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Summary. In this article, we formalize continuous differentiability of real-
valued functions on n-dimensional real normed linear spaces. Next, we give a
definition of the Ck space according to [23].
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The notation and terminology used in this paper have been introduced in the
following articles: [1], [4], [10], [3], [5], [11], [17], [6], [7], [19], [18], [2], [8], [14],
[12], [15], [13], [21], [22], [16], [20], and [9].

1. Definition of Continuously Differentiable Functions and Some
Properties

Let m be a non zero element of N, f be a partial function from Rm to R, k
be an element of N, and Z be a set. We say that f is continuously differentiable
up to order of k and Z if and only if

(Def. 1) (i) Z ⊆ dom f , and

(ii) f is partial differentiable up to order k and Z, and

(iii) for every non empty finite sequence I of elements of N such that
len I ¬ k and rng I ⊆ Segm holds f�IZ is continuous on Z.

Now we state the propositions:

(1) Let us consider a non zero element m of N, a set Z, a non empty finite
sequence I of elements of N, and a partial function f from Rm to R.
Suppose f is partially differentiable on Z w.r.t. I. Then dom(f�IZ) = Z.
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(2) Let us consider a non zero element m of N, an element k of N, a non
empty subset X of Rm, and a partial function f from Rm to R. Suppose

(i) X is open, and

(ii) X ⊆ dom f .

Then f is continuously differentiable up to order of 1 and X if and only
if f is differentiable on X and for every element x0 of Rm and for every
real number r such that x0 ∈ X and 0 < r there exists a real number s
such that 0 < s and for every element x1 of Rm such that x1 ∈ X and
|x1 − x0| < s for every element v of Rm, |f ′(x1)(v)− f ′(x0)(v)| ¬ r · |v|.

(3) Let us consider a non zero element m of N, a non empty subset X of
Rm, and a partial function f from Rm to R. Suppose

(i) X is open, and

(ii) X ⊆ dom f , and

(iii) f is continuously differentiable up to order of 1 and X.

Then f is continuous on X. The theorem is a consequence of (2).

(4) Let us consider a non zero element m of N, an element k of N, a non
empty subset X of Rm, and partial functions f , g from Rm to R. Suppose

(i) f is continuously differentiable up to order of k and X, and

(ii) g is continuously differentiable up to order of k and X, and

(iii) X is open.

Then f + g is continuously differentiable up to order of k and X. The the-
orem is a consequence of (1). Proof: For every non empty finite sequence
I of elements of N such that len I ¬ k and rng I ⊆ Segm holds (f +g)�IX
is continuous on X. �

(5) Let us consider a non zero element m of N, an element k of N, a non
empty subset X of Rm, a real number r, and a partial function f from
Rm to R. Suppose

(i) f is continuously differentiable up to order of k and X, and

(ii) X is open.

Then r · f is continuously differentiable up to order of k and X. The the-
orem is a consequence of (1). Proof: For every non empty finite sequence
I of elements of N such that len I ¬ k and rng I ⊆ Segm holds r · f�IX is
continuous on X. �

(6) Let us consider a non zero element m of N, an element k of N, a non
empty subset X of Rm, and partial functions f , g from Rm to R. Suppose

(i) f is continuously differentiable up to order of k and X, and

(ii) g is continuously differentiable up to order of k and X, and
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(iii) X is open.

Then f − g is continuously differentiable up to order of k and X. The the-
orem is a consequence of (1). Proof: For every non empty finite sequence
I of elements of N such that len I ¬ k and rng I ⊆ Segm holds (f −g)�IX
is continuous on X. �

Let us consider a non zero element m of N, a non empty subset Z of Rm,
a partial function f from Rm to R, and non empty finite sequences I, G of
elements of N. Now we state the propositions:

(7) f�G
aIZ = (f�GZ)�IZ.

(8) f�G
aIZ is continuous on Z if and only if (f�GZ)�IZ is continuous on Z.

Now we state the propositions:

(9) Let us consider a non zero element m of N, a non empty subset Z of Rm,
a partial function f from Rm to R, elements i, j of N, and a non empty
finite sequence I of elements of N. Suppose

(i) f is continuously differentiable up to order of i+ j and Z, and

(ii) rng I ⊆ Segm, and

(iii) len I = j.

Then f�IZ is continuously differentiable up to order of i and Z. The
theorem is a consequence of (1) and (7).

(10) Let us consider a non zero element m of N, a non empty subset Z of
Rm, a partial function f from Rm to R, and elements i, j of N. Suppose

(i) f is continuously differentiable up to order of i and Z, and

(ii) j ¬ i.
Then f is continuously differentiable up to order of j and Z.

(11) Let us consider a non zero element m of N and a non empty subset Z
of Rm. Suppose Z is open. Let us consider an element k of N and partial
functions f , g from Rm to R. Suppose

(i) f is continuously differentiable up to order of k and Z, and

(ii) g is continuously differentiable up to order of k and Z.

Then f · g is continuously differentiable up to order of k and Z. The
theorem is a consequence of (10), (1), (3), (9), and (7). Proof: Define
P[element of N] ≡ for every partial functions f , g from Rm to R such that
f is continuously differentiable up to order of $1 and Z and g is conti-
nuously differentiable up to order of $1 and Z holds f · g is continuously
differentiable up to order of $1 and Z. Set Z0 = (0 qua natural number).
P[0]. For every element k of N such that P[k] holds P[k + 1]. �

(12) Let us consider a non zero element m of N, a partial function f from
Rm to R, a non empty subset X of Rm, and a real number d. Suppose
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(i) X is open, and

(ii) f = X 7−→ d.

Let us consider an element x of Rm. If x ∈ X, then f is differentiable in
x and f ′(x) = Rm 7−→ 0.

(13) Let us consider a non zero element m of N, a partial function f from
Rm to R, a non empty subset X of Rm, and a real number d. Suppose

(i) X is open, and

(ii) f = X 7−→ d.

Let us consider an element x0 of Rm and a real number r. Suppose

(iii) x0 ∈ X, and

(iv) 0 < r.

Then there exists a real number s such that

(v) 0 < s, and

(vi) for every element x1 of Rm such that x1 ∈ X and |x1 − x0| < s for
every element v of Rm, |f ′(x1)(v)− f ′(x0)(v)| ¬ r · |v|.

The theorem is a consequence of (12).

(14) Let us consider a non zero element m of N, a partial function f from
Rm to R, a non empty subset X of Rm, and a real number d. Suppose

(i) X is open, and

(ii) f = X 7−→ d.

Then

(iii) f is differentiable on X, and

(iv) dom f ′�X = X, and

(v) for every element x of Rm such that x ∈ X holds (f ′�X)x = Rm 7−→ 0.

The theorem is a consequence of (12).

(15) Let us consider a non zero element m of N, a partial function f from
Rm to R, a non empty subset X of Rm, a real number d, and an element
i of N. Suppose

(i) X is open, and

(ii) f = X 7−→ d, and

(iii) 1 ¬ i ¬ m.

Then

(iv) f is partially differentiable on X w.r.t. i, and

(v) f�iX is continuous on X.

The theorem is a consequence of (14) and (13).
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(16) Let us consider a non zero element m of N, an element i of N, a partial
function f from Rm to R, a non empty subset X of Rm, and a real number
d. Suppose

(i) X is open, and

(ii) f = X 7−→ d, and

(iii) 1 ¬ i ¬ m.

Then f�iX = X 7−→ 0. The theorem is a consequence of (15) and (12).

Let us consider a non zero element m of N, a non empty finite sequence I of
elements of N, a non empty subset X of Rm, a partial function f from Rm to
R, and a real number d. Now we state the propositions:

(17) Suppose X is open and f = X 7−→ d and rng I ⊆ Segm. Then

(i) (PartDiffSeq(f,X, I))(0) = X 7−→ d, and

(ii) for every element i of N such that 1 ¬ i ¬ len I holds
(PartDiffSeq(f,X, I))(i) = X 7−→ 0.

(18) Suppose X is open and f = X 7−→ d and rng I ⊆ Segm. Then

(i) f is partially differentiable on X w.r.t. I, and

(ii) f�IX is continuous on X.

Now we state the proposition:

(19) Let us consider a non zero element m of N, an element k of N, a non
empty subset X of Rm, a partial function f from Rm to R, and a real
number d. Suppose

(i) X is open, and

(ii) f = X 7−→ d.

Then f is continuously differentiable up to order of k and X. The theorem
is a consequence of (18).

Let m be a non zero element of N. Observe that there exists a non empty
subset of Rm which is open.

2. Definition of the Ck Space

Let m be a non zero element of N, k be an element of N, and X be a non
empty open subset of Rm. The functor the Ck functions of k and X yielding a
non empty subset of RAlgebraX is defined by the term

(Def. 2) {f where f is a partial function from Rm to R : f is continuously diffe-
rentiable up to order of k and X and dom f = X}.
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Let us note that the Ck functions of k and X is additively linearly closed
and multiplicatively closed.

The functor the R algebra of Ck functions of k and X yielding a subalgebra
of RAlgebraX is defined by the term

(Def. 3) 〈the Ck functions of k and X,mult(the Ck functions of k and X,

RAlgebraX),Add(the Ck functions of k andX,RAlgebraX),Mult(the Ck

functions of k and X,RAlgebraX),One(the Ck functions of k and
X,RAlgebraX),Zero(the Ck functions of k and X,RAlgebraX)〉.

Let us note that the R algebra of Ck functions of k and X is Abelian add-
associative right zeroed right complementable vector distributive scalar distri-
butive scalar associative scalar unital commutative associative right unital right
distributive and vector associative.

Now we state the propositions:

(20) Let us consider a non zero element m of N, an element k of N, a non
empty open subset X of Rm, vectors F , G, H of the R algebra of Ck

functions of k and X, and partial functions f , g, h from Rm to R. Suppose

(i) f = F , and

(ii) g = G, and

(iii) h = H.

Then H = F+G if and only if for every element x of X, h(x) = f(x)+g(x).

(21) Let us consider a non zero element m of N, an element k of N, a non
empty open subset X of Rm, vectors F , G, H of the R algebra of Ck

functions of k and X, partial functions f , g, h from Rm to R, and a real
number a. Suppose

(i) f = F , and

(ii) g = G.

Then G = a · F if and only if for every element x of X, g(x) = a · f(x).

(22) Let us consider a non zero element m of N, an element k of N, a non
empty open subset X of Rm, vectors F , G, H of the R algebra of Ck

functions of k and X, and partial functions f , g, h from Rm to R. Suppose

(i) f = F , and

(ii) g = G, and

(iii) h = H.

Then H = F ·G if and only if for every element x of X, h(x) = f(x) ·g(x).

Let us consider a non zero element m of N, an element k of N, and a non
empty open subset X of Rm. Now we state the propositions:

(23) 0α = X 7−→ 0, where α is the R algebra of Ck functions of k and X.

(24) 1α = X 7−→ 1, where α is the R algebra of Ck functions of k and X.
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