x2 such that x1, x2 ∈ domh and |x1−x2| <
s holds ‖hx1 − hx2‖ < r.

Let us consider a division sequence T of A and a middle volume sequence
S of h and T . Suppose

(iii) δT is convergent, and

(iv) lim δT = 0.

Then middle sum(h, S) is convergent. The theorem is a consequence of
(8), (7), (4), (12), (5), (10), and (6). Proof: For every division sequence
T of A and for every middle volume sequence S of h and T such that δT
is convergent and lim δT = 0 holds middle sum(h, S) is convergent by [32,
(57)], [15, (9)], [17, (9)]. �

The scheme ExRealSeq2X deals with a non empty set D and a unary functor
F , G yielding an element of D and states that

(Sch. 1) There exists a sequence s of D such that for every natural number n,
s(2 · n) = F(n) and s(2 · n+ 1) = G(n).

Now we state the propositions:

(14) Let us consider a natural number n. Then there exists a natural number
k such that n = 2 · k or n = 2 · k + 1.
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(15) Let us consider a non empty closed interval subset A of R and division
sequences T2, T of A. Then there exists a division sequence T1 of A such
that for every natural number i, T1(2 · i) = T2(i) and T1(2 · i+ 1) = T (i).
The theorem is a consequence of (14).

(16) Let us consider a non empty closed interval subset A of R and division
sequences T2, T , T1 of A. Suppose

(i) δT2 is convergent, and

(ii) lim δT2 = 0, and

(iii) δT is convergent, and

(iv) lim δT = 0, and

(v) for every natural number i, T1(2 · i) = T2(i) and T1(2 · i+ 1) = T (i).

Then

(vi) δT1 is convergent, and

(vii) lim δT1 = 0.

The theorem is a consequence of (14).

(17) Let us consider a real normed spaceX, a non empty closed interval subset
A of R, a function h from A into the carrier of X, division sequences T2,
T , T1 of A, a middle volume sequence S7 of h and T2, and a middle volume
sequence S of h and T . Suppose a natural number i. Then

(i) T1(2 · i) = T2(i), and

(ii) T1(2 · i+ 1) = T (i).

Then there exists a middle volume sequence S1 of h and T1 such that
for every natural number i, S1(2 · i) = S7(i) and S1(2 · i + 1) = S(i).
The theorem is a consequence of (14). Proof: Reconsider S2 = S7,
S3 = S as a sequence of (the carrier of X)∗. Define F(natural number) =
S2$1 . Define G(natural number) = S3$1 . Consider S1 being a sequence of
(the carrier of X)∗ such that for every natural number n, S1(2 ·n) = F(n)
and S1(2 ·n+1) = G(n) from ExRealSeq2X. For every element i of N, S1(i)
is a middle volume of h and T1(i). �

(18) Let us consider a real normed space X and sequences S4, S6, S5 of X.
Suppose

(i) S5 is convergent, and

(ii) for every natural number i, S5(2 · i) = S4(i) and S5(2 · i+ 1) = S6(i).

Then

(iii) S4 is convergent, and

(iv) limS4 = limS5, and

(v) S6 is convergent, and
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(vi) limS6 = limS5.

The theorem is a consequence of (14). Proof: For every real number r
such that 0 < r there exists a natural number m1 such that for every
natural number i such that m1 ¬ i holds ‖S4(i) − limS5‖ < r by [2,
(11)]. For every real number r such that 0 < r there exists a natural
number m1 such that for every natural number i such that m1 ¬ i holds
‖S6(i)− limS5‖ < r by [2, (11)]. �

(19) Let us consider a real Banach space X and a continuous partial function
f from R to the carrier of X. If a ¬ b and [a, b] ⊆ dom f , then f is
integrable on [a, b]. The theorem is a consequence of (3), (13), (15), (17),
(16), and (18). Proof: Set A = [a, b]. Reconsider h = f�A as a function
from A into the carrier of X. Consider T2 being a division sequence of A
such that δT2 is convergent and lim δT2 = 0. Set S7 = the middle volume
sequence of h and T2. Set I = lim middle sum(h, S7). For every division
sequence T of A and for every middle volume sequence S of h and T such
that δT is convergent and lim δT = 0 holds middle sum(h, S) is convergent
and lim middle sum(h, S) = I. �
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