The Gödel Completeness Theorem for Uncountable Languages ${ }^{1}$

Julian J. Schlöder
Mathematisches Institut
Rheinische Friedrich-Wilhelms-Universität Bonn
Endenicher Allee 60
D-53113 Bonn, Germany
Peter Koepke
Mathematisches Institut
Rheinische Friedrich-Wilhelms-Universität Bonn
Endenicher Allee 60
D-53113 Bonn, Germany

Abstract

Summary. This article is the second in a series of two Mizar articles constituting a formal proof of the Gödel Completeness theorem [15] for uncountably large languages. We follow the proof given in [16]. The present article contains the techniques required to expand a theory such that the expanded theory contains witnesses and is negation faithful. Then the completeness theorem follows immediately.

MML identifier: GOEDCPUC, version: $\underline{7.14 .014 .183 .1153}$

The notation and terminology used here have been introduced in the following papers: [8], [1], [3], [10], [19], [5], [14], [11], [12], [7], [6], [22], [2], [4], [17], [18], [23], [20], [9], [21], and [13].

[^0]
1. Formula-Constant Extension

For simplicity, we use the following convention: A_{1} denotes an alphabet, P_{1} denotes a consistent subset of CQC-WFF A_{1}, P_{2} denotes a subset of CQC-WFF A_{1}, p, q, r, s denote elements of CQC-WFF A_{1}, A denotes a non empty set, J denotes an interpretation of A_{1} and A, v denotes an element of the valuations in A_{1} and A, n, k denote elements of \mathbb{N}, x denotes a bound variable of A_{1}, and A_{2} denotes an A_{1}-expanding alphabet.

Let us consider A_{1} and let P_{1} be a subset of CQC-WFF A_{1}. We say that P_{1} is satisfiable if and only if:
(Def. 1) There exist A, J, v such that $J \models_{v} P_{1}$.
In the sequel J_{2} is an interpretation of A_{2} and A and J_{1} is an interpretation of A_{1} and A.

One can prove the following proposition
(1) There exists a set s such that for all p, x holds $\langle s,\langle x, p\rangle\rangle \notin \operatorname{Symb} A_{1}$.

Let us consider A_{1}. A set is called a free symbol of A_{1} if:
(Def. 2) For all p, x holds \langle it, $\langle x, p\rangle\rangle \notin \operatorname{Symb} A_{1}$.
Let us consider A_{1}. The functor FCEx A_{1} yielding an A_{1}-expanding alphabet is defined as follows:
(Def. 3) $\operatorname{FCEx} A_{1}=\mathbb{N} \times\left(\operatorname{Symb} A_{1} \cup\left\{\left\langle\right.\right.\right.$ the free symbol of $\left.\left.\left.A_{1},\langle x, p\rangle\right\rangle\right\}\right)$.
Let us consider A_{1}, p, x. The example of p and x yielding a bound variable of FCEx A_{1} is defined as follows:
(Def. 4) The example of p and $x=\left\langle 4,\left\langle\right.\right.$ the free symbol of $\left.\left.A_{1},\langle x, p\rangle\right\rangle\right\rangle$.
Let us consider A_{1}, p, x. The example formula of p and x yielding an element of CQC-WFF FCEx A_{1} is defined by:
(Def. 5) The example formula of p and $x=\neg \exists_{\mathrm{FCEx} A_{1}-\operatorname{Cast} x}\left(\mathrm{FCEx} A_{1}\right.$-Cast $\left.p\right) \vee$ (FCEx A_{1}-Cast p)(FCEx A_{1}-Cast x, the example of p and x).

Let us consider A_{1}. The example formulae of A_{1} yields a subset of CQC-WFF FCEx A_{1} and is defined as follows:
(Def. 6) The example formulae of $A_{1}=\{$ the example formula of p and $x\}$.
One can prove the following proposition
(2) Let k be an element of \mathbb{N}. Suppose $k>0$. Then there exists a k-element finite sequence F such that
(i) for every natural number n such that $n \leq k$ and $1 \leq n$ holds $F(n)$ is an alphabet,
(ii) $\quad F(1)=A_{1}$, and
(iii) for every natural number n such that $n<k$ and $1 \leq n$ there exists an alphabet A_{2} such that $F(n)=A_{2}$ and $F(n+1)=\operatorname{FCEx} A_{2}$.

Let us consider A_{1} and let k be a natural number. A $k+1$-element finite sequence is said to be a FCEx-sequence of A_{1} and k if it satisfies the conditions (Def. 7).
(Def. 7)(i) For every natural number n such that $n \leq k+1$ and $1 \leq n$ holds $\operatorname{it}(n)$ is an alphabet,
(ii) $\operatorname{it}(1)=A_{1}$, and
(iii) for every natural number n such that $n<k+1$ and $1 \leq n$ there exists an alphabet A_{2} such that $\operatorname{it}(n)=A_{2}$ and $\operatorname{it}(n+1)=\operatorname{FCEx} A_{2}$.
The following propositions are true:
(3) For every natural number k and for every FCEx-sequence S of A_{1} and k holds $S(k+1)$ is an alphabet.
(4) For every natural number k and for every FCEx-sequence S of A_{1} and k holds $S(k+1)$ is an A_{1}-expanding alphabet.

Let us consider A_{1} and let k be a natural number. The k-th FCEx of A_{1} yielding an A_{1}-expanding alphabet is defined as follows:
(Def. 8) The k-th FCEx of $A_{1}=$ the FCEx-sequence of A_{1} and $k(k+1)$.
Let us consider A_{1}, P_{1}. A function is called an EF-sequence of A_{1} and P_{1} if it satisfies the conditions (Def. 9).
(Def. 9)(i) domit $=\mathbb{N}$,
(ii) it $(0)=P_{1}$, and
(iii) for every natural number n holds $\operatorname{it}(n+1)=\operatorname{it}(n) \cup$ the example formulae of the n-th FCEx of A_{1}.

Next we state two propositions:
(5) For every natural number k holds FCEx (the k-th FCEx of A_{1}) $=$ the $(k+1)$-th FCEx of A_{1}.
(6) For all k, n such that $n \leq k$ holds the n-th FCEx of $A_{1} \subseteq$ the k-th FCEx of A_{1}.
Let us consider A_{1}, P_{1} and let k be a natural number. The k-th EF of A_{1} and P_{1} yields a subset of CQC-WFF (the k-th FCEx of A_{1}) and is defined as follows:
(Def. 10) The k-th EF of A_{1} and $P_{1}=$ the EF-sequence of A_{1} and $P_{1}(k)$.
One can prove the following propositions:
(7) For all r, s, x holds $A_{2}-\operatorname{Cast}(r \vee s)=A_{2}$-Cast $r \vee A_{2}$-Cast s and A_{2}-Cast $\exists_{x} r=\exists_{A_{2} \text {-Cast } x}\left(A_{2}\right.$-Cast $\left.r\right)$.
(8) For all p, q, A, J, v holds $J \models_{v} p$ or $J \models_{v} q$ iff $J \models_{v} p \vee q$.
(9) $\quad P_{1} \cup$ the example formulae of A_{1} is a consistent subset of CQC-WFF FCEx A_{1}.

2. The Completeness Theorem

We now state four propositions:
(10) There exists an A_{1}-expanding alphabet A_{2} and there exists a consistent subset P_{2} of CQC-WFF A_{2} such that $P_{1} \subseteq P_{2}$ and P_{2} has examples.
(11) $P_{1} \cup\{p\}$ is consistent or $P_{1} \cup\{\neg p\}$ is consistent.
(12) Let P_{2} be a consistent subset of CQC-WFF A_{1}. Then there exists a consistent subset T_{1} of CQC-WFF A_{1} such that T_{1} is negation faithful and $P_{2} \subseteq T_{1}$.
(13) For every consistent subset T_{1} of CQC-WFF A_{1} such that $P_{1} \subseteq T_{1}$ and P_{1} has examples holds T_{1} has examples.
Let us consider A_{1}. One can check that every subset of CQC-WFF A_{1} which is consistent is also satisfiable.

We now state the proposition
$(14)^{2} \quad$ If $P_{2} \vDash p$, then $P_{2} \vdash p$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[6] Patrick Braselmann and Peter Koepke. Equivalences of inconsistency and Henkin models. Formalized Mathematics, 13(1):45-48, 2005.
[7] Patrick Braselmann and Peter Koepke. Gödel's completeness theorem. Formalized Mathematics, 13(1):49-53, 2005.
[8] Patrick Braselmann and Peter Koepke. A sequent calculus for first-order logic. Formalized Mathematics, 13(1):33-39, 2005.
[9] Patrick Braselmann and Peter Koepke. Substitution in first-order formulas. Part II. The construction of first-order formulas. Formalized Mathematics, 13(1):27-32, 2005.
[10] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669-676, 1990.
[11] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55$65,1990$.
[12] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[13] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[14] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[15] Kurt Gödel. Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monatshefte für Mathematik und Physik 37, 1930.
[16] W. Thomas H.-D. Ebbinghaus, J. Flum. Einführung in die Mathematische Logik. Springer-Verlag, Berlin Heidelberg, 2007.
[17] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics, 1(2):303-311, 1990.

[^1][18] Julian J. Schlöder and Peter Koepke. Transition of consistency and satisfiability under language extensions. Formalized Mathematics, 20(3):193-197, 2012, doi: 10.2478/v10037-012-0022-0.
[19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[21] Edmund Woronowicz. Interpretation and satisfiability in the first order logic. Formalized Mathematics, 1(4):739-743, 1990.
[22] Edmund Woronowicz. Many argument relations. Formalized Mathematics, 1(4):733-737, 1990.
[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received May 7, 2012

[^0]: ${ }^{1}$ This article is part of the first author's Bachelor thesis under the supervision of the second author.
 (C) 2012 University of Białystok CC-BY-SA License ver. 3.0 or later

[^1]: ${ }^{2}$ Completeness Theorem.

