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Summary. In this article we formalize a quotient module of Z-module and
a vector space constructed by the quotient module. We formally prove that for a
Z-module V and a prime number p, a quotient module V/pV has the structure of
a vector space over Fp,. Z-module is necessary for lattice problems, LLL (Lenstra,
Lenstra and Lovdsz) base reduction algorithm and cryptographic systems with
lattices [14]. Some theorems in this article are described by translating theorems
in [20] and [19] into theorems of Z-module.

MML identifier: ZMODULO2, version: 7.14.01 4.183.1153

The terminology and notation used here have been introduced in the following
articles: [4], [1], [16], [3], [21], [9], [5], [6], [18], [13], [15], [17], [2], [7], [11], [24],
[25], [22], [20], [23], [12], [8], and [10].

1. QUOTIENT MODULE OF Z-MODULE AND VECTOR SPACE

For simplicity, we follow the rules: x is a set, V is a Z-module, u, v are
vectors of V', F', GG, H are finite sequences of elements of V', i is an element of
N, and f, g are sequences of V.

Let V be a Z-module and let a be an integer number. The functor a - V'
yielding a non empty subset of V' is defined by:

(Def. 1) a-V ={a-wv:v ranges over elements of V'}.

Let V' be a Z-module and let a be an integer number. The functor Zero(a, V)
yielding an element of a - V is defined as follows:

(Def. 2)  Zero(a,V) = 0y.
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Let V be a Z-module and let a be an integer number. The functor Add(a, V')

yielding a function from (a- V) X (a- V) into a - V is defined by:
(Def. 3) Add(a, V) = (the addition of V)[((a-V) x (a-V)).

Let V be a Z-module and let a be an integer number. The functor Mult(a, V')
yielding a function from Z x (a - V') into a - V is defined by:

(Def. 4) Mult(a, V) = (the external multiplication of V)[(Z x (a-V)).

Let V be a Z-module and let a be an integer number. The functor a o V'
yields a submodule of V' and is defined as follows:

(Def. 5) aoV = {(a-V,Zero(a,V),Add(a, V), Mult(a,V)).

Let V be a Z-module and let W be a submodule of V. The functor
CosetSet(V, W) yields a non empty family of subsets of V' and is defined as
follows:

(Def. 6) CosetSet(V, W) = {A : A ranges over cosets of W}.

Let V' be a Z-module and let W be a submodule of V. The functor
addCoset(V, W) yields a binary operation on CosetSet(V, W) and is defined as
follows:

(Def. 7) For all elements A, B of CosetSet(V, W) and for all vectors a, b of V such
that A = a+W and B = b+W holds (addCoset(V,W))(A, B) = a+b+W.

Let V' be a Z-module and let W be a submodule of V. The functor
zeroCoset(V, W) yielding an element of CosetSet(V, W) is defined by:

(Def. 8) zeroCoset(V, W) = the carrier of W.

Let V be a Z-module and let W be a submodule of V. The functor
ImultCoset(V, W) yields a function from Zx CosetSet(V, W) into CosetSet(V, W)
and is defined as follows:

(Def. 9) For every integer z and for every element A of CosetSet(V, W) and for
every vector a of V such that A = a+W holds (ImultCoset(V, W))(z, A) =
z-a+ W.

Let V be a Z-module and let W be a submodule of V. The functor
Z-ModuleQuot(V, W) yields a strict Z-module and is defined by the conditions
(Def. 10).

(Def. 10)(i)  The carrier of Z-ModuleQuot(V, W) = CosetSet(V, W),
(ii)  the addition of Z-ModuleQuot(V, W) = addCoset(V, W),
(i) 0z-ModuleQuot(v,w) = zeroCoset(V, W), and
(iv)  the external multiplication of Z-ModuleQuot(V, W) = ImultCoset(V, W).
The following propositions are true:
(1) Let p be an integer, V be a Z-module, W be a submodule of V, and
x be a vector of Z-ModuleQuot(V,W). If W = po V, then p -z =
0z-ModuleQuot(V,W)-
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(2) Let p, i be integers, V be a Z-module, W be a submodule of V', and
x be a vector of Z-ModuleQuot(V,W). If p # 0 and W = p o V, then
i-x = (i mod p)-x.

(3) Let p, g be integers, V' be a Z-module, W be a submodule of V', and v
be a vector of V. Suppose W =poV and p > 1 and ¢ > 1 and p and ¢
are relative prime. If ¢ - v = Oy, then v + W = 0z_noduleQuot(V,w) -

Let p be a prime number and let V be a Z-module. The functor
MultModpV (V, p) yields a function from (the carrier of GF(p)) x (the carrier
of Z-ModuleQuot(V,p o V')) into the carrier of Z-ModuleQuot(V,po V) and is
defined by the condition (Def. 11).

(Def. 11) Let a be an element of GF(p), ¢ be an integer, and = be an element of
Z-ModuleQuot(V,po V). If a = i mod p, then (MultModpV (V, p))(a,x) =
(i mod p) - x.

Let p be a prime number and let V be a Z-module. The functor
Z-MQVectSp(V, p) yielding a non empty strict vector space structure over GF(p)
is defined by:

(Def. 12)  Z-MQVectSp(V,p) = (the carrier of Z-ModuleQuot(V,p o V'), the ad-
dition of Z-ModuleQuot(V,p o V), the zero of Z-ModuleQuot(V,p o V),
MultModpV(V, p)).

Let p be a prime number and let V be a Z-module. Observe that
Z-MQVectSp(V, p) is scalar distributive, vector distributive, scalar associative,
scalar unital, add-associative, right zeroed, right complementable, and Abelian.

Let p be a prime number, let V' be a Z-module, and let v be a vector of
V. The functor Z-MtoMQV (V, p,v) yields a vector of Z-MQVectSp(V, p) and is
defined as follows:

(Def. 13)  Z-MtoMQV(V,p,v) =v+po V.

Let X be a Z-module. The functor MultINT* X yielding a function from
(the carrier of (ZR)) x (the carrier of X) into the carrier of X is defined by:

(Def. 14) MultINT* X = the external multiplication of X.

Let X be a Z-module. The functor PreNorms X yielding a non empty strict
vector space structure over Z® is defined by:

(Def. 15) PreNorms X = (the carrier of X, the addition of X, the zero of X,
MultINT* X).

Let X be a Z-module. Observe that PreNorms X is Abelian, add-associative,
right zeroed, right complementable, vector distributive, scalar distributive, sca-
lar associative, and scalar unital.

Let X be a left module over Z®. The functor MultINTx X yielding a function
from Z x the carrier of X into the carrier of X is defined as follows:

(Def. 16) MultINT* X = the left multiplication of X.
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Let X be a left module over ZR. The functor PreNorms X yields a non empty
strict Z-module structure and is defined as follows:

(Def. 17) PreNorms X = (the carrier of X, the zero of X, the addition of X,
MultINT* X).

Let X be a left module over ZE®. Note that PreNorms X is Abelian, add-
associative, right zeroed, right complementable, scalar distributive, vector di-
stributive, scalar associative, and scalar unital.

We now state four propositions:

(4) Let X be a Z-module, v, w be elements of X, and v, w; be elements of
PreNorms X. If v = v; and w = wy, then v+ w = v1 + w; and v — w =
V] — WwW1.

(5) Let X be a Z-module, v be an element of X, v; be an element of
PreNorms X, a be an integer, and a; be an element of ZR. If v = v
and a = ay, then a-v =a; - vy.

(6) Let X be a left module over ZR, v, w be elements of X, and vy, w; be
elements of PreNorms X. If v = v1 and w = wy, then v +w = v; + wy and
V—WwW =771 —wW.

(7) Let X be a left module over Z%, v be an element of X, v be an element
of PreNorms X, a be an element of Z®, and a; be an integer. If v = vy
and a = aq, then a-v =a; - v;.

2. LINEAR COMBINATION OF Z-MODULE

Let V be a non empty zero structure. An element of Zthe carrier of Vi ig qaid
to be a Z-linear combination of V if:
(Def. 18) There exists a finite subset T' of V such that for every element v of V
such that v ¢ T holds it(v) = 0.
In the sequel K, L, L1, Lo, L3 denote Z-linear combinations of V.
Let V be a non empty additive loop structure and let L be a Z-linear com-
bination of V. The support of L yielding a finite subset of V' is defined by:
(Def. 19) The support of L = {v € V: L(v) # 0}.
Next we state the proposition
(8) Let V be a non empty additive loop structure, L be a Z-linear combina-
tion of V, and v be an element of V. Then L(v) = 0 if and only if v ¢ the
support of L.
Let V be a non empty additive loop structure. The functor Z-ZeroLCV
yields a Z-linear combination of V' and is defined by:
(Def. 20) The support of Z-ZeroLCV = ().

One can prove the following proposition
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(9) For every non empty additive loop structure V' and for every element v
of V holds (Z-ZeroLC V') (v) = 0.
Let V be a non empty additive loop structure and let A be a subset of V.
A Z-linear combination of V' is said to be a Z-linear combination of A if:
(Def. 21) The support of it C A.
For simplicity, we adopt the following convention: a, b are integers, G, Hy,
Hy, F, Fy, Fy, F3 are finite sequences of elements of V', A, B are subsets of V,
v1, V2, U3, U1, U2, ug are vectors of V, f is a function from the carrier of V' into
Z, i is an element of N, and [, [, lo are Z-linear combinations of A.
One can prove the following propositions:
(10) If A C B, then [ is a Z-linear combination of B.
(11) Z-ZeroLCYV is a Z-linear combination of A.
(12) For every Z-linear combination ! of (the carrier of v holds | = Z-ZeroLC V.
Let us consider V', F', f. The functor f-F yields a finite sequence of elements
of V and is defined by:
(Def. 22) len(f-F') = len F and for every ¢ such that i € dom(f-F) holds (f-F)(i) =
f(Fy) - Fy.
Next we state several propositions:

(13) Ifi € dom F and v = F(i), then (f - F)(i) = f(v) - v
(14) - E(the carrier of V) = €(the carrier of V)-
(15) f-(v) = {f(v) - v).
(16)  f - (vi,v2) = (f(v1) - v1, f(v2) - v2).
(17)  f - (vr,v2,v3) = (f(v1) - v1, f(v2) - v2, f(us) - v3).
Let us consider V', L. The functor > L yielding an element of V' is defined
by:

(Def. 23) There exists F' such that F' is one-to-one and rng F' = the support of L
and YL =>(L-F).
Next we state several propositions:
(18) A # () and A is linearly closed iff for every [ holds Y"1 € A.
(19) >°Z-ZeroLCV = 0y.
(20) For every Z-linear combination ! of (the carrier of v holds Y1 = Oy.
(21)
(22)

For every Z-linear combination [ of {v} holds Y 1 =1(v) - v.

If v1 # vg, then for every Z-linear combination [ of {v1,v2} holds Y 1 =
l(vl) - VU1 + l(UQ) - V9.
(23) If the support of L = (), then Y~ L = Oy .
(24) If the support of L = {v}, then > L = L(v) - v.
(25) If the support of L = {v1,v2} and vy # wvg, then Y>> L = L(vy) - v1 +
L(vg) - va.
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Let V be a non empty additive loop structure and let Ly, Lo be Z-linear
combinations of V. Let us observe that L; = Lo if and only if:

(Def. 24) For every element v of V holds L;(v) = La(v).

Let V be a non empty additive loop structure and let Ly, Lo be Z-linear
combinations of V. Then L; + Lo is a Z-linear combination of V' and it can be
characterized by the condition:

(Def. 25) For every element v of V holds (L + L2)(v) = Li(v) + La(v).

Let us observe that the functor L + Lo is commutative.
The following propositions are true:

(26) The support of L1 + Ly C (the support of Li) U (the support of Lo).

(27) Suppose L; is a Z-linear combination of A and Ly is a Z-linear combi-
nation of A. Then L1 + Lo is a Z-linear combination of A.

(28) L+ (LQ + Lg) = (Ll -+ Lz) + Ls.
Let us consider V, a, L. Note that L 4+ Z-ZeroLC V reduces to L.
The functor a - L yielding a Z-linear combination of V is defined as follows:
(Def. 26) For every v holds (a- L)(v) = a - L(v).
We now state several propositions:
(29) If a # 0, then the support of a - L = the support of L.
(30) 0-L = Z-ZeroLCV.
(31) If L is a Z-linear combination of A, then a - L is a Z-linear combination
of A.
(32) (a+b)-L=a-L+b-L.
(33) CL'(L1+L2):CL~L1+(L'L2.
(34) a-(b-L)=(a-b)-L.
Let us consider V, L. One can check that 1 - L reduces to L.
The functor —L yielding a Z-linear combination of V' is defined as follows:
(Def. 27) —L=(-1)-L.
Let us note that the functor —L is involutive.
We now state four propositions:

(=L)(v) = —L(v).

36) If Ly + Ly = Z-ZeroLCV, then Ly = —L;.

37) The support of —L = the support of L.
)

w
ot
=~

38) If L is a Z-linear combination of A, then —L is a Z-linear combination
of A.
Let us consider V', Ly, Ls. The functor L — Lo yields a Z-linear combination
of V and is defined as follows:
(Def 28) Li—Lo=1L1+ —Lo.

The following four propositions are true:

(
(
(
(
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(39) (L1 — L2)(v) = Li(v) — La(v).
(40) The support of Ly — Ly C (the support of Li) U (the support of Ls).

(41) Suppose L; is a Z-linear combination of A and Ly is a Z-linear combi-
nation of A. Then Li — Ly is a Z-linear combination of A.

(42) L — L = Z-ZeroLCV.
Let us consider V. The functor LCy, yielding a set is defined by:
ef. x € LCy iff z is a Z-linear combination of V.
Def. 29 LCy iff x is a Z-li binati fVv

Let us consider V. One can verify that LCy is non empty.

In the sequel e, e, es denote elements of LCy, .

Let us consider V, e. The functor ®e yielding a Z-linear combination of V'
is defined by:

(Def. 30) “e=e.

Let us consider V, L. The functor ®L yielding an element of LCy, is defined
by:

(Def. 31) °L = L.

Let us consider V. The functor +1,¢, yields a binary operation on LCy and
is defined as follows:

(Def. 32) For all ey, ez holds +1,¢,, (e1,€2) = (%er) + “es.

Let us consider V. The functor -1,¢, yields a function from Z x LCy into
LCy and is defined by:

(Def. 33) For all a, e holds -1.c, ({a, €)) = a - (®e).

Let us consider V. The functor LC-Z-Module V' yielding a Z-module struc-
ture is defined as follows:

(Def. 34) LC-Z-Module V = (LCy, ®Z-ZeroLCV, +1LCy s LCy ) -

Let us consider V. One can check that LC-Z-Module V is strict and non
empty.

Let us consider V. Observe that LC-Z-Module V' is Abelian, add-associative,
right zeroed, right complementable, vector distributive, scalar distributive, sca-
lar associative, and scalar unital.

Next we state several propositions:

The carrier of LC-Z-Module V = LCy, .
OLC-Z-Module v = Z-ZeroLCV.
The addition of LC-Z-Module V' = +1,¢,,.

The external multiplication of LC-Z-Module V' = ¢,
LILC—Z—ModuleV + L2LC—Z—M0duleV —_ Ll + L2_

=R
Tt o= W

IS
[«
S e e e N N N

a- LLC—Z-ModuleV —a- L.

N
o0

_LLC—Z—Module vV _ L.

N N N N N N /N
=~ e~
Ne) )

LlLC—Z—ModuleV _ LQLC—Z—ModuleV =L, — Lo.

ot
(==}
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Let us consider V', A. The functor LC-Z-Module A yielding a strict submo-
dule of LC-Z-Module V' is defined by:

(Def. 35) The carrier of LC-Z-Module A = {l}.

3. LINEARLY INDEPENDENT SUBSET OF Z-MODULE

For simplicity, we use the following convention: W, Wy, Wy, W3 are submo-
dules of V', v, v are vectors of V', C' is a subset of V', T is a finite subset of V,
L, Ly, Lo are Z-linear combinations of V', [ is a Z-linear combination of A, and
G is a finite sequence of elements of the carrier of V.

One can prove the following propositions:

(1) f-(F°G)=(f-F)"(f G).
(52) (L1 + L2) =23 L1+ La.
(53) Y (a-L)=a-) L.

(54) X(-L)=-XL.

(55) (L1 —L2)=> L1 -3 Lo.

Let us consider V', A. We say that A is linearly independent if and only if:
(Def. 36) For every [ such that Y"1 = Oy holds the support of I = ().
Let us consider V', A. We introduce A is linearly dependent as an antonym
of A is linearly independent.
We now state three propositions:

(56) If A C B and B is linearly independent, then A is linearly independent.

(57) If A is linearly independent, then Oy ¢ A.

(58)  (the carrier of v is linearly independent.

Let us consider V. Observe that there exists a subset of V' which is linearly
independent.
One can prove the following proposition

(59) If V inherits cancelable on multiplication, then {v} is linearly indepen-
dent iff v # Oy.

Let us consider V. Note that {Oy} is linearly dependent as a subset of V.
One can prove the following propositions:

(60) If {v1,v2} is linearly independent, then vy # Oy .

(61) {v,0y} is linearly dependent.

(62) Suppose V inherits cancelable on multiplication. Then v; # vy and
{v1,v9} is linearly independent if and only if vy # Oy and for all a, b
such that b # 0 holds b - vy # a - ve.

(63) Suppose V inherits cancelable on multiplication. Then v; # vy and
{v1,v2} is linearly independent if and only if for all a, b such that
a-v1+b-vy =0y holds a =0 and b = 0.
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Let us consider V', A. The functor Lin(A) yielding a strict submodule of V'
is defined as follows:

(Def. 37) The carrier of Lin(A) = {>°1}.
The following propositions are true:
(64) x € Lin(A) iff there exists [ such that z = " 1.
(65) If x € A, then x € Lin(A).
(66) x € Oy iff z = 0y.
(67)  Lin(Dthe carrier of v) = Oy
(68)
(69)

(=)

68) If Lin(A) = 0Oy, then A =0 or A= {0y}.
69) For every strict Z-module V and for every subset A of V such that
A = the carrier of V holds Lin(A) = V.

(70) 1If A C B, then Lin(A) is a submodule of Lin(B).

(71) For every strict Z-module V' and for all subsets A, B of V such that
Lin(A) =V and A C B holds Lin(B) = V.

(72) Lin(AU B) = Lin(4) + Lin(B).

(73) Lin(AN B) is a submodule of Lin(A4) N Lin(B).

4. THEOREMS RELATED TO SUBMODULE

One can prove the following propositions:
(74) If W7 is a submodule of W3, then W7 N Wy is a submodule of Ws.

(75) 1If Wy is a submodule of W5 and a submodule of W3, then W is a
submodule of Wy N W3,

(76) 1If Wy is a submodule of W3 and W5 is a submodule of W3, then W + Wy
is a submodule of Wj.

(77) If W7 is a submodule of Wa, then W is a submodule of Wy 4 W3.
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