Riemann Integral of Functions from \(\mathbb{R} \) into Real Banach Space

Keiko Narita
Hirosaki-city
Aomori, Japan

Noboru Endou
Gifu National College of Technology
Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article we deal with the Riemann integral of functions from \(\mathbb{R} \) into a real Banach space. The last theorem establishes the integrability of continuous functions on the closed interval of reals. To prove the integrability we defined uniform continuity for functions from \(\mathbb{R} \) into a real normed space, and proved related theorems. We also stated some properties of finite sequences of elements of a real normed space and finite sequences of real numbers.

In addition we proved some theorems about the convergence of sequences. We applied definitions introduced in the previous article \cite{21} to the proof of integrability.

MSC: 26A42 03B35

Keywords: formalization of Riemann integral

MML identifier: INTEGR20 version: 8.1.02 5.17.1181

The notation and terminology used in this paper have been introduced in the following articles: \cite{6, 11, 7, 22, 4, 8, 14, 9, 10, 21, 15, 16, 17, 18, 28, 26, 5, 27, 2, 23, 24, 3, 11, 19, 25, 32, 33, 30, 12, 20, 31, and 13}.

1. Some Properties of Continuous Functions

In this paper \(s_1, s_2, q_1 \) denote sequences of real numbers.

Let \(X \) be a real normed space and \(f \) be a partial function from \(\mathbb{R} \) to the carrier of \(X \). We say that \(f \) is uniformly continuous if and only if

\footnote{This work was supported by JSPS KAKENHI 22300285 and 23500029.}
(Def. 1) Let us consider a real number r. Suppose $0 < r$. Then there exists a real number s such that

(i) $0 < s$, and

(ii) for every real numbers x_1, x_2 such that $x_1, x_2 \in \text{dom } f$ and $|x_1 - x_2| < s$ holds $\|f_{x_1} - f_{x_2}\| < r$.

Now we state the propositions:

(1) Let us consider a set X, a real normed space Y, and a partial function f from \mathbb{R} to the carrier of Y. Then $f|X$ is uniformly continuous if and only if for every real number r such that $0 < r$ there exists a real number s such that $0 < s$ and for every real numbers x_1, x_2 such that $x_1, x_2 \in \text{dom}(f|X)$ and $|x_1 - x_2| < s$ holds $\|f_{x_1} - f_{x_2}\| < r$.

Proof: If $f|X$ is uniformly continuous, then for every real number r such that $0 < r$ there exists a real number s such that $0 < s$ and for every real numbers x_1, x_2 such that $x_1, x_2 \in \text{dom}(f|X)$ and $|x_1 - x_2| < s$ holds $\|f_{x_1} - f_{x_2}\| < r$ by (80)]. Consider s being a real number such that $0 < s$ and for every real numbers x_1, x_2 such that $x_1, x_2 \in \text{dom}(f|X)$ and $|x_1 - x_2| < s$ holds $\|f_{x_1} - f_{x_2}\| < r$. □

(2) Let us consider sets X, X_1, a real normed space Y, and a partial function f from \mathbb{R} to the carrier of Y. Suppose

(i) $f|X$ is uniformly continuous, and

(ii) $X_1 \subseteq X$.

Then $f|X_1$ is uniformly continuous. The theorem is a consequence of (1).

(3) Let us consider a real normed space X, a partial function f from \mathbb{R} to the carrier of X, and a subset Z of \mathbb{R}. Suppose

(i) $Z \subseteq \text{dom } f$, and

(ii) Z is compact, and

(iii) $f|Z$ is continuous.

Then $f|Z$ is uniformly continuous. The theorem is a consequence of (1).

2. Some Properties of Sequences

Now we state the proposition:

(4) Let us consider a real normed space X, natural numbers n, m, a function a from $\text{Seg } n \times \text{Seg } m$ into X, and finite sequences p, q of elements of X. Suppose

(i) $\text{dom } p = \text{Seg } n$, and
(ii) for every natural number \(i \) such that \(i \in \text{dom} p \) there exists a finite sequence \(r \) of elements of \(X \) such that \(\text{dom} r = \text{Seg} m \) and \(p(i) = \sum r \) and for every natural number \(j \) such that \(j \in \text{dom} r \) holds \(r(j) = a(i, j) \), and

(iii) \(\text{dom} q = \text{Seg} m \), and

(iv) for every natural number \(j \) such that \(j \in \text{dom} q \) there exists a finite sequence \(s \) of elements of \(X \) such that \(\text{dom} s = \text{Seg} n \) and \(q(j) = \sum s \) and for every natural number \(i \) such that \(i \in \text{dom} s \) holds \(s(i) = a(i, j) \).

Then \(\sum p = \sum q \).

Proof: Define \(\mathcal{P}[\text{natural number}] \equiv \) for every natural number \(m \) for every function \(a \) from \(\text{Seg} S_1 \times \text{Seg} m \) into \(X \) for every finite sequences \(p, q \) of elements of \(X \) such that \(\text{dom} p = \text{Seg} S_1 \) and for every natural number \(i \) such that \(i \in \text{dom} p \) there exists a finite sequence \(r \) of elements of \(X \) such that \(\text{dom} r = \text{Seg} m \) and \(p(i) = \sum r \) and for every natural number \(j \) such that \(j \in \text{dom} r \) holds \(r(j) = a(i, j) \) and \(\text{dom} q = \text{Seg} m \) and for every natural number \(j \) such that \(j \in \text{dom} q \) there exists a finite sequence \(s \) of elements of \(X \) such that \(\text{dom} s = \text{Seg} S_1 \) and \(q(j) = \sum s \) and for every natural number \(i \) such that \(i \in \text{dom} s \) holds \(s(i) = a(i, j) \).

For every natural number \(n \) such that \(\mathcal{P}[n] \) holds \(\mathcal{P}[n + 1] \) by [4, (5)], [2, (11)], [13, (95)]. For every natural number \(n, \mathcal{P}[n] \) from [2, Sch. 2]. □

Let \(A \) be a subset of \(\mathbb{R} \). The extension of \(\text{vol}(A) \) yielding a real number is defined by the term

\[
(\text{Def. 2}) \quad \left\{ \begin{array}{ll}
0, & \text{if } A \text{ is empty}, \\
\text{vol}(A), & \text{otherwise}.
\end{array} \right.
\]

In the sequel \(n \) denotes an element of \(\mathbb{N} \) and \(a, b \) denote real numbers.

Now we state the propositions:

(5) Let us consider a real bounded subset \(A \) of \(\mathbb{R} \). Then \(0 \leq \text{the extension of } \text{vol}(A) \).

(6) Let us consider a non empty closed interval subset \(A \) of \(\mathbb{R} \), a Division \(D \) of \(A \), and a finite sequence \(q \) of elements of \(\mathbb{R} \). Suppose

(i) \(\text{dom} q = \text{Seg} \text{len} D \), and

(ii) for every natural number \(i \) such that \(i \in \text{Seg} \text{len} D \) holds \(q(i) = \text{vol}(\text{divset}(D, i)) \).

Then \(\sum q = \text{vol}(A) \).

Proof: Set \(p = \text{lower}_\text{volume}(\chi_{A,A}, D) \). For every natural number \(k \) such that \(k \in \text{dom} q \) holds \(q(k) = p(k) \) by [15, (19)]. □

(7) Let us consider a real normed space \(Y \), a point \(E \) of \(Y \), a finite sequence \(q \) of elements of \(\mathbb{R} \), and a finite sequence \(S \) of elements of \(Y \). Suppose

(i) \(\text{len} S = \text{len} q \), and
(ii) for every natural number i such that $i \in \text{dom } S$ there exists a real number r such that $r = q(i)$ and $S(i) = r \cdot E$.

Then $\sum S = \sum q \cdot E$. Proof: Define $P[\text{natural number}] \equiv \text{for every finite sequence } q \text{ of elements of } \mathbb{R} \text{ for every finite sequence } S \text{ of elements of } Y$ such that $S_1 = \text{len } S$ and $\text{len } S = \text{len } q$ and for every natural number i such that $i \in \text{dom } S$ there exists a real number r such that $r = q(i)$ and $S(i) = r \cdot E$ holds $\sum S = \sum q \cdot E$. $P[0]$ by [30] (10), [12] (72), [30] (43)]. For every natural number i, $P[i]$ from [2] Sch. 2. □

(8) Let us consider a non empty closed interval subset A of \mathbb{R}, a Division D of A, a non empty closed interval subset B of \mathbb{R}, and a finite sequence v of elements of \mathbb{R}. Suppose

(i) $B \subseteq A$, and

(ii) len $D = \text{len } v$, and

(iii) for every natural number i such that $i \in \text{dom } v$ holds $v(i) = \text{the extension of } \text{vol}(B \cap \text{divset}(D, i))$.

Then $\sum v = \text{vol}(B)$. The theorem is a consequence of (5). Proof: Define $P[\text{natural number}] \equiv \text{for every non empty closed interval subset } A \text{ of } \mathbb{R} \text{ for every Division } D \text{ of } A \text{ for every non empty closed interval subset } B \text{ of } \mathbb{R} \text{ for every finite sequence } v \text{ of elements of } \mathbb{R} \text{ such that } S_1 = \text{len } D$ and $B \subseteq A$ and $\text{len } D = \text{len } v$ and for every natural number k such that $k \in \text{dom } v$ holds $v(k) = \text{the extension of } \text{vol}(B \cap \text{divset}(D, k))$ holds $\sum v = \text{vol}(B)$. For every natural number i such that $P[i]$ holds $P[i + 1]$ by [29] (29), [11] (4), [2] (11)]. For every natural number i, $P[i]$ from [2] Sch. 2. □

(9) Let us consider a real normed space Y, a finite sequence x_3 of elements of Y, and a finite sequence y of elements of \mathbb{R}. Suppose

(i) len $x_3 = \text{len } y$, and

(ii) for every element i of \mathbb{N} such that $i \in \text{dom } x_3$ there exists a point v of Y such that $v = x_{3i}$ and $y(i) = \|v\|$.

Then $\|\sum x_3\| \leq \sum y$. Proof: Define $P[\text{natural number}] \equiv \text{for every finite sequence } x_3 \text{ of elements of } Y \text{ for every finite sequence } y \text{ of elements of } \mathbb{R} \text{ such that } S_1 = \text{len } x_3$ and $\text{len } x_3 = \text{len } y$ and for every element i of \mathbb{N} such that $i \in \text{dom } x_3$ there exists a point v of Y such that $v = x_{3i}$ and $y(i) = \|v\|$ holds $\|\sum x_3\| \leq \sum y$. $P[0]$ by [30] (43), [12] (72)]. For every natural number i, $P[i]$ from [2] Sch. 2. □

(10) Let us consider a real normed space Y, a finite sequence p of elements of Y, and a finite sequence q of elements of \mathbb{R}. Suppose

(i) len $p = \text{len } q$, and

(ii) for every natural number j such that $j \in \text{dom } p$ holds $\|p_j\| \leq q(j)$.

Then $\|\sum p\| \leq \sum q$. The theorem is a consequence of (9). Proof: Define $Q[\text{natural number}, \text{set}] \equiv$ there exists a point v of Y such that $v = p_i$, and $\|v\|$. For every natural number i such that $i \in \text{Seg len } p$ there exists an element x of \mathbb{R} such that $Q[i, x]$. Consider u being a finite sequence of elements of \mathbb{R} such that $\text{dom } u = \text{Seg len } p$ and for every natural number i such that $i \in \text{Seg len } p$ holds $Q[i, u(i)]$ from [4 Sch. 5]. For every element i of \mathbb{N} such that $i \in \text{dom } p$ there exists a point v of Y such that $v = p_i$ and $u(i) = \|v\|$.

(11) Let us consider an element j of \mathbb{N}, a non empty closed interval subset A of \mathbb{R}, and a Division D_1 of A. Suppose $j \in \text{dom } D_1$. Then $\text{vol}(\text{divset}(D_1, j)) \leq \delta_{D_1}$.

(12) Let us consider a non empty closed interval subset A of \mathbb{R}, a Division D of A, and a real number r. Suppose $\delta_D < r$. Let us consider a natural number i and real numbers s, t. If $i \in \text{dom } D$ and $s, t \in \text{divset}(D, i)$, then $|s - t| < r$. The theorem is a consequence of (11).

(13) Let us consider a real Banach space X, a non empty closed interval subset A of \mathbb{R}, and a function h from A into the carrier of X. Suppose a real number r. Suppose $0 < r$. Then there exists a real number s such that

(i) $0 < s$, and

(ii) for every real numbers x_1, x_2 such that $x_1, x_2 \in \text{dom } h$ and $|x_1 - x_2| < s$ holds $\|h_{x_1} - h_{x_2}\| < r$.

Let us consider a division sequence T of A and a middle volume sequence S of h and T. Suppose

(iii) δ_T is convergent, and

(iv) $\lim \delta_T = 0$.

Then middle sum(h, S) is convergent. The theorem is a consequence of (8), (7), (4), (12), (5), (10), and (6). Proof: For every division sequence T of A and for every middle volume sequence S of h and T such that δ_T is convergent and $\lim \delta_T = 0$ holds middle sum(h, S) is convergent by [32 (57)], [15 (9)], [17 (9)].

The scheme ExRealSeq2X deals with a non empty set D and a unary functor \mathcal{F}, \mathcal{G} yielding an element of D and states that

(Sch. 1) There exists a sequence s of D such that for every natural number n, $s(2 \cdot n) = \mathcal{F}(n)$ and $s(2 \cdot n + 1) = \mathcal{G}(n)$.

Now we state the propositions:

(14) Let us consider a natural number n. Then there exists a natural number k such that $n = 2 \cdot k$ or $n = 2 \cdot k + 1$.
(15) Let us consider a non empty closed interval subset A of \mathbb{R} and division sequences T_2, T of A. Then there exists a division sequence T_1 of A such that for every natural number i, $T_1(2 \cdot i) = T_2(i)$ and $T_1(2 \cdot i + 1) = T(i)$. The theorem is a consequence of (14).

(16) Let us consider a non empty closed interval subset A of \mathbb{R} and division sequences T_2, T, T_1 of A. Suppose

(i) δ_{T_2} is convergent, and
(ii) $\lim \delta_{T_2} = 0$, and
(iii) δ_T is convergent, and
(iv) $\lim \delta_T = 0$, and
(v) for every natural number i, $T_1(2 \cdot i) = T_2(i)$ and $T_1(2 \cdot i + 1) = T(i)$.

Then

(vi) δ_{T_1} is convergent, and
(vii) $\lim \delta_{T_1} = 0$.

The theorem is a consequence of (14).

(17) Let us consider a real normed space X, a non empty closed interval subset A of \mathbb{R}, a function h from A into the carrier of X, division sequences T_2, T, T_1 of A, a middle volume sequence S_7 of h and T_2, and a middle volume sequence S of h and T. Suppose a natural number i. Then

(i) $T_1(2 \cdot i) = T_2(i)$, and
(ii) $T_1(2 \cdot i + 1) = T(i)$.

Then there exists a middle volume sequence S_1 of h and T_1 such that for every natural number i, $S_1(2 \cdot i) = S_7(i)$ and $S_1(2 \cdot i + 1) = S(i)$.

The theorem is a consequence of (14). PROOF: Reconsider $S_2 = S_7$, $S_3 = S$ as a sequence of (the carrier of $X)^*$. Define F(natural number) = S_2S_1. Define G(natural number) = S_3. Consider S_1 being a sequence of (the carrier of $X)^*$ such that for every natural number n, $S_1(2 \cdot n) = F(n)$ and $S_1(2 \cdot n + 1) = G(n)$ from $ExRealSeq2X$. For every element i of \mathbb{N}, $S_1(i)$ is a middle volume of h and $T_1(i)$. □

(18) Let us consider a real normed space X and sequences S_4, S_6, S_5 of X. Suppose

(i) S_5 is convergent, and
(ii) for every natural number i, $S_5(2 \cdot i) = S_4(i)$ and $S_5(2 \cdot i + 1) = S_6(i)$.

Then

(iii) S_4 is convergent, and
(iv) $\lim S_4 = \lim S_5$, and
(v) S_6 is convergent, and
(vi) \(\lim S_6 = \lim S_5 \).

The theorem is a consequence of (14). **Proof:** For every real number \(r \) such that \(0 < r \) there exists a natural number \(m_1 \) such that for every natural number \(i \) such that \(m_1 \leq i \) holds \(\| S_4(i) - \lim S_5 \| < r \) by [2] (11). For every real number \(r \) such that \(0 < r \) there exists a natural number \(m_1 \) such that for every natural number \(i \) such that \(m_1 \leq i \) holds \(\| S_6(i) - \lim S_5 \| < r \) by [2] (11). □

(19) Let us consider a real Banach space \(X \) and a continuous partial function \(f \) from \(R \) to the carrier of \(X \). If \(a \leq b \) and \([a, b] \subseteq \text{dom} f \), then \(f \) is integrable on \([a, b] \). The theorem is a consequence of (3), (13), (15), (17), (16), and (18). **Proof:** Set \(A = [a, b] \). Reconsider \(h = f \upharpoonright A \) as a function from \(A \) into the carrier of \(X \). Consider \(T_2 \) being a division sequence of \(A \) such that \(\delta T_2 \) is convergent and \(\lim \delta T_2 = 0 \). Set \(S_7 = \text{the middle volume sequence of } h \text{ and } T_2 \). Set \(I = \lim \text{middle sum}(h, S_7) \).

For every division sequence \(T \) of \(A \) and for every middle volume sequence \(S \) of \(h \) and \(T \) such that \(\delta T \) is convergent and \(\lim \delta T = 0 \) holds middle sum \((h, S) \) is convergent and \(\lim \text{middle sum}(h, S) = I \). □

References

[18] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for
partial functions from \mathbb{R} to \mathbb{R} and integrability for continuous functions

[19] Andrzej Kondracki. Basic properties of rational numbers

[22] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences

[26] Yasunari Shidama. Banach space of bounded linear operators

[27] Andrzej Trybulec. On the sets inhabited by numbers

[29] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences

[31] Zinaida Trybulec. Properties of subsets

[32] Edmund Woronowicz. Relations and their basic properties

[33] Edmund Woronowicz. Relations defined on sets

Received June 18, 2013