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Summary. In this article, we formalized L' space formed by complex-
valued partial functions [11], [15]. The real-valued case was formalized in [22]
and this article is its generalization.
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The notation and terminology used here have been introduced in the following
papers: [4], [10], 5], [19], [17], [6], [7], [1], [22], [3], [18], [13], [16], 8], [14], [23],
[24], [12], [20], [21], [2], and [9].

1. PRELIMINARIES OF COMPLEX LINEAR SPACE

Let D be a non empty set and let E' be a complex-membered set. One can
verify that every element of D—-FE is complex-valued.

Let D be a non empty set, let £ be a complex-membered set, and let F7,
F5 be elements of D-—E. Then F; + F5 is an element of D—>C. Then F} — Fy
is an element of D—-C. Then F} - F; is an element of D—C. Then Fj/F3 is an
element of D—-C.

Let D be a non empty set, let E be a complex-membered set, let F' be an
element of D—F, and let a be a complex number. Then a - F' is an element of
D-=C.

Let V be a non empty CLS structure and let V; be a subset of V. We say
that Vj is multiplicatively closed if and only if:
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(Def. 1)  For every complex number a and for every vector v of V' such that v € V}
holds a - v € V7.

Next we state the proposition

(1) Let V be a complex linear space and V; be a subset of V. Then V; is
linearly closed if and only if V; is add closed and multiplicatively closed.

Let V be a non empty CLS structure. One can verify that there exists a non
empty subset of V' which is add closed and multiplicatively closed.

Let X be a non empty CLS structure and let X; be a multiplicatively closed
non empty subset of X. The functor -(x,) yields a function from C x X; into
X7 and is defined by:

(Def. 2) - (x,) = (the external multiplication of X)[(C x X1).

In the sequel a, b, r denote complex numbers and V' denotes a complex linear
space.
We now state two propositions:

(2) Let V be an Abelian add-associative right zeroed vector distributive sca-
lar distributive scalar associative scalar unital non empty CLS structure,
V1 be a non empty subset of V', di be an element of V;, A be a binary ope-
ration on Vi, and M be a function from C x V; into V7. Suppose di = Oy
and A = (the addition of V') [ (V1) and M = (the external multiplication
of V)I(C x Vi). Then (Vi,dy, A, M) is Abelian, add-associative, right ze-
roed, vector distributive, scalar distributive, scalar associative, and scalar
unital.

(3) Let V be an Abelian add-associative right zeroed vector distributive
scalar distributive scalar associative scalar unital non empty CLS struc-
ture and V7, be an add closed multiplicatively closed non empty subset
of V. Suppose Oy € V1. Then (Vi,0v (€ Vi),add [(V1,V), (1)) is Abelian,
add-associative, right zeroed, vector distributive, scalar distributive, scalar
associative, and scalar unital.

2. QUASI-COMPLEX LINEAR SPACE OF PARTIAL FUNCTIONS

We follow the rules: A, B are non empty sets and f, g, h are elements of
ASC.
Let us consider A. The functor multcpfunc A yielding a binary operation on
A-5C is defined as follows:
(Def. 3) For all elements f, g of A=C holds (multepfunc A)(f,g) = f - g.
Let us consider A. The functor multcomplexcpfunc A yielding a function
from C x (A—-C) into A—-C is defined by:
(Def. 4) For every complex number a and for every element f of A-C holds
(multcomplexcpfunc A)(a, f) = a - f.



ON L! SPACE FORMED BY COMPLEX-VALUED . .. 351

Let D be a non empty set. The functor addcpfunc D yields a binary operation
on D—-C and is defined as follows:

(Def. 5) For all elements F;, Fy of D--C holds (addcpfunc D)(Fy, Fy) = Fy + F.
Let A be a set. The functor CPFuncZero A yields an element of A—~C and
is defined by:
(Def. 6) CPFuncZeroA = A +— Oc.
Let A be a set. The functor CPFuncUnit A yielding an element of A—-C is
defined as follows:
(Def. 7) CPFuncUnit A = A — 1c.
The following propositions are true:
(4) h = (addcpfunc A)(f, g) iff dom h = dom fNdom g and for every element
x of A such that 2 € dom h holds h(z) = f(z) + g(z).

(5) h = (multcpfunc A)(f, g) iff domh = dom f N dom g and for every ele-
ment = of A such that z € domh holds h(x) = f(x) - g(x).

(6) CPFuncZero A # CPFuncUnit A.
(7)  h = (multcomplexcpfunc A)(a, f) iff domh = dom f and for every ele-
ment x of A such that x € dom f holds h(z) = a- f(z).

Let us consider A. Note that addcpfunc A is commutative and associative.
Observe that multcpfunc A is commutative and associative.
One can prove the following propositions:
(8) CPFuncUnit A is a unity w.r.t. multcpfunc A.
(9) CPFuncZero A is a unity w.r.t. addcpfunc A.
(10) (addcpfunc A)(f, (multcomplexcpfunc A)(—1¢, f)) =
CPFuncZero A| dom f.
(11) (multcomplexcpfunc A)(1c, f) = f.
(12)  (multcomplexcpfunc A)(a, (multcomplexcpfunc A)(b, f)) =
(multcomplexcpfunc A)(a - b, f).
(13) (addcpfunc A)((multcomplexcpfunc A)(a, f),
(multcomplexcpfunc A)(b, f)) = (multcomplexcpfunc A)(a + b, f).
(14) (multepfunc A)(f, (addcpfunc A)(g, h)) =
(addcpfunc A) ((multepfunc A)(f, g), (multcpfunc A)(f, h)).
(15) (multepfunc A)((multcomplexcpfunc A)(a, f),g) =
(multcomplexcpfunc A)(a, (multcpfunc A)(f, g)).
Let us consider A. The functor CLSp PFunct A yields a non empty CLS
structure and is defined as follows:
(Def. 8) CLSp PFunct A =
(A-C, CPFuncZero A, addcpfunc A, multcomplexcpfunc A).
In the sequel u, v, w are vectors of CLSp PFunct A.
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Note that CLSp PFunct A is strict, Abelian, add-associative, right zeroed,
vector distributive, scalar distributive, scalar associative, and scalar unital.

3. QUASI-COMPLEX LINEAR SPACE OF INTEGRABLE FUNCTIONS

For simplicity, we use the following convention: X is a non empty set, x is
an element of X, S is a o-field of subsets of X, M is a o-measure on S, E, A
are elements of S, and f, g, h, f1, g1 are partial functions from X to C.
Let us consider X and let f be a partial function from X to C. Note that
| f| is non-negative.
Next we state the proposition
(16) Let f be a partial function from X to C. Suppose dom f € S and for
every z such that z € dom f holds 0 = f(z). Then f is integrable on M
and [ fdM =0.
Let X be a non empty set, let S be a o-field of subsets of X, and let M be
a o-measure on S. The functor L CFunctions M yielding a non empty subset of
CLSp PFunct X is defined by the condition (Def. 9).
(Def. 9) Lj;CFunctions M = {f; f ranges over partial functions from X to C:
VN, - element of § (M(N1) =0 A dom f = N1¢ A f is integrable on M)}.
The following propositions are true:
(17) If f, g € LiCFunctions M, then f + g € LjCFunctions M.
(18) 1If f € LiCFunctions M, then a - f € LjCFunctions M.

Note that L;CFunctions M is multiplicatively closed and add closed.

The functor CLSp LjFunct M yielding a non empty CLS structure is defined
by:

(Def. 10) CLSp LiFunct M = (L;CFunctions M, Ocr.8p PFunct x (€ L1 CFunctions M),
add |(L; CFunctions M, CLSp PFunct X), 1., CFunctions M) -

One can verify that CLSp LiFunct M is strict, Abelian, add-associative, ri-
ght zeroed, vector distributive, scalar distributive, scalar associative, and scalar
unital.

4. QUOTIENT SPACE OF QUASI-COMPLEX LINEAR SPACE OF INTEGRABLE
FuNcTIiONS

In the sequel v, u are vectors of CLSp LjFunct M.
Next we state two propositions:

(19) If f=v and g = u, then f+g=v+ u.

(20) If f=wu,thena-f=a-u.
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Let X be a non empty set, let S be a o-field of subsets of X, let M be a
o-measure on S, and let f, g be partial functions from X to C. We say that f
a.e.cpfunc = g and M if and only if:

(Def. 11) There exists an element E of S such that M(E) =0 and f|E° = g[E°.
We now state several propositions:
(21) Suppose f = u. Then
(i) w4+ (—1¢) u= (X +— 0c)[dom f, and
(ii)  there exist partial functions v, g from X to C such that v, g €
L;CFunctions M and v = u+(—1¢)-u and g = X —— Oc and v a.e.cpfunc
= g and M.
(22) f a.e.cpfunc = f and M.
(23) If f a.e.cpfunc = g and M, then g a.e.cpfunc = f and M.
(24) 1If f a.e.cpfunc = g and M and g a.e.cpfunc = h and M, then f a.e.cpfunc
= h and M.
(25) If f a.e.cpfunc = f; and M and g a.e.cpfunc = g; and M, then f + g
a.e.cpfunc = f; + g1 and M.
(26) If f a.e.cpfunc = g and M, then a - f a.e.cpfunc = a - g and M.
Let X be a non empty set, let S be a o-field of subsets of X, and let M be

a o-measure on S. The almost zero cfunctions of M yields a non empty subset
of CLSp LiFunct M and is defined by the condition (Def. 12).

(Def. 12) The almost zero cfunctions of M = {f; f ranges over partial functions
from X to C: f € LjCFunctions M A f a.e.cpfunc = X —— Oc and M }.

One can prove the following proposition
(27) (X +—0c)+ (X+—0c)=X+—0canda- (X +—0c) =X Oc.
Let X be a non empty set, let S be a o-field of subsets of X, and let M be
a o-measure on S. One can check that the almost zero cfunctions of M is add
closed and multiplicatively closed.
One can prove the following proposition
(28) OcLsp LiFunct M = X —— Oc and Ocr.sp 1, Funct M € the almost zero cfunc-
tions of M.
Let X be a non empty set, let S be a o-field of subsets of X, and let M be a

o-measure on S. The clsp almost zero functions of M yields a non empty CLS
structure and is defined by the condition (Def. 13).

(Def. 13) The clsp almost zero functions of M = (the almost zero cfunctions of
M, OcLsp LiFunct M (€ the almost zero cfunctions of M), add |(the almost
zero cfunctions of M, CLSp Ly Funct M)7 ‘the almost zero cfunctions of M)

Let X be a non empty set, let S be a o-field of subsets of X, and let M
be a o-measure on S. One can check that CLSp LiFunct M is strict, Abelian,
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add-associative, right zeroed, vector distributive, scalar distributive, scalar as-
sociative, and scalar unital.

In the sequel v, u are vectors of the clsp almost zero functions of M.

One can prove the following proposition

(29) If f=vand g =u, then f+g=v+u.

Let X be a non empty set, let S be a o-field of subsets of X, let M be
a o-measure on S, and let f be a partial function from X to C. The functor
a.e-Ceq-class(f, M) yields a subset of L CFunctions M and is defined as follows:

(Def. 14) a.e-Ceqg-class(f, M) = {g; g ranges over partial functions from X to C:
g € LiCFunctions M A f € LjCFunctions M A f a.e.cpfunc = g and

Next we state several propositions:

(30) If f, g € LiCFunctions M, then g a.e.cpfunc = f and M iff g €
a.e-Ceq-class(f, M).

(31) If f € LiCFunctions M, then f € a.e-Ceq-class(f, M).

(32) 1If f, g € LiCFunctions M, then a.e-Ceq-class(f, M) = a.e-Ceq-class(g, M)
iff f a.e.cpfunc = g and M.

(33) If f, g € LiCFunctions M, then a.e-Ceq-class(f, M) = a.e-Ceq-class(g, M)
iff g € a.e-Ceq-class(f, M).

(34) If f, fi, 9, ¢1 € LijCFunctions M and a.e-Ceq-class(f,M) =
a.e-Ceqg-class(f1, M) and a.e-Ceq-class(g, M) = a.e-Ceq-class(g1, M), then
a.e-Ceqg-class(f + g, M) = a.e-Ceq-class(f1 + g1, M).

(35) If f, g € LiCFunctions M and a.e-Ceq-class(f, M) = a.e-Ceqg-class(g, M),
then a.e-Ceq-class(a - f, M) = a.e-Ceqg-class(a - g, M).

Let X be a non empty set, let S be a o-field of subsets of X, and let M be a
o-measure on S. The functor CCosetSet M yields a non empty family of subsets
of L CFunctions M and is defined by:

(Def. 15) CCosetSet M = {a.e-Ceq-class(f, M); f ranges over partial functions
from X to C: f € L;CFunctions M }.

Let X be a non empty set, let .S be a o-field of subsets of X, and let M
be a o-measure on S. The functor addCCoset M yields a binary operation on
CCosetSet M and is defined by the condition (Def. 16).

(Def. 16) Let A, B be elements of CCosetSet M and a, b be partial functions
from X to C. If a € A and b € B, then (addCCoset M)(A,B) =
a.e-Ceq-class(a + b, M).

Let X be a non empty set, let S be a o-field of subsets of X, and let M be a
o-measure on S. The functor zeroCCoset M yielding an element of CCosetSet M
is defined by:

(Def. 17)  zeroCCoset M = a.e-Ceq-class(X —— Oc, M).
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Let X be a non empty set, let .S be a o-field of subsets of X, and let M
be a g-measure on S. The functor ImultCCoset M yields a function from C x
CCosetSet M into CCosetSet M and is defined by the condition (Def. 18).

(Def. 18) Let z be a complex number, A be an element of CCosetSet M, and f be
a partial function from X to C. If f € A, then (ImultCCoset M)(z, A) =
a.e-Ceq-class(z - f, M).

Let X be a non empty set, let S be a o-field of subsets of X, and let M
be a o-measure on S. The functor Pre-L-CSpace M yields a strict Abelian add-
associative right zeroed right complementable vector distributive scalar distri-

butive scalar associative scalar unital non empty CLS structure and is defined
by the conditions (Def. 19).

(Def. 19)(1)  The carrier of Pre-L-CSpace M = CCosetSet M,

(ii)  the addition of Pre-L-CSpace M = addCCoset M,

(i)  Opre-1.-CSpace M = zeroCCoset M, and
)

(iv)  the external multiplication of Pre-L-CSpace M = lmultCCoset M.

5. COMPLEX NORMED SPACE OF INTEGRABLE FUNCTIONS

Next we state several propositions:

(36) If f, g € LiCFunctions M and f a.e.cpfunc = g and M, then [ fdM =
JgdM.

(37) 1If f is integrable on M, then [ fdM € C and [|f|dM € R and |f] is
integrable on M.

(38) If f, g € LiCFunctions M and f a.e.cpfunc = g and M, then |f| =M |g|
and [ |f|dM = [|g|dM.

(39) If there exists a vector x of Pre-L-CSpace M such that f, g € z, then f
a.e.cpfunc = g and M and f, g € LjCFunctions M.

(40) There exists a function Ny from the carrier of Pre-L-CSpace M into R
such that for every point x of Pre-L-CSpace M holds there exists a partial
function f from X to C such that f € z and Na(z) = [|f|dM.

In the sequel x is a point of Pre-L-CSpace M.
The following two propositions are true:

(41) If f € x, then f is integrable on M and f € L;CFunctions M and |f] is
integrable on M.

(42) If f, g € x, then f a.e.cpfunc = g and M and [ fdM = [gdM and
JIf1dM = [lg|dM.

Let X be a non empty set, let S be a o-field of subsets of X, and let M be

a o-measure on S. The functor L-1-CNorm M yields a function from the carrier
of Pre-L-CSpace M into R and is defined by:
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(Def. 20) For every point x of Pre-L-CSpace M there exists a partial function f
from X to C such that f € z and (L-1-CNorm M)(x) = [|f|dM.

Let X be a non empty set, let S be a o-field of subsets of X, and let M
be a o-measure on S. The functor L-1-CSpace M yields a non empty complex
normed space structure and is defined as follows:

(Def. 21) L-1-CSpaceM = (the carrier of Pre-L-CSpace M, the zero of
Pre-L-CSpace M, the addition of Pre-L-CSpace M, the external multipli-
cation of Pre-L-CSpace M, L-1-CNorm M).

In the sequel z denotes a point of L-1-CSpace M.
Next we state several propositions:

(43)(1)  There exists a partial function f from X to C such that f €

L;CFunctions M and = = a.e-Ceq-class(f, M) and ||z| = [|f|dM, and
(i)  for every partial function f from X to C such that f € z holds

JIFIAM = |z

(44) 1If f € x, then z = a.e-Ceq-class(f, M) and ||z|| = [|f|dM.

(45) If fexand g€y, then f+g€x+yandif f€x, thena-f€a-x.

(46) If f € LyCFunctions M and [|f|dM = 0, then f a.e.cpfunc = X —— O¢
and M.

(47) 1If f, g € LiCFunctions M, then [ |f + g|dM < [|f|dM + [ |g|dM.

Let X be a non empty set, let S be a o-field of subsets of X, and let M be a o-
measure on S. One can check that L-1-CSpace M is complex normed space-like,
vector distributive, scalar distributive, scalar associative, scalar unital, Abelian,
add-associative, right zeroed, and right complementable.

REFERENCES

[1] Jonathan Backer, Piotr Rudnicki, and Christoph Schwarzweller. Ring ideals. Formalized
Mathematics, 9(3):565-582, 2001.
[2] Jozef Bialas. Series of positive real numbers. Measure theory. Formalized Mathematics,
2(1):173-183, 1991.
[3] Jozef Biatas. The o-additive measure theory. Formalized Mathematics, 2(2):263-270,
1991.
[4] Czestaw Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[6] Czestaw Bylinski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[6] Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.
[7] Czestaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
1990.
[8] Czestaw Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[9] Czestaw Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,
1990.
[10] Noboru Endou. Complex linear space and complex normed space. Formalized Mathema-
tics, 12(2):93-102, 2004.
[11] P. R. Halmos. Measure Theory. Springer-Verlag, 1974.
[12] Jarostaw Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the
set of real numbers. Formalized Mathematics, 3(2):279-288, 1992.



ON L' SPACE FORMED BY COMPLEX-VALUED . ..

Keiko Narita, Noboru Endou, and Yasunari Shidama. Integral of complex-valued measu-
rable function. Formalized Mathematics, 16(4):319-324, 2008, doi:10.2478/v10037-008-

0039-6.
Andrzej Nedzusiak. o-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.

Walter Rudin. Real and Complexr Analysis. Mc Graw-Hill, Inc., 1974.

Yasunari Shidama and Noboru Endou. Integral of real-valued measurable function. For-
malized Mathematics, 14(4):143-152, 2006, doi:10.2478/v10037-006-0018-8.

Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329-334, 1990.

Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341—
347, 2003.

Andrzej Trybulec and Agata Darmochwal. Boolean domains. Formalized Mathematics,
1(1):187-190, 1990.

Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296,
1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Yasushige Watase, Noboru Endou, and Yasunari Shidama. On L' space for-
med by real-valued partial functions. Formalized Mathematics, 16(4):361-369, 2008,
doi:10.2478 /v10037-008-0044-9.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186,
1990.

Received August 27, 2012



