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Summary. In this article, we formalized L1 space formed by complex-
valued partial functions [11], [15]. The real-valued case was formalized in [22]
and this article is its generalization.
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The notation and terminology used here have been introduced in the following
papers: [4], [10], [5], [19], [17], [6], [7], [1], [22], [3], [18], [13], [16], [8], [14], [23],
[24], [12], [20], [21], [2], and [9].

1. Preliminaries of Complex Linear Space

Let D be a non empty set and let E be a complex-membered set. One can
verify that every element of D→̇E is complex-valued.

Let D be a non empty set, let E be a complex-membered set, and let F1,
F2 be elements of D→̇E. Then F1 + F2 is an element of D→̇C. Then F1 − F2

is an element of D→̇C. Then F1 · F2 is an element of D→̇C. Then F1/F2 is an
element of D→̇C.

Let D be a non empty set, let E be a complex-membered set, let F be an
element of D→̇E, and let a be a complex number. Then a · F is an element of
D→̇C.

Let V be a non empty CLS structure and let V1 be a subset of V . We say
that V1 is multiplicatively closed if and only if:
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(Def. 1) For every complex number a and for every vector v of V such that v ∈ V1

holds a · v ∈ V1.

Next we state the proposition

(1) Let V be a complex linear space and V1 be a subset of V . Then V1 is
linearly closed if and only if V1 is add closed and multiplicatively closed.

Let V be a non empty CLS structure. One can verify that there exists a non
empty subset of V which is add closed and multiplicatively closed.

Let X be a non empty CLS structure and let X1 be a multiplicatively closed
non empty subset of X. The functor ·(X1) yields a function from C × X1 into
X1 and is defined by:

(Def. 2) ·(X1) = (the external multiplication of X)�(C×X1).

In the sequel a, b, r denote complex numbers and V denotes a complex linear
space.

We now state two propositions:

(2) Let V be an Abelian add-associative right zeroed vector distributive sca-
lar distributive scalar associative scalar unital non empty CLS structure,
V1 be a non empty subset of V , d1 be an element of V1, A be a binary ope-
ration on V1, and M be a function from C× V1 into V1. Suppose d1 = 0V
and A = (the addition of V ) � (V1) and M = (the external multiplication
of V )�(C × V1). Then 〈V1, d1, A,M〉 is Abelian, add-associative, right ze-
roed, vector distributive, scalar distributive, scalar associative, and scalar
unital.

(3) Let V be an Abelian add-associative right zeroed vector distributive
scalar distributive scalar associative scalar unital non empty CLS struc-
ture and V1 be an add closed multiplicatively closed non empty subset
of V . Suppose 0V ∈ V1. Then 〈V1, 0V (∈ V1), add |(V1, V ), ·(V1)〉 is Abelian,
add-associative, right zeroed, vector distributive, scalar distributive, scalar
associative, and scalar unital.

2. Quasi-Complex Linear Space of Partial Functions

We follow the rules: A, B are non empty sets and f , g, h are elements of
A→̇C.

Let us consider A. The functor multcpfuncA yielding a binary operation on
A→̇C is defined as follows:

(Def. 3) For all elements f , g of A→̇C holds (multcpfuncA)(f, g) = f · g.
Let us consider A. The functor multcomplexcpfuncA yielding a function

from C× (A→̇C) into A→̇C is defined by:

(Def. 4) For every complex number a and for every element f of A→̇C holds
(multcomplexcpfuncA)(a, f) = a · f.
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LetD be a non empty set. The functor addcpfuncD yields a binary operation
on D→̇C and is defined as follows:

(Def. 5) For all elements F1, F2 of D→̇C holds (addcpfuncD)(F1, F2) = F1 +F2.

Let A be a set. The functor CPFuncZeroA yields an element of A→̇C and
is defined by:

(Def. 6) CPFuncZeroA = A 7−→ 0C.

Let A be a set. The functor CPFuncUnitA yielding an element of A→̇C is
defined as follows:

(Def. 7) CPFuncUnitA = A 7−→ 1C.

The following propositions are true:

(4) h = (addcpfuncA)(f, g) iff domh = dom f∩dom g and for every element
x of A such that x ∈ domh holds h(x) = f(x) + g(x).

(5) h = (multcpfuncA)(f, g) iff domh = dom f ∩ dom g and for every ele-
ment x of A such that x ∈ domh holds h(x) = f(x) · g(x).

(6) CPFuncZeroA 6= CPFuncUnitA.

(7) h = (multcomplexcpfuncA)(a, f) iff domh = dom f and for every ele-
ment x of A such that x ∈ dom f holds h(x) = a · f(x).

Let us consider A. Note that addcpfuncA is commutative and associative.
Observe that multcpfuncA is commutative and associative.
One can prove the following propositions:

(8) CPFuncUnitA is a unity w.r.t. multcpfuncA.

(9) CPFuncZeroA is a unity w.r.t. addcpfuncA.

(10) (addcpfuncA)(f, (multcomplexcpfuncA)(−1C, f)) =
CPFuncZeroA�dom f.

(11) (multcomplexcpfuncA)(1C, f) = f.

(12) (multcomplexcpfuncA)(a, (multcomplexcpfuncA)(b, f)) =
(multcomplexcpfuncA)(a · b, f).

(13) (addcpfuncA)((multcomplexcpfuncA)(a, f),
(multcomplexcpfuncA)(b, f)) = (multcomplexcpfuncA)(a+ b, f).

(14) (multcpfuncA)(f, (addcpfuncA)(g, h)) =
(addcpfuncA)((multcpfuncA)(f, g), (multcpfuncA)(f, h)).

(15) (multcpfuncA)((multcomplexcpfuncA)(a, f), g) =
(multcomplexcpfuncA)(a, (multcpfuncA)(f, g)).

Let us consider A. The functor CLSp PFunctA yields a non empty CLS
structure and is defined as follows:

(Def. 8) CLSp PFunctA =
〈A→̇C,CPFuncZeroA, addcpfuncA,multcomplexcpfuncA〉.

In the sequel u, v, w are vectors of CLSp PFunctA.
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Note that CLSp PFunctA is strict, Abelian, add-associative, right zeroed,
vector distributive, scalar distributive, scalar associative, and scalar unital.

3. Quasi-Complex Linear Space of Integrable Functions

For simplicity, we use the following convention: X is a non empty set, x is
an element of X, S is a σ-field of subsets of X, M is a σ-measure on S, E, A
are elements of S, and f , g, h, f1, g1 are partial functions from X to C.

Let us consider X and let f be a partial function from X to C. Note that
|f | is non-negative.

Next we state the proposition

(16) Let f be a partial function from X to C. Suppose dom f ∈ S and for
every x such that x ∈ dom f holds 0 = f(x). Then f is integrable on M

and
∫
f dM = 0.

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be
a σ-measure on S. The functor L1CFunctionsM yielding a non empty subset of
CLSp PFunctX is defined by the condition (Def. 9).

(Def. 9) L1CFunctionsM = {f ; f ranges over partial functions from X to C:∨
N1 : element of S (M(N1) = 0 ∧ dom f = N1

c ∧ f is integrable on M)}.
The following propositions are true:

(17) If f , g ∈ L1CFunctionsM, then f + g ∈ L1CFunctionsM.

(18) If f ∈ L1CFunctionsM, then a · f ∈ L1CFunctionsM.

Note that L1CFunctionsM is multiplicatively closed and add closed.
The functor CLSp L1FunctM yielding a non empty CLS structure is defined

by:

(Def. 10) CLSp L1FunctM = 〈L1CFunctionsM, 0CLSp PFunctX(∈ L1CFunctionsM),
add |(L1CFunctionsM,CLSp PFunctX), ·L1CFunctionsM 〉.

One can verify that CLSp L1FunctM is strict, Abelian, add-associative, ri-
ght zeroed, vector distributive, scalar distributive, scalar associative, and scalar
unital.

4. Quotient Space of Quasi-Complex Linear Space of Integrable
Functions

In the sequel v, u are vectors of CLSp L1FunctM.

Next we state two propositions:

(19) If f = v and g = u, then f + g = v + u.

(20) If f = u, then a · f = a · u.
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Let X be a non empty set, let S be a σ-field of subsets of X, let M be a
σ-measure on S, and let f , g be partial functions from X to C. We say that f
a.e.cpfunc = g and M if and only if:

(Def. 11) There exists an element E of S such that M(E) = 0 and f�Ec = g�Ec.

We now state several propositions:

(21) Suppose f = u. Then
(i) u+ (−1C) · u = (X 7−→ 0C)�dom f, and
(ii) there exist partial functions v, g from X to C such that v, g ∈

L1CFunctionsM and v = u+(−1C) ·u and g = X 7−→ 0C and v a.e.cpfunc
= g and M .

(22) f a.e.cpfunc = f and M .

(23) If f a.e.cpfunc = g and M , then g a.e.cpfunc = f and M .

(24) If f a.e.cpfunc = g and M and g a.e.cpfunc = h and M , then f a.e.cpfunc
= h and M .

(25) If f a.e.cpfunc = f1 and M and g a.e.cpfunc = g1 and M , then f + g

a.e.cpfunc = f1 + g1 and M .

(26) If f a.e.cpfunc = g and M , then a · f a.e.cpfunc = a · g and M .

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be
a σ-measure on S. The almost zero cfunctions of M yields a non empty subset
of CLSp L1FunctM and is defined by the condition (Def. 12).

(Def. 12) The almost zero cfunctions of M = {f ; f ranges over partial functions
from X to C: f ∈ L1CFunctionsM ∧ f a.e.cpfunc = X 7−→ 0C and M}.

One can prove the following proposition

(27) (X 7−→ 0C) + (X 7−→ 0C) = X 7−→ 0C and a · (X 7−→ 0C) = X 7−→ 0C.

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be
a σ-measure on S. One can check that the almost zero cfunctions of M is add
closed and multiplicatively closed.

One can prove the following proposition

(28) 0CLSp L1FunctM = X 7−→ 0C and 0CLSp L1FunctM ∈ the almost zero cfunc-
tions of M .

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be a
σ-measure on S. The clsp almost zero functions of M yields a non empty CLS
structure and is defined by the condition (Def. 13).

(Def. 13) The clsp almost zero functions of M = 〈the almost zero cfunctions of
M , 0CLSp L1FunctM (∈ the almost zero cfunctions of M), add |(the almost
zero cfunctions of M , CLSp L1FunctM), ·the almost zero cfunctions of M 〉.

Let X be a non empty set, let S be a σ-field of subsets of X, and let M
be a σ-measure on S. One can check that CLSp L1FunctM is strict, Abelian,
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add-associative, right zeroed, vector distributive, scalar distributive, scalar as-
sociative, and scalar unital.

In the sequel v, u are vectors of the clsp almost zero functions of M .
One can prove the following proposition

(29) If f = v and g = u, then f + g = v + u.

Let X be a non empty set, let S be a σ-field of subsets of X, let M be
a σ-measure on S, and let f be a partial function from X to C. The functor
a.e-Ceq-class(f,M) yields a subset of L1CFunctionsM and is defined as follows:

(Def. 14) a.e-Ceq-class(f,M) = {g; g ranges over partial functions from X to C:
g ∈ L1CFunctionsM ∧ f ∈ L1CFunctionsM ∧ f a.e.cpfunc = g and
M}.

Next we state several propositions:

(30) If f , g ∈ L1CFunctionsM, then g a.e.cpfunc = f and M iff g ∈
a.e-Ceq-class(f,M).

(31) If f ∈ L1CFunctionsM, then f ∈ a.e-Ceq-class(f,M).

(32) If f , g ∈ L1CFunctionsM, then a.e-Ceq-class(f,M) = a.e-Ceq-class(g,M)
iff f a.e.cpfunc = g and M .

(33) If f , g ∈ L1CFunctionsM, then a.e-Ceq-class(f,M) = a.e-Ceq-class(g,M)
iff g ∈ a.e-Ceq-class(f,M).

(34) If f , f1, g, g1 ∈ L1CFunctionsM and a.e-Ceq-class(f,M) =
a.e-Ceq-class(f1,M) and a.e-Ceq-class(g,M) = a.e-Ceq-class(g1,M), then
a.e-Ceq-class(f + g,M) = a.e-Ceq-class(f1 + g1,M).

(35) If f , g ∈ L1CFunctionsM and a.e-Ceq-class(f,M) = a.e-Ceq-class(g,M),
then a.e-Ceq-class(a · f,M) = a.e-Ceq-class(a · g,M).

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be a
σ-measure on S. The functor CCosetSetM yields a non empty family of subsets
of L1CFunctionsM and is defined by:

(Def. 15) CCosetSetM = {a.e-Ceq-class(f,M); f ranges over partial functions
from X to C: f ∈ L1CFunctionsM}.

Let X be a non empty set, let S be a σ-field of subsets of X, and let M
be a σ-measure on S. The functor addCCosetM yields a binary operation on
CCosetSetM and is defined by the condition (Def. 16).

(Def. 16) Let A, B be elements of CCosetSetM and a, b be partial functions
from X to C. If a ∈ A and b ∈ B, then (addCCosetM)(A,B) =
a.e-Ceq-class(a+ b,M).

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be a
σ-measure on S. The functor zeroCCosetM yielding an element of CCosetSetM
is defined by:

(Def. 17) zeroCCosetM = a.e-Ceq-class(X 7−→ 0C,M).
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Let X be a non empty set, let S be a σ-field of subsets of X, and let M
be a σ-measure on S. The functor lmultCCosetM yields a function from C ×
CCosetSetM into CCosetSetM and is defined by the condition (Def. 18).

(Def. 18) Let z be a complex number, A be an element of CCosetSetM, and f be
a partial function from X to C. If f ∈ A, then (lmultCCosetM)(z,A) =
a.e-Ceq-class(z · f,M).

Let X be a non empty set, let S be a σ-field of subsets of X, and let M
be a σ-measure on S. The functor Pre-L-CSpaceM yields a strict Abelian add-
associative right zeroed right complementable vector distributive scalar distri-
butive scalar associative scalar unital non empty CLS structure and is defined
by the conditions (Def. 19).

(Def. 19)(i) The carrier of Pre-L-CSpaceM = CCosetSetM,

(ii) the addition of Pre-L-CSpaceM = addCCosetM,

(iii) 0Pre-L-CSpaceM = zeroCCosetM, and
(iv) the external multiplication of Pre-L-CSpaceM = lmultCCosetM.

5. Complex Normed Space of Integrable Functions

Next we state several propositions:

(36) If f , g ∈ L1CFunctionsM and f a.e.cpfunc = g and M , then
∫
f dM =∫

g dM.

(37) If f is integrable on M , then
∫
f dM ∈ C and

∫
|f | dM ∈ R and |f | is

integrable on M .

(38) If f , g ∈ L1CFunctionsM and f a.e.cpfunc = g and M , then |f | =M
a.e. |g|

and
∫
|f | dM =

∫
|g| dM.

(39) If there exists a vector x of Pre-L-CSpaceM such that f , g ∈ x, then f

a.e.cpfunc = g and M and f , g ∈ L1CFunctionsM.

(40) There exists a function N2 from the carrier of Pre-L-CSpaceM into R
such that for every point x of Pre-L-CSpaceM holds there exists a partial
function f from X to C such that f ∈ x and N2(x) =

∫
|f | dM.

In the sequel x is a point of Pre-L-CSpaceM.

The following two propositions are true:

(41) If f ∈ x, then f is integrable on M and f ∈ L1CFunctionsM and |f | is
integrable on M .

(42) If f , g ∈ x, then f a.e.cpfunc = g and M and
∫
f dM =

∫
g dM and∫

|f |dM =
∫
|g|dM.

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be
a σ-measure on S. The functor L-1-CNormM yields a function from the carrier
of Pre-L-CSpaceM into R and is defined by:
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(Def. 20) For every point x of Pre-L-CSpaceM there exists a partial function f

from X to C such that f ∈ x and (L-1-CNormM)(x) =
∫
|f | dM.

Let X be a non empty set, let S be a σ-field of subsets of X, and let M
be a σ-measure on S. The functor L-1-CSpaceM yields a non empty complex
normed space structure and is defined as follows:

(Def. 21) L-1-CSpaceM = 〈the carrier of Pre-L-CSpaceM, the zero of
Pre-L-CSpaceM, the addition of Pre-L-CSpaceM, the external multipli-
cation of Pre-L-CSpaceM,L-1-CNormM〉.

In the sequel x denotes a point of L-1-CSpaceM.

Next we state several propositions:

(43)(i) There exists a partial function f from X to C such that f ∈
L1CFunctionsM and x = a.e-Ceq-class(f,M) and ‖x‖ =

∫
|f | dM, and

(ii) for every partial function f from X to C such that f ∈ x holds∫
|f | dM = ‖x‖.

(44) If f ∈ x, then x = a.e-Ceq-class(f,M) and ‖x‖ =
∫
|f |dM.

(45) If f ∈ x and g ∈ y, then f + g ∈ x+ y and if f ∈ x, then a · f ∈ a · x.
(46) If f ∈ L1CFunctionsM and

∫
|f | dM = 0, then f a.e.cpfunc = X 7−→ 0C

and M .

(47) If f , g ∈ L1CFunctionsM, then
∫
|f + g|dM ≤

∫
|f |dM +

∫
|g|dM.

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be a σ-
measure on S. One can check that L-1-CSpaceM is complex normed space-like,
vector distributive, scalar distributive, scalar associative, scalar unital, Abelian,
add-associative, right zeroed, and right complementable.
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