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Summary. In this article we deal with the Riemann integral of functions
from R into a real Banach space. The last theorem establishes the integrability
of continuous functions on the closed interval of reals. To prove the integrability
we defined uniform continuity for functions from R into a real normed space, and
proved related theorems. We also stated some properties of finite sequences of
elements of a real normed space and finite sequences of real numbers.

In addition we proved some theorems about the convergence of sequences.
We applied definitions introduced in the previous article [21I] to the proof of
integrability.
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The notation and terminology used in this paper have been introduced in the
following articles: [6], [11, [7], [22], [4], [8], [14], [9], [10], [21], [15], [16], [17], [18],
[281,[[2631, 5, 1271, 21, 23], |24, 3], [, 9], [25), 52, [33], [30], [12], [20], [31],
and [13].

1. SOME PROPERTIES OF CONTINUOUS FUNCTIONS

In this paper s1, s2, ¢g1 denote sequences of real numbers.
Let X be a real normed space and f be a partial function from R to the
carrier of X. We say that f is uniformly continuous if and only if
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(Def. 1) Let us consider a real number 7. Suppose 0 < r. Then there exists a real
number s such that
(i) 0 < s, and
(ii) for every real numbers x1, 9 such that x1, x9 € dom f and |z —x2| <
s holds || fz, = faoll < 7.
Now we state the propositions:

(1) Let us consider a set X, a real normed space Y, and a partial function f
from R to the carrier of Y. Then f[X is uniformly continuous if and only
if for every real number r such that 0 < r there exists a real number s such
that 0 < s and for every real numbers z1, x5 such that x1, zo € dom(f[X)
and |z1 — z2] < s holds ||fz, — fapll < r. PROOF: If f[X is uniformly
continuous, then for every real number r such that 0 < r there exists a
real number s such that 0 < s and for every real numbers z1, 22 such
that 1, x2 € dom(f[X) and |x; — x2| < s holds || fz, — fz,| < r by [11,
(80)]. Consider s being a real number such that 0 < s and for every real
numbers 1, x3 such that z1, 9 € dom(f[X) and |x; — 22| < s holds
||fz1 - fzzn <r.U

(2) Let us consider sets X, X1, a real normed space Y, and a partial function
f from R to the carrier of Y. Suppose

(i) f1X is uniformly continuous, and
(il) X; C X.
Then f[X; is uniformly continuous. The theorem is a consequence of (1).

(3) Let us consider a real normed space X, a partial function f from R to
the carrier of X, and a subset Z of R. Suppose

(i) Z C dom f, and
(ii) Z is compact, and
(iii) f[Z is continuous.

Then f]Z is uniformly continuous. The theorem is a consequence of (1).

2. SOME PROPERTIES OF SEQUENCES

Now we state the proposition:

(4) Let us consider a real normed space X, natural numbers n, m, a function
a from Segn x Segm into X, and finite sequences p, ¢ of elements of X.
Suppose

(i) domp = Segn, and
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(ii) for every natural number i such that i € dom p there exists a finite
sequence r of elements of X such that domr = Segm and p(i) = > r
and for every natural number j such that j € domr holds r(j) =
a(i, ), and

(iii) domgq = Segm, and

(iv) for every natural number j such that j € dom g there exists a finite
sequence s of elements of X such that dom s = Segn and ¢(j) =3 s
and for every natural number i such that i € doms holds s(i) =
a(i, ).

Then Y p = Y q. PROOF: Define P[natural number| = for every natural
number m for every function a from Seg$; x Segm into X for every
finite sequences p, ¢ of elements of X such that domp = Seg$; and for
every natural number ¢ such that ¢ € dom p there exists a finite sequence
r of elements of X such that domr = Segm and p(i) = > r and for
every natural number j such that j € domr holds r(j) = a(i,j) and
dom g = Segm and for every natural number j such that j € dom ¢ there
exists a finite sequence s of elements of X such that dom s = Seg $; and
q(7) = X s and for every natural number ¢ such that ¢ € doms holds
s(i) = a(i,j) holds >~ p = > ¢. For every natural number n such that P[n]
holds P[n + 1] by [4, (5)], [2, (11)], [I3, (95)]. For every natural number
n, P[n] from [2, Sch. 2]. O
Let A be a subset of R. The extension of vol(A) yielding a real number is
defined by the term
0, if A is empty,
(Def. 2) { vol(A), otherwise.
In the sequel n denotes an element of N and a, b denote real numbers.
Now we state the propositions:

(5) Let us consider a real bounded subset A of R. Then 0 < the extension
of vol(A).
(6) Let us consider a non empty closed interval subset A of R, a Division D
of A, and a finite sequence ¢ of elements of R. Suppose
(i) domgq = Seglen D, and
(ii) for every natural number ¢ such that i € Seglen D holds ¢(i) =
vol(divset(D, )).
Then ) g = vol(A). PROOF: Set p = lower_volume(X4 4, D). For every
natural number & such that & € dom ¢ holds ¢(k) = p(k) by [15}, (19)]. O
(7) Let us consider a real normed space Y, a point F of Y, a finite sequence

q of elements of R, and a finite sequence S of elements of Y. Suppose

(i) lenS =lengq, and
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(ii) for every natural number ¢ such that i € dom S there exists a real
number 7 such that r = ¢(i) and S(i) =r - E.

Then Y S = 3" ¢- E. PROOF: Define P[natural number| = for every finite
sequence g of elements of R for every finite sequence S of elements of Y
such that $; = len S and len S = lenq and for every natural number i
such that ¢ € dom S there exists a real number 7 such that r = ¢(i) and
S(i) =r-FE holds > 8 =3 q- E. P[0] by [30, (10)], [12, (72)], [30} (43)].
For every natural number 4, P[i] from [2, Sch. 2]. O

Let us consider a non empty closed interval subset A of R, a Division D
of A, a non empty closed interval subset B of R, and a finite sequence v
of elements of R. Suppose

(i) BC A, and
(ii) len D = lenw, and

(iii) for every natural number ¢ such that
i € domv holds v(i) = the extension of vol(B N divset(D,1)).

Then Y~ v = vol(B). The theorem is a consequence of (5). PROOF: Define
P[natural number] = for every non empty closed interval subset A of R for
every Division D of A for every non empty closed interval subset B of R for
every finite sequence v of elements of R such that $; =len D and B C A
and len D = lenv and for every natural number k such that £ € domwv
holds v(k) = the extension of vol(B N divset(D, k)) holds > v = vol(B).
For every natural number ¢ such that P[i] holds P[i + 1] by [29, (29)], [4,
(4)], [2, (11)]. For every natural number 4, P[i| from [2, Sch. 2]. O

Let us consider a real normed space Y, a finite sequence x3 of elements
of Y, and a finite sequence y of elements of R. Suppose

(i) lenzs = leny, and

(ii) for every element i of N such that ¢ € domz3 there exists a point v
of Y such that v = z3; and y(i) = ||v|.

Then ||Y z3]] < 3 y. PROOF: Define P[natural number] = for every finite
sequence 3 of elements of Y for every finite sequence y of elements of
R such that $; = lenz3 and lenzs = leny and for every element ¢ of N
such that ¢ € dom 3 there exists a point v of Y such that v = z3; and
y(i) = |jv]| holds ||} x3]| < > y. P[0] by [30, (43)], [12, (72)]. For every
natural number 4, P[i] from [2, Sch. 2]. O

Let us consider a real normed space Y, a finite sequence p of elements
of Y, and a finite sequence ¢ of elements of R. Suppose

(i) lenp =leng, and
(ii) for every natural number j such that j € domp holds ||p;|| < q(j).
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Then [|>"p|| < > ¢. The theorem is a consequence of (9). PROOF: Define
Q[natural number, set] = there exists a point v of ¥ such that v = pg, and
$2 = ||v||. For every natural number i such that i € Seglenp there exists
an element x of R such that Q[i, x]. Consider u being a finite sequence of
elements of R such that dom u = Seglen p and for every natural number ¢
such that ¢ € Seglenp holds Q[i, u(7)] from [4, Sch. 5. For every element
1 of N such that ¢ € domp there exists a point v of Y such that v = p;
and u(i) = |jv||. O

(11) Let us consider an element j of N, a non empty closed interval subset A of
R, and a Division D; of A. Suppose j € dom D;. Then vol(divset(D1,j)) <
oD, -

(12) Let us consider a non empty closed interval subset A of R, a Division
D of A, and a real number r. Suppose dp < r. Let us consider a natural
number ¢ and real numbers s, t. If i € dom D and s, t € divset(D, 1), then
|s —t| < r. The theorem is a consequence of (11).

(13) Let us consider a real Banach space X, a non empty closed interval
subset A of R, and a function A from A into the carrier of X. Suppose
a real number r. Suppose 0 < r. Then there exists a real number s such
that

(i) 0 < s, and
(ii) for every real numbers x1, x9 such that z1, x9 € domh and |z —z2| <

s holds ||hgy — ha, || < T

Let us consider a division sequence T' of A and a middle volume sequence
S of h and T'. Suppose

(iii) 7 is convergent, and

(iv) lim 67 = 0.

Then middle sum(h, S) is convergent. The theorem is a consequence of
(8), (7), (4), (12), (5), (10), and (6). PROOF: For every division sequence
T of A and for every middle volume sequence S of h and T such that dp
is convergent and lim 7 = 0 holds middle sum(h,.S) is convergent by [32]
(67)], {15, (9)], A7, (9)]. O

The scheme ExRealSeq2X deals with a non empty set D and a unary functor
F, G yielding an element of D and states that

(Sch. 1) There exists a sequence s of D such that for every natural number n,
s(2-n)=F(n)and s(2-n+1)=G(n).
Now we state the propositions:

(14) Let us consider a natural number n. Then there exists a natural number
ksuch that n=2-korn=2-k+1.
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(15) Let us consider a non empty closed interval subset A of R and division
sequences Th, T' of A. Then there exists a division sequence 77 of A such
that for every natural number ¢, 7T7(2-7) = To(:) and T1(2- i+ 1) = T'(7).
The theorem is a consequence of (14).

(16) Let us consider a non empty closed interval subset A of R and division
sequences 1o, T', T1 of A. Suppose

(i) 07, is convergent, and
(i) limdp, =0, and
(iii) 07 is convergent, and
(iv) limdp = 0, and
(v) for every natural number i, T1(2 i) = To(i) and T1(2-i + 1) = T'(4).
Then
(vi) 7, is convergent, and
(vii) limdp, = 0.
The theorem is a consequence of (14).

(17) Let us consider a real normed space X, a non empty closed interval subset
A of R, a function A from A into the carrier of X, division sequences T5,
T, Ty of A, a middle volume sequence S7 of h and 15, and a middle volume
sequence S of h and T'. Suppose a natural number i. Then

(i) T1(2-4) = T5(i), and

(i) Th(2-i+1) =T(i).
Then there exists a middle volume sequence S7 of h and 737 such that
for every natural number ¢, S1(2 i) = S7(i) and S1(2-i+ 1) = S(7).
The theorem is a consequence of (14). PROOF: Reconsider S = Sy,
S3 = S as a sequence of (the carrier of X)*. Define F(natural number) =
Sag,. Define G(natural number) = Szg,. Consider S being a sequence of
(the carrier of X)* such that for every natural number n, S;(2-n) = F(n)
and S1(2-n+1) = G(n) from ExRealSeq2X. For every element i of N, 51 (7)
is a middle volume of h and T3 (7). O

(18) Let us consider a real normed space X and sequences Sy, Sg, S5 of X.

Suppose
(i) S5 is convergent, and
(ii) for every natural number i, S5(2-7) = S4(i) and S5(2-i4 1) = Sg(7).
Then
(iii) Sy is convergent, and
(iV) lim 54 = lim 55, and

(v) Sg is convergent, and
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(vi) lim Sg = lim S5.

The theorem is a consequence of (14). PROOF: For every real number r
such that 0 < r there exists a natural number m; such that for every
natural number ¢ such that m; < 4 holds ||S4(z) — lim S;|| < r by [2]
(11)]. For every real number r such that 0 < r there exists a natural

number m; such that for every natural number ¢ such that m; < ¢ holds
196(i) — lim S| < r by [2, (11)]. O

(19) Let us consider a real Banach space X and a continuous partial function

f from R to the carrier of X. If a < b and [a,b] C dom f, then f is
integrable on [a, b]. The theorem is a consequence of (3), (13), (15), (17),
(16), and (18). PROOF: Set A = [a,b]. Reconsider h = f[A as a function
from A into the carrier of X. Consider T being a division sequence of A
such that 7, is convergent and lim d7, = 0. Set S7 = the middle volume
sequence of h and T5. Set I = limmiddle sum(h, S7). For every division
sequence 1" of A and for every middle volume sequence S of h and 7' such
that ér is convergent and lim 7 = 0 holds middle sum(h, S) is convergent
and lim middle sum(h, S) = I. O
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