Semantics of MML Query - Ordering

Grzegorz Bancerek
Association of Mizar Users
Białystok, Poland

Summary. Semantics of order directives of MML Query is presented. The formalization is done according to 1 .

MML identifier: MMLQUER2, version: 8.1.01 5.7.1169
The notation and terminology used in this paper have been introduced in the following articles: [2, [7], [13], [9], 10], [8, [3], [4], [5], [1], [17], [19], 18], [6], [15], [16], [14], and [12].

1. Preliminaries

In this paper X denotes a set, R, R_{1}, R_{2} denote binary relations, x, y, z denote sets, and n, m, k denote natural numbers.

Let us consider a binary relation R on X. Now we state the propositions:
(1) field $R \subseteq X$.
(2) If $x, y \in R$, then $x, y \in X$.

Now we state the propositions:
(3) Let us consider sets X, Y. Then $\left(\mathrm{id}_{X}\right)^{\circ} Y=X \cap Y$.
(4) $\left.\langle x, y\rangle \in R\right|^{2} X$ if and only if $x, y \in X$ and $\langle x, y\rangle \in R$.
(5) $\operatorname{dom}(X \upharpoonleft R) \subseteq \operatorname{dom} R$.
(6) Let us consider a total reflexive binary relation R on X and a subset S of X. Then $\left.R\right|^{2} S$ is a total reflexive binary relation on S. The theorem is a consequence of (4). Proof: Set $Q=\left.R\right|^{2} S$. $\operatorname{dom} Q=S$.
(7) Let us consider transfinite sequences f, g. Then $\operatorname{rng}\left(f^{\wedge} g\right)=\operatorname{rng} f \cup \operatorname{rng} g$. Let us consider R. Let us note that R is transitive if and only if the condition (Def. 1) is satisfied.
(Def. 1) If $x, y \in R$ and $y, z \in R$, then $x, z \in R$.
One can verify that R is antisymmetric if and only if the condition (Def. 2) is satisfied.
(Def. 2) If $x, y \in R$ and $y, x \in R$, then $x=y$.
Now we state the proposition:
(8) Let us consider a non empty set X, a total connected binary relation R on X, and elements x, y of X. If $x \neq y$, then $x, y \in R$ or $y, x \in R$.

2. Composition of Orders

Let R_{1}, R_{2} be binary relations. The functor R_{1}, R_{2} yielding a binary relation is defined by the term
(Def. 3) $\quad R_{1} \cup\left(R_{2} \backslash R_{1} \smile\right)$.
Now we state the propositions:
(9) $x, y \in R_{1}, R_{2}$ if and only if $x, y \in R_{1}$ or $y, x \notin R_{1}$ and $x, y \in R_{2}$.
(10) field $\left(R_{1}, R_{2}\right)=$ field $R_{1} \cup$ field R_{2}. The theorem is a consequence of (9).
(11) $\quad R_{1}, R_{2} \subseteq R_{1} \cup R_{2}$. The theorem is a consequence of (9).

Let X be a set and R_{1}, R_{2} be binary relations on X. Note that the functor R_{1}, R_{2} yields a binary relation on X. Let R_{1}, R_{2} be reflexive binary relations. One can verify that R_{1}, R_{2} is reflexive.

Let R_{1}, R_{2} be antisymmetric binary relations. Note that R_{1}, R_{2} is antisymmetric.

Let X be a set and R be a binary relation on X. We say that R is β-transitive if and only if
(Def. 4) Let us consider elements x, y of X. If $x, y \notin R$, then for every element z of X such that $x, z \in R$ holds $y, z \in R$.
Observe that every binary relation on X which is connected total and transitive is also β-transitive.

Let us observe that there exists an order in X which is connected.
Let R_{1} be a β-transitive transitive binary relation on X and R_{2} be a transitive binary relation on X. Observe that R_{1}, R_{2} is transitive.

Let R_{1} be a binary relation on X and R_{2} be a total reflexive binary relation on X. Let us note that R_{1}, R_{2} is total and reflexive as a binary relation on X.

Let R_{2} be a total connected reflexive binary relation on X. One can verify that R_{1}, R_{2} is connected.

Now we state the propositions:
(12) $\left(R, R_{1}\right), R_{2}=R,\left(R_{1}, R_{2}\right)$. The theorem is a consequence of (9).
(13) Let us consider a connected reflexive total binary relation R on X and a binary relation R_{2} on X. Then $R, R_{2}=R$. The theorem is a consequence of (9) and (2).

3. number of Ordering

Let X be a set and f be a function from X into \mathbb{N}. The functor number of f yielding a binary relation on X is defined by
(Def. 5) $\quad x, y \in$ it if and only if $x, y \in X$ and $f(x)<f(y)$.
Let us note that number of f is antisymmetric transitive and β-transitive.
Let X be a finite set and O be an operation of X. The functor value of O yielding a function from X into \mathbb{N} is defined by
(Def. 6) Let us consider an element x of X. Then $i t(x)=\overline{\overline{x(O)}}$.
Now we state the proposition:
(14) Let us consider a finite set X, an operation O of X, and elements x, y of X. Then $x, y \in$ number of value of O if and only if $\overline{\overline{x(O)}}<\overline{\overline{y(O)}}$.
Let us consider X. Let O be an operation of X. The functor first O yielding a binary relation on X is defined by
(Def. 7) Let us consider elements x, y of X. Then $x, y \in$ it if and only if $x(O) \neq \emptyset$ and $y(O)=\emptyset$.
Let us observe that $\mathrm{first} O$ is antisymmetric transitive and β-transitive.

4. Ordering by Resources

Let A be a finite sequence and x be an element. The functor $A \leftarrow x$ yielding a set is defined by the term
(Def. 8) $\cap\left(A^{-1}(\{x\})\right)$.
Let us consider x. Note that $A \leftarrow x$ is natural.
Let us consider a finite sequence A. Now we state the propositions:
(15) If $x \notin \operatorname{rng} A$, then $A \leftarrow x=0$.
(16) If $x \in \operatorname{rng} A$, then $A \leftarrow x \in \operatorname{dom} A$ and $x=A(A \leftarrow x)$.
(17) If $A \leftarrow x=0$, then $x \notin \operatorname{rng} A$.

Let us consider X. Let A be a finite sequence and f be a function. The functor resource (X, A, f) yielding a binary relation on X is defined by
(Def. 9) $\quad x, y \in$ it if and only if $x, y \in X$ and $A \leftarrow(f(x)) \neq 0$ and $A \leftarrow(f(x))<$ $A \leftarrow(f(y))$ or $A \leftarrow(f(y))=0$.
Let us observe that resource (X, A, f) is antisymmetric transitive and β transitive.

5. Ordering by Number of Iteration

Let us consider X. Let R be a binary relation on X and n be a natural number. One can check that the functor R^{n} yields a binary relation on X. Now we state the propositions:
(18) If $\left(R^{n}\right)^{\circ} X=\emptyset$ and $m \geqslant n$, then $\left(R^{m}\right)^{\circ} X=\emptyset$.
(19) If for every $n,\left(R^{n}\right)^{\circ} X \neq \emptyset$ and X is finite, then there exists x such that $x \in X$ and for every $n,\left(R^{n}\right)^{\circ} x \neq \emptyset$. The theorem is a consequence of (18). Proof: Define \mathcal{P} [element, element $] \equiv$ there exists n such that $\$_{2}=n$ and $\left(R^{n}\right)^{\circ} \$_{1}=\emptyset$. For every element x such that $x \in X$ there exists an element y such that $y \in \mathbb{N}$ and $\mathcal{P}[x, y]$. Consider f being a function such that $\operatorname{dom} f=X$ and $\operatorname{rng} f \subseteq \mathbb{N}$ and for every element x such that $x \in X$ holds $\mathcal{P}[x, f(x)]$. Consider n such that $\operatorname{rng} f \subseteq \mathbb{Z}_{n} .\{\{x\}$ where x is an element of $X: x \in X\} \subseteq 2^{X}$. Reconsider $Y=\{\{x\}$ where x is an element of $X: x \in X\}$ as a family of subsets of $X . X=\bigcup Y .\left\{\left(R^{n}\right)^{\circ} y\right.$ where y is a subset of $X: y \in Y\} \subseteq\{\emptyset\}$.
(20) If R is reversely well founded and irreflexive and X is finite and R is finite, then there exists n such that $\left(R^{n}\right)^{\circ} X=\emptyset$. The theorem is a consequence of (19). Proof: Define $\mathcal{Q}[$ element $] \equiv$ for every $n,\left(R^{n}\right)^{\circ} \$_{1} \neq \emptyset$. Consider $x 0$ being a set such that $x 0 \in X$ and $\mathcal{Q}[x 0]$. Define \mathcal{P} [element, element, element] \equiv if $\mathcal{Q}\left[\$_{2}\right]$, then $\$_{3} \in R^{\circ} \$_{2}$ and $\mathcal{Q}\left[\$_{3}\right]$. For every natural number n and for every set x, there exists a set y such that $\mathcal{P}[n, x, y]$. Consider f being a function such that $\operatorname{dom} f=\mathbb{N}$ and $f(0)=x 0$ and for every natural number $n, \mathcal{P}[n, f(n), f(n+1)]$. Define $\mathcal{R}[$ natural number $] \equiv \mathcal{Q}\left[f\left(\$_{1}\right)\right]$. $\operatorname{rng} f \subseteq$ field R. Consider z being an element such that $z \in \operatorname{rng} f$ and for every element x such that $x \in \operatorname{rng} f$ and $z \neq x$ holds $\langle z, x\rangle \notin R$. Consider y being an element such that $y \in \mathbb{N}$ and $z=f(y)$.
Let us consider X. Let O be an operation of X. Assume O is reversely well founded, irreflexive, and finite. The functor iteration of O yielding a binary relation on X is defined by
(Def. 10) There exists a function f from X into \mathbb{N} such that
(i) $i t=$ number of f, and
(ii) for every element x of X such that $x \in X$ there exists n such that $f(x)=n$ and $x\left(O^{n}\right) \neq \emptyset$ or $n=0$ and $x\left(O^{n}\right)=\emptyset$ and $x\left(O^{n+1}\right)=\emptyset$.
Let us note that every binary relation which is empty is also irreflexive and reversely well founded.

Let us consider X. Let us note that there exists an operation of X which is empty.

Let O be a reversely well founded irreflexive finite operation of X. One can check that iteration of O is antisymmetric transitive and β-transitive.

6. value of Ordering

Let X be a finite set. Let us observe that every order in X is well founded. Note that every connected order in X is well-ordering.
Let us consider X. Let R be a connected order in X and S be a finite subset of X. The functor $\operatorname{order}(S, R)$ yielding a finite 0 -sequence of X is defined by
(Def. 11) (i) rng $i t=S$, and
(ii) it is one-to-one, and
(iii) for every natural numbers i, j such that $i, j \in$ dom it holds $i \leqslant j$ iff $i t(i), i t(j) \in R$.
Now we state the proposition:
(21) Let us consider finite subsets S_{1}, S_{2} of X and a connected order R in X. Then order $\left(S_{1} \cup S_{2}, R\right)=\operatorname{order}\left(S_{1}, R\right)^{\wedge} \operatorname{order}\left(S_{2}, R\right)$ if and only if for every x and y such that $x \in S_{1}$ and $y \in S_{2}$ holds $x \neq y$ and $x, y \in R$. The theorem is a consequence of (7). Proof: Set $o 1=\operatorname{order}\left(S_{1}, R\right)$. Set $o 2=\operatorname{order}\left(S_{2}, R\right)$. $\operatorname{order}\left(S_{1}, R\right)^{\wedge} \operatorname{order}\left(S_{2}, R\right)$ is one-to-one.
Let X be a finite set, O be an operation of X, and R be a connected order in X. The functor value of (O, R) yielding a binary relation on X is defined by
(Def. 12) Let us consider elements x, y of X. Then $x, y \in$ it if and only if $x(O) \neq \emptyset$ and $y(O)=\emptyset$ or $y(O) \neq \emptyset$ and $(\operatorname{order}(x(O), R))_{0},(\operatorname{order}(y(O), R))_{0} \in R$ and $(\operatorname{order}(x(O), R))_{0} \neq(\operatorname{order}(y(O), R))_{0}$.
Let R_{1} be a connected order in X. One can check that value of $\left(O, R_{1}\right)$ is antisymmetric transitive and β-transitive.

References

[1] Grzegorz Bancerek. Information retrieval and rendering with MML query. LNCS, 4108: 266-279, 2006.
[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[3] Grzegorz Bancerek. Semantics of MML query. Formalized Mathematics, 20(2):147-155, 2012. doi 10.2478/v10037-012-0017-x.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[5] Grzegorz Bancerek. Increasing and continuous ordinal sequences. Formalized Mathematics, 1(4):711-714, 1990.
[6] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469-478, 1996.
[7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[8] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
[9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
[10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[14] Krzysztof Hryniewiecki. Relations of tolerance. Formalized Mathematics, 2(1):105-109, 1991.
[15] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
[18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[19] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.

Received December 1, 2012

