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Summary. In the article the formal characterization of triangular numbers
(famous from [15] and words “EYPHKA! num = ∆ + ∆ + ∆”) [17] is given. Our
primary aim was to formalize one of the items (#42) from Wiedijk’s Top 100
Mathematical Theorems list [33], namely that the sequence of sums of reciprocals
of triangular numbers converges to 2. This Mizar representation was written
in 2007. As the Mizar language evolved and attributes with arguments were
implemented, we decided to extend these lines and we characterized polygonal
numbers.

We formalized centered polygonal numbers, the connection between trian-
gular and square numbers, and also some equalities involving Mersenne primes
and perfect numbers. We gave also explicit formula to obtain from the polygonal
number its ordinal index. Also selected congruences modulo 10 were enumera-
ted. Our work basically covers the Wikipedia item for triangular numbers and
the Online Encyclopedia of Integer Sequences (http://oeis.org/A000217).

An interesting related result [16] could be the proof of Lagrange’s four-square
theorem or Fermat’s polygonal number theorem [32].

MSC: 11E25 03B35
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The notation and terminology used in this paper have been introduced in the
following articles: [27], [24], [14], [4], [5], [11], [6], [7], [1], [30], [22], [28], [2], [26],
[21], [3], [8], [13], [34], [18], [35], [9], [19], [20], [25], [29], [31], and [10].

1. Preliminaries

The scheme LNatRealSeq deals with a unary functor F yielding a real number
and states that
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(Sch. 1) there exists a sequence s3 of real numbers such that for every natural
number n, s3(n) = F(n) and for every sequences s1, s2 of real numbers
such that for every natural number n, s1(n) = F(n) and for every natural
number n, s2(n) = F(n) holds s1 = s2.

Now we state the proposition:

(1) Let us consider non zero natural numbers n, a. Then 1 ¬ a · n.

Let n be an integer. One can verify that n · (n− 1) is even and n · (n+ 1) is
even.

Now we state the proposition:

(2) Let us consider an even integer n. Then n
2 is an integer.

Let n be an even natural number. One can verify that n
2 is natural.

Let n be an odd natural number. One can verify that n− 1 is natural.
Let us note that n− 1 is even.
In this paper n, s denote natural numbers.
Now we state the propositions:

(3) n mod 5 = 0 or ... or n mod 5 = 4.

(4) Let us consider a natural number k. If k 6= 0, then n ≡ n mod k (mod k).

(5) n ≡ 0 (mod 5) or ... or n ≡ 4 (mod 5). The theorem is a consequence of
(3) and (4).

Now we state the propositions:

(6) n · n+ n 6≡ 4 (mod 5).

(7) n · n+ n 6≡ 3 (mod 5).

Now we state the propositions:

(8) n mod 10 = 0 or ... or n mod 10 = 9.

(9) n ≡ 0 (mod 10) or ... or n ≡ 9 (mod 10). The theorem is a consequence
of (8) and (4).

Note that every natural number which is non trivial is also 2 or greater and
every natural number which is 2 or greater is also non trivial and every natural
number which is 4 or greater is also 3 or greater and non zero and every natural
number which is 4 or greater is also non trivial and there exists a natural number
which is 4 or greater and there exists a natural number which is 3 or greater.

2. Triangular Numbers

Let n be a natural number. The functor Trianglen yielding a real number
is defined by the term

(Def. 1)
∑

idseq(n).

Let n be a number. We say that n is triangular if and only if

(Def. 2) There exists a natural number k such that n = Triangle k.
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Let n be a zero number. Let us observe that Trianglen is zero.
Now we state the propositions:

(10) Triangle(n+1) = Trianglen+(n+1).Proof: Define P[natural number] ≡
Triangle $1+ ($1+ 1) = Triangle($1+ 1). For every natural number k such
that P[k] holds P[k + 1] by [5, (51)], [9, (74)]. For every natural number
n, P[n] from [2, Sch. 2]. �

(11) Triangle 1 = 1.

(12) Triangle 2 = 3.

(13) Triangle 3 = 6.

(14) Triangle 4 = 10. The theorem is a consequence of (10) and (13).

(15) Triangle 5 = 15. The theorem is a consequence of (10) and (14).

(16) Triangle 6 = 21. The theorem is a consequence of (10) and (15).

(17) Triangle 7 = 28. The theorem is a consequence of (10) and (16).

(18) Triangle 8 = 36. The theorem is a consequence of (10) and (17).

(19) Trianglen = n·(n+1)
2 . The theorem is a consequence of (10). Proof:

Define P[natural number] ≡ Triangle $1 = $1·($1+1)
2 . For every natural

number k such that P[k] holds P[k+1]. For every natural number n, P[n]
from [2, Sch. 2]. �

(20) Trianglen  0. The theorem is a consequence of (19).

Let n be a natural number. Observe that Trianglen is non negative.
Let n be a non zero natural number. Let us note that Trianglen is positive.
Let n be a natural number. Observe that Trianglen is natural.
Now we state the proposition:

(21) Triangle(n−′ 1) = n·(n−1)
2 . The theorem is a consequence of (1) and (19).

One can check that every number which is triangular is also natural and
there exists a number which is triangular and non zero.

Let us consider a triangular number n. Now we state the propositions:

(22) n 6≡ 7 (mod 10).

(23) n 6≡ 9 (mod 10).

(24) n 6≡ 2 (mod 10).

(25) n 6≡ 4 (mod 10).

Now we state the proposition:

(26) Let us consider a triangular number n. Then

(i) n ≡ 0 (mod 10), or

(ii) n ≡ 1 (mod 10), or

(iii) n ≡ 3 (mod 10), or

(iv) n ≡ 5 (mod 10), or
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(v) n ≡ 6 (mod 10), or

(vi) n ≡ 8 (mod 10).

The theorem is a consequence of (9), (24), (25), (22), and (23).

3. Polygonal Numbers

Let s, n be natural numbers. The functor Polygon(s, n) yielding an integer
is defined by the term

(Def. 3) n2·(s−2)−n·(s−4)
2 .

Now we state the propositions:

(27) If s  2, then Polygon(s, n) is natural.

(28) Polygon(s, n) = (n·(s−2))·(n−1)
2 + n.

Let s be a natural number and x be an element. We say that x is s-gonal if
and only if

(Def. 4) There exists a natural number n such that x = Polygon(s, n).

We say that x is polygonal if and only if

(Def. 5) There exists a natural number s such that x is s-gonal.

Now we state the propositions:

(29) Polygon(s, 1) = 1.

(30) Polygon(s, 2) = s.

Let s be a natural number. Note that there exists a number which is s-gonal.
Let s be a non zero natural number. One can verify that there exists a

number which is non zero and s-gonal.
Let s be a natural number. One can verify that every number which is s-gonal

is also real.
Let s be a non trivial natural number. Let us observe that every number

which is s-gonal is also natural.
Now we state the proposition:

(31) Polygon(s, n+ 1)− Polygon(s, n) = (s− 2) · n+ 1.

Let s be a natural number and x be an s-gonal number.
The functor IndexPoly(s, x) yielding a real number is defined by the term

(Def. 6) (
√
(8·s−16)·x+(s−4)2+s)−4

2·s−4 .

Let us consider a non zero natural number s and a non zero s-gonal number
x. Now we state the propositions:

(32) If x = Polygon(s, n), then (8·s−16)·x+(s−4)2 = ((2·n)·(s−2)−(s−4))2.

(33) If s  4, then (8 · s− 16) · x+ (s− 4)2 is square.

(34) If s  4, then IndexPoly(s, x) ∈ N.
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Now we state the propositions:

(35) Let us consider a non trivial natural number s and an s-gonal number
x. Then 0 ¬ (8 · s− 16) · x+ (s− 4)2.

(36) Let us consider an odd natural number n. If s  2, then n | Polygon(s, n).

4. Centered Polygonal Numbers

Let s, n be natural numbers. The functor CentPoly(s, n) yielding an integer
is defined by the term

(Def. 7) s·n
2 · (n− 1) + 1.

Let s be a natural number and n be a non zero natural number. One can
verify that CentPoly(s, n) is natural.

Now we state the propositions:

(37) CentPoly(0, n) = 1.

(38) CentPoly(s, 0) = 1.

(39) CentPoly(s, n) = s · Triangle(n−′ 1) + 1. The theorem is a consequence
of (21).

5. On the Connection between Triangular and Other Polygonal
Numbers

Now we state the propositions:

(40) Trianglen = Polygon(3, n). The theorem is a consequence of (19).

(41) Let us consider an odd natural number n. Then n | Trianglen. The
theorem is a consequence of (36) and (40).

(42) Trianglen ¬ Triangle(n+ 1). The theorem is a consequence of (10).

(43) Let us consider a natural number k. If k ¬ n, then Triangle k ¬ Trianglen.
The theorem is a consequence of (42). Proof: Consider i being a natural
number such that n = k+ i. Define P[natural number] ≡ for every natural
number n, Trianglen ¬ Triangle(n+$1). For every natural number k such
that P[k] holds P[k+1]. For every natural number n, P[n] from [2, Sch. 2].
�

(44) n ¬ Trianglen. The theorem is a consequence of (10). Proof: Define
P[natural number] ≡ $1 ¬ Triangle $1. For every natural number k such
that P[k] holds P[k + 1] by [2, (11)]. For every natural number n, P[n]
from [2, Sch. 2]. �

(45) Let us consider a non trivial natural number n. Then n < Trianglen.
The theorem is a consequence of (12) and (10). Proof: Define P[natural
number] ≡ $1 < Triangle $1. For every non trivial natural number k such
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that P[k] holds P[k+ 1] by [2, (16)]. For every non trivial natural number
n, P[n] from [23, Sch. 2]. �

(46) If n 6= 2, then Trianglen is not prime. The theorem is a consequence of
(11), (41), (45), and (19).

Let n be a 3 or greater natural number. Observe that Trianglen is non prime
and every 4 or greater natural number which is triangular is also non prime.

Let s be a 4 or greater non zero natural number and x be a non zero s-gonal
number. Note that IndexPoly(s, x) is natural.

Now we state the propositions:

(47) Let us consider a 4 or greater natural number s and a non zero s-gonal
number x. If s 6= 2, then Polygon(s, IndexPoly(s, x)) = x. The theorem is
a consequence of (35).

(48) 36 is square and triangular. The theorem is a consequence of (19).

Let n be a natural number. One can check that Polygon(3, n) is natural.
Observe that Polygon(3, n) is triangular.
Now we state the propositions:

(49) Polygon(s, n) = (s−2)·Triangle(n−′1)+n. The theorem is a consequence
of (21).

(50) Polygon(s, n) = (s− 3) ·Triangle(n−′ 1) + Trianglen. The theorem is a
consequence of (21) and (19).

(51) Polygon(0, n) = n · (2− n).

(52) Polygon(1, n) = n·(3−n)
2 .

(53) Polygon(2, n) = n.

Let s be a non trivial natural number and n be a natural number. Observe
that Polygon(s, n) is natural.

One can check that Polygon(4, n) is square and every natural number which
is 3-gonal is also triangular and every natural number which is triangular is
also 3-gonal and every natural number which is 4-gonal is also square and every
natural number which is square is also 4-gonal.

Now we state the propositions:

(54) Triangle(n−′1)+Trianglen = n2. The theorem is a consequence of (19).

(55) Trianglen + Triangle(n + 1) = (n + 1)2. The theorem is a consequence
of (19).

Let n be a natural number. Observe that Trianglen + Triangle(n + 1) is
square.

Let us consider a non trivial natural number n. Now we state the proposi-
tions:

(56) 1
3 · Triangle(3 · n−′ 1) = n·(3·n−1)

2 .

(57) Triangle(2 · n−′ 1) = n·(4·n−2)
2 .
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Let n, k be natural numbers. The functor PowerN(n, k) yielding a finite
sequence of elements of R is defined by

(Def. 8) (i) dom it = Seg k, and

(ii) for every natural number i such that i ∈ dom it holds it(i) = in.

Now we state the proposition:

(58) Let us consider a natural number k. Then PowerN(n, k+1) = PowerN(n, k)a

〈(k + 1)n〉. Proof: dom PowerN(n, k+1) = dom(PowerN(n, k)a〈(k + 1)n〉)
by [4, (6), (40)]. For every natural number l such that l ∈ dom PowerN(n, k+
1) holds (PowerN(n, k+ 1))(l) = (PowerN(n, k) a 〈(k + 1)n〉)(l) by [4, (1)],
[2, (8)], [4, (6), (42)]. �

Let n be a natural number. Let us observe that
∑

PowerN(n, 0) reduces to 0.
Now we state the propositions:

(59) (Trianglen)2 =
∑

PowerN(3, n). The theorem is a consequence of (19)
and (58). Proof: Define P[natural number] ≡ (Triangle $1)

2 =
∑

PowerN
(3, $1). P[0] by [21, (81)]. For every natural number k such that P[k] holds
P[k + 1] by [21, (81), (7)], [12, (27)]. For every natural number n, P[n]
from [2, Sch. 2]. �

(60) Let us consider a non trivial natural number n. Then Trianglen +
Triangle(n−′ 1) ·Triangle(n+ 1) = (Trianglen)2. The theorem is a conse-
quence of (19).

(61) (Trianglen)2 + (Triangle(n+ 1))2 = Triangle (n+ 1)2. The theorem is a
consequence of (19).

(62) (Triangle(n+ 1))2− (Trianglen)2 = (n+ 1)3. The theorem is a consequ-
ence of (19).

(63) Let us consider a non zero natural number n. Then 3 · Trianglen +
Triangle(n−′ 1) = Triangle(2 · n). The theorem is a consequence of (19).

(64) 3 · Trianglen + Triangle(n + 1) = Triangle(2 · n + 1). The theorem is a
consequence of (19).

Let us consider a non zero natural number n. Now we state the propositions:

(65) (Triangle(n−′ 1) + 6 · Trianglen) + Triangle(n+ 1) = 8 · Trianglen+ 1.

(66) Trianglen+ Triangle(n−′ 1) = ((1+2·n)−1)·n
2 .

Now we state the propositions:

(67) 1 + 9 ·Trianglen = Triangle(3 · n+ 1). The theorem is a consequence of
(19).

(68) Let us consider a natural numberm. Then Triangle(n+m) = (Trianglen+
Trianglem) + n ·m. The theorem is a consequence of (19).

(69) Let us consider non trivial natural numbers n, m. Then Trianglen ·
Trianglem + Triangle(n −′ 1) · Triangle(m −′ 1) = Triangle(n · m). The
theorem is a consequence of (19).
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6. Sets of Polygonal Numbers

Let s be a natural number. The functor PolyNum s yielding a set is defined
by the term

(Def. 9) the set of all Polygon(s, n) where n is a natural number.

Let s be a non trivial natural number. Let us observe that the functor
PolyNum s yields a subset of N. The functors: the set of all triangular numbers
and the set of all square numbers yielding subsets of N are defined by terms,
respectively.

(Def. 10) PolyNum 3.

(Def. 11) PolyNum 4.

Let s be a non trivial natural number. Note that PolyNum s is non empty
and the set of all triangular numbers is non empty and the set of all square
numbers is non empty and every element of the set of all triangular numbers is
triangular and every element of the set of all square numbers is square.

Let us consider a number x. Now we state the propositions:

(70) x ∈ the set of all triangular numbers if and only if x is triangular.

(71) x ∈ the set of all square numbers if and only if x is square.

7. Some Well-known Properties

Now we state the propositions:

(72)
(n+1
2

)
= n·(n+1)

2 .

(73) Trianglen =
(n+1
2

)
. The theorem is a consequence of (72) and (19).

(74) Let us consider a non zero natural number n. If n is even and perfect, then
n is triangular. The theorem is a consequence of (19). Proof: Consider p
being a natural number such that 2p−′ 1 is prime and n = 2p−

′1 · (2p−′ 1).
p 6= 0 by [21, (4)]. �

Let n be a non zero natural number. Let us note that Mn is non zero.
Let n be a number. We say that n is Mersenne if and only if

(Def. 12) There exists a natural number p such that n = Mp.

Note that there exists a prime number which is Mersenne and there exists a
natural number which is non prime and there exists a natural number which is
Mersenne and non prime and every prime number is non zero.

Let n be a Mersenne prime number. One can check that Trianglen is perfect
and every non zero natural number which is even and perfect is also triangular.

Now we state the propositions:

(75) 8 · Trianglen+ 1 = (2 · n+ 1)2. The theorem is a consequence of (19).
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(76) If n is triangular, then 8 · n+ 1 is square. The theorem is a consequence
of (75).

(77) If n is triangular, then 9·n+1 is triangular. The theorem is a consequence
of (67).

(78) If Trianglen is triangular and square, then Triangle((4 · n) · (n + 1)) is
triangular and square. The theorem is a consequence of (19).

Let us observe that the set of all triangular numbers is infinite and the set
of all square numbers is infinite and there exists a natural number which is
triangular, square, and non zero.

Now we state the proposition:

(79) 0 is triangular and square.

Let us observe that every number which is zero is also triangular and square.
Now we state the proposition:

(80) 1 is triangular and square. The theorem is a consequence of (11).

Now we state the propositions:

(81) Square triangular number:
36 is triangular and square. The theorem is a consequence of (11), (80),
(78), and (18).

(82) 1225 is triangular and square. The theorem is a consequence of (19).

Let n be a triangular natural number. One can check that 9 · n+ 1 is trian-
gular.

Let us note that 8 · n+ 1 is square.

8. Reciprocals of Triangular Numbers

Let a be a real number. One can verify that lim{a}n∈N reduces to a.
The functor ReciTriang yielding a sequence of real numbers is defined by

(Def. 13) Let us consider a natural number i. Then it(i) = 1
Triangle i .

Let us note that (ReciTriang)(0) reduces to 0.
Now we state the propositions:

(83) 1
Trianglen = 2

n·(n+1) . The theorem is a consequence of (19).

(84) (
∑κ
α=0(ReciTriang)(α))κ∈N(n) = 2− 2

n+1 . The theorem is a consequence
of (83).Proof: Define P[natural number] ≡ (

∑κ
α=0(ReciTriang)(α))κ∈N($1)

= 2− 2
$1+1

. P[0]. For every natural number k such that P[k] holds P[k+1].
For every natural number k, P[k] from [2, Sch. 2]. �

The functors: SumsReciTriang and GeoSeq(a, b) yielding sequences of real
numbers are defined by conditions, respectively.

(Def. 14) Let us consider a natural number n. Then (SumsReciTriang)(n) = 2 −
2

n+1 .
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(Def. 15) Let us consider a natural number n. Then (GeoSeq(a, b))(n) = a
n+b .

Let a, b be real numbers.
Now we state the propositions:

(85) Let us consider real numbers a, b. Suppose b > 0. Then

(i) GeoSeq(a, b) is convergent, and

(ii) lim GeoSeq(a, b) = 0.

(86) SumsReciTriang = {2}n∈N + −GeoSeq(2, 1). Proof: For every natural
number k, (SumsReciTriang)(k) = ({2}n∈N)(k) + (−GeoSeq(2, 1))(k) by
[19, (57)]. �

(87) (i) SumsReciTriang is convergent, and

(ii) lim SumsReciTriang = 2.
The theorem is a consequence of (85) and (86).

(88) (
∑κ
α=0(ReciTriang)(α))κ∈N = SumsReciTriang.

Now we state the proposition:

(89) Reciprocals of triangular numbers:∑
ReciTriang = 2.
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