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The Friendship Theorem!

Karol Pak
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Summary. In this article we prove the friendship theorem according to
the article [1], which states that if a group of people has the property that any
pair of persons have exactly one common friend, then there is a universal friend,
i.e. a person who is a friend of every other person in the group.
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The papers [3], [2], [6], [7], [11], [8], [9], [15], [14], [4], [13], [5], [17], [18], [12],
[16], and [10] provide the terminology and notation for this paper.

1. PRELIMINARIES

For simplicity, we adopt the following rules: =, y, z are sets, ¢, k, n are
natural numbers, R is a binary relation, P is a finite binary relation, and p, ¢
are finite sequences.

Let us consider P, z. Observe that P°x is finite.

We now state several propositions:

(1) R=R-.

(2) If R is symmetric, then R°z = R™!(x).

(3) If (p) = (pIk) = (q1n) ~ (¢In) and k < n < lenp, then p = (qn—x) ~
(q¢l(n ="k)).

(4) Ifn e domgqand p=(q,) " (gIn), then ¢ = (Pjienp—rn) ~ (p[(lenp —'n)).
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(5) If (px) ~ (plk) = (q1n) ~ (gIn), then there exists ¢ such that p = (q};) ~
(q19).
The scheme Sch deals with a non empty set .4, a non zero natural number
B, and a unary predicate P, and states that:
There exists a cardinal number C' such that B - C =
{F € AB: P[F]}
provided the following requirements are met:
e For all finite sequences p, g of elements of A such that p ™ ¢ is
B-element and P[p "~ ¢] holds Plg "~ p|, and
e For every element p of A® such that P[p] and for every natural
number ¢ such that ¢ < B and p = (pj;) ~ (p[) holds ¢ = 0.
One can prove the following propositions:

(6) Let X be a non empty set, A be a non empty finite sub-
set of X, and P be a function from X into 2%. Suppose

that for every z such that x € X holds P(x) = n. Then
(FeXMLF(1)e A AN (i€Segk = F(i+1) € P(F(i))} = A -
k
ne.

(7) If lenp is prime and there exists i such that 0 < i < lenp and p =
(pyi) ™ (pl4), then rngp C {p(1)}.

2. THE FRIENDSHIP GRAPH

Let us consider R and let  be an element of field R. We say that x is
universal friend if and only if:
(Def. 1) For every y such that y € field R \ {z} holds (z, y) € R.
Let R be a binary relation. We say that R has universal friend if and only
if:
(Def. 2) There exists an element of field R which is universal friend.
Let R be a binary relation. We introduce R is without universal friend as an
antonym of R has universal friend.
Let R be a binary relation. We say that R is friendship graph like if and
only if:
(Def. 3) For all z, y such that z, y € field R and = # y there exists z such that
R°x N Coim(R,y) = {z}.
Let us observe that there exists a binary relation which is finite, symmetric,
irreflexive, and friendship graph like.
A friendship graph is a finite symmetric irreflexive friendship graph like
binary relation.
In the sequel Fj is a friendship graph.
The following propositions are true:
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8) 2| Fi°x.

9) Ifz,y € field [} and (z, y) ¢ I}, then [{°x = F;°y.

0) If Fy is without universal friend and z € field Fy, then }°z > 2.

1) If Fy is without universal friend and z, y € field F;, then F°z = Fi°.
)

If Fy is without universal friend and x € field Fy, then field F; = 1 +
Floa: . (Flo.fE — 1).

(13) For all elements z, y of field F} such that x is universal friend and x # y

there exists z such that F1°y = {x, 2z} and F1°z = {z,y}.

3. THE FRIENDSHIP THEOREM

Next we state the proposition

(14) If Fy is non empty, then F} has universal friend.
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