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Summary. This is a second preliminary article to prove the completeness
theorem of an extension of basic propositional temporal logic. We base it on the
proof of completeness for basic propositional temporal logic given in [17]. We
introduce two modified definitions of a subformula. In the former one we treat
until-formula as indivisible. In the latter one, we extend the set of subformulas of
until-formulas by a special disjunctive formula. This is needed to construct a tem-
poral model. We also define an ordered positive-negative pair of finite sequences
of formulas (PNP). PNPs represent states of a temporal model.

MML identifier: LTLAXIO3, version: 7.14.01 4.183.1153

The notation and terminology used here have been introduced in the following
papers: [21], [11], [24], [18], [4], [1], [26], [8], [22], [27], [10], [20], [2], [3], [5], [9],
[12], [19], [6], [7], [16], [15], [23], [25], [13], and [14].

1. Preliminaries

For simplicity, we adopt the following convention: A, B, p, q, r are elements
of the LTLB-WFF, n is an element of N, X is a subset of the LTLB-WFF, g is
a function from the LTLB-WFF into Boolean, and x is a set.

Next we state two propositions:
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(1) Let X be a non empty set, t be a finite sequence of elements of X, and
k be a natural number. If k + 1 ≤ len t, then t�k = 〈t(k + 1)〉 a (t�k+1).

(2) N 7−→ ∅ is a LTL Model.

Let us consider X. We say that X is without implication if and only if:

(Def. 1) For every p such that p ∈ X holds p is not conditional.

Let D be a set. The functor D∗1−1 yielding a set is defined by:

(Def. 2) For every x holds x ∈ D∗1−1 iff x is a one-to-one finite sequence of ele-
ments of D.

Let D be a set. One can verify that D∗1−1 is non empty.
Let D be a finite set. Observe that D∗1−1 is finite.
We now state the proposition

(3) For all sets D1, D2 such that D1 ⊆ D2 holds D1
∗
1−1 ⊆ D2

∗
1−1.

Let a1 be a set and let a2 be a subset of a1. Then a2
∗
1−1 is a non empty

subset of a1
∗
1−1.

Next we state the proposition

(4) For all one-to-one finite sequences F , G such that rngF misses rngG
holds F a G is one-to-one.

Let X be a set and let f , g be one-to-one finite sequences of elements of X.
Let us assume that rng f misses rng g. The functor f _ g yielding a one-to-one
finite sequence of elements of X is defined as follows:

(Def. 3) f _ g = f a g.

2. Set of Subformulas where an Until-formula is treated as
Indivisible and its Properties

The function τ̇ from the LTLB-WFF into 2the LTLB-WFF is defined as follows:

(Def. 4) τ̇(⊥t) = {⊥t} and τ̇(propn) = {propn} and τ̇(A ⇒ B) = {A ⇒ B} ∪
τ̇(A) ∪ τ̇(B) and τ̇(A U B) = {A U B}.

One can prove the following propositions:

(5) If A is not conditional, then τ̇(A) = {A}.
(6) p ∈ τ̇(p).

Let us consider p. Observe that τ̇(p) is non empty and finite.
One can prove the following propositions:

(7) If p⇒ q ∈ τ̇(r), then p, q ∈ τ̇(r).

(8) If p ∈ τ̇(q), then τ̇(p) ⊆ τ̇(q).

(9) If p U q ∈ τ̇(¬A), then p U q ∈ τ̇(A).

(10) If p U q ∈ τ̇(A&&B), then p U q ∈ τ̇(A) or p U q ∈ τ̇(B).

(11) If p ∈ τ̇(q) and p 6= q, then len p < len q.
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(12) τ̇(p) ⊆ τ̇(¬p).
(13) τ̇(q) ⊆ τ̇(p&& q).

(14) τ̇(q) ⊆ τ̇(p ∨ q).
Let us consider X. The functor τ(X) yields a subset of the LTLB-WFF and

is defined as follows:

(Def. 5) x ∈ τ(X) iff there exists A such that A ∈ X and x ∈ τ̇(A).

We now state two propositions:

(15) τ(X) =
⋃
{τ̇(p); p ranges over elements of the LTLB-WFF: p ∈ X}.

(16) X ⊆ τ(X).

Let X be an empty subset of the LTLB-WFF. One can check that τ(X) is
empty.

Let X be a finite subset of the LTLB-WFF. Note that τ(X) is finite.
Let X be a non empty subset of the LTLB-WFF. One can verify that τ(X)

is non empty.
The following propositions are true:

(17) τ(τ(X)) = τ(X).

(18) If X is without implication, then τ(X) = X.

(19) If p⇒ q ∈ τ(X), then p, q ∈ τ(X).

(20) If p&& q ∈ τ(X), then p, q ∈ τ(X).

(21) If p ∨ q ∈ τ(X), then p, q ∈ τ(X).

(22) If UN(p, q) ∈ τ(X), then p, q, p U q ∈ τ(X).

(23) If p ∈ τ(X), then τ̇(p) ⊆ τ(X).

3. Extended Set of Subformulas and its Properties

The function σ̇ from the LTLB-WFF into 2the LTLB-WFF is defined by:

(Def. 6) σ̇(⊥t) = {⊥t} and σ̇(propn) = {propn} and σ̇(A ⇒ B) = {A ⇒ B} ∪
σ̇(A) ∪ σ̇(B) and σ̇(A U B) = τ̇(UN(A,B)) ∪ σ̇(A) ∪ σ̇(B).

One can prove the following propositions:

(24) p U q ∈ σ̇(p U q).
(25) τ̇(p) ⊆ σ̇(p).

Let us consider p. Note that σ̇(p) is non empty and finite.
The following proposition is true

(26) If p ∈ σ̇(A U B), then if A U B ∈ σ̇(q), then p ∈ σ̇(q).

Let us consider X. The functor σ(X) yielding a subset of 2the LTLB-WFF is
defined as follows:

(Def. 7) σ(X) = {σ̇(A);A ranges over elements of the LTLB-WFF: A ∈ X}.
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Let X be a finite subset of the LTLB-WFF. Note that σ(X) is finite and
finite-membered.

4. An Ordered Pair of Finite Sequences of Formulas.
PNP-formula, Consistent PNP and Complete PNP

A positive-negative pair is an element of
(the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1.

In the sequel P , Q, P1, R are positive-negative pairs.
Let us consider P . Then P1 is a one-to-one finite sequence of elements of

the LTLB-WFF. Then P2 is a one-to-one finite sequence of elements of the
LTLB-WFF.

Let us consider P . The functor rngP yielding a finite subset of the LTLB-
WFF is defined by:

(Def. 8) rngP = rng(P1) ∪ rng(P2).

Let f1, f2 be one-to-one finite sequences of elements of the LTLB-WFF.
Then 〈〈f1, f2〉〉 is a positive-negative pair.

Let us consider P . The functor P̂ yielding an element of the LTLB-WFF is
defined by:

(Def. 9) P̂ = (conjunction(P1))len conjunction(P1)
&&(conjunction negation(P2))len conjunction negation(P2).

We now state three propositions:

(27) F̂ = >t &&>t, where F = 〈〈ε(the LTLB-WFF), ε(the LTLB-WFF)〉〉.
(28) If A ∈ rng(P1), then ∅the LTLB-WFF ` P̂ ⇒ A.

(29) If A ∈ rng(P2), then ∅the LTLB-WFF ` P̂ ⇒ ¬A.
Let us consider P . We say that P is inconsistent if and only if:

(Def. 10) ∅the LTLB-WFF ` ¬P̂ .
Let us consider P . We introduce P is consistent as an antonym of P is

inconsistent.
We say that P is complete if and only if:

(Def. 11) τ(rngP ) = rngP.

One can check that 〈〈ε(the LTLB-WFF), ε(the LTLB-WFF)〉〉 is consistent as a po-
sitive-negative pair.

Let us observe that 〈〈ε(the LTLB-WFF), ε(the LTLB-WFF)〉〉 is complete as a posi-
tive-negative pair.

One can check that there exists a positive-negative pair which is consistent
and complete.

Let P be a consistent positive-negative pair. Observe that 〈〈P1, P2〉〉 is con-
sistent as a positive-negative pair.
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5. The Properties of Consistent PNPs

One can prove the following propositions:

(30) For every consistent positive-negative pair P holds rng(P1) misses
rng(P2).

(31) Let P be a consistent positive-negative pair. If A /∈ rngP, then 〈〈(P1) _
〈A〉, P2〉〉 is consistent or 〈〈P1, (P2) _ 〈A〉〉〉 is consistent.

(32) For every consistent positive-negative pair P holds ⊥t /∈ rng(P1).

(33) Let P be a consistent positive-negative pair. Suppose A, B, A ⇒ B ∈
rngP. Then A⇒ B ∈ rng(P1) if and only if A ∈ rng(P2) or B ∈ rng(P1).

(34) Let P be a consistent positive-negative pair. Then there exists a con-
sistent positive-negative pair P1 such that rng(P1) ⊆ rng((P1)1) and
rng(P2) ⊆ rng((P1)2) and τ(rngP ) = rngP1.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[3] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421–427, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[5] Grzegorz Bancerek. König’s lemma. Formalized Mathematics, 2(3):397–402, 1991.
[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[13] Mariusz Giero. The axiomatization of propositional linear time temporal logic. Formalized
Mathematics, 19(2):113–119, 2011, doi: 10.2478/v10037-011-0018-1.

[14] Mariusz Giero. The derivations of temporal logic formulas. Formalized Mathematics,
20(3):215–219, 2012, doi: 10.2478/v10037-012-0025-x.

[15] Adam Grabowski. Hilbert positive propositional calculus. Formalized Mathematics,
8(1):69–72, 1999.

[16] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-
matics, 3(2):275–278, 1992.

[17] Fred Kröger and Stephan Merz. Temporal Logic and State Systems. Springer-Verlag,
2008.

[18] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[20] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[21] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[22] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97–105, 1990.



226 mariusz giero

[23] Andrzej Trybulec. Defining by structural induction in the positive propositional language.
Formalized Mathematics, 8(1):133–137, 1999.

[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[25] Edmund Woronowicz. Many argument relations. Formalized Mathematics, 1(4):733–737,

1990.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received May 7, 2012


