Transition of Consistency and Satisfiability under Language Extensions ${ }^{1}$

Julian J. Schlöder
Mathematisches Institut
Rheinische Friedrich-Wilhelms-Universität Bonn
Endenicher Allee 60
D-53113 Bonn, Germany
Peter Koepke
Mathematisches Institut
Rheinische Friedrich-Wilhelms-Universität Bonn
Endenicher Allee 60
D-53113 Bonn, Germany

Abstract

Summary. This article is the first in a series of two Mizar articles constituting a formal proof of the Gödel Completeness theorem [17] for uncountably large languages. We follow the proof given in [18]. The present article contains the techniques required to expand formal languages. We prove that consistent or satisfiable theories retain these properties under changes to the language they are formulated in.

MML identifier: QC_TRANS, version: $\underline{7.14 .014 .183 .1153}$

The notation and terminology used in this paper have been introduced in the following papers: [8], [1], [2], [11], [16], [4], [15], [12], [13], [7], [6], [22], [3], [19], [23], [24], [5], [20], [9], [10], [21], and [14].

[^0]
1. Language Extensions

For simplicity, we adopt the following rules: A_{1} denotes an alphabet, P_{1} denotes a consistent subset of CQC-WFF A_{1}, p, r denote elements of CQC-WFF A_{1}, A denotes a non empty set, J denotes an interpretation of A_{1} and A, v denotes an element of the valuations in A_{1} and A, k denotes a natural number, l denotes a CQC-variable list of k and A_{1}, P denotes a predicate symbol of k and A_{1}, and x, y denote bound variables of A_{1}.

Let us consider A_{1} and let A_{2} be an alphabet. We say that A_{2} is A_{1} expanding if and only if:
(Def. 1) $\quad A_{1} \subseteq A_{2}$.
Let us consider A_{1}. Note that there exists an alphabet which is A_{1}-expanding.
Let A_{3}, A_{4} be countable alphabets. One can check that there exists an alphabet which is countable, A_{3}-expanding, and A_{4}-expanding.

Let A_{1}, A_{4} be alphabets and let P be a subset of CQC-WFF A_{1}. We say that P is A_{4}-consistent if and only if:
(Def. 2) For every subset S of CQC-WFF A_{4} such that $P=S$ holds S is consistent.
Let us consider A_{1}. One can check that there exists a subset of CQC-WFF A_{1} which is non empty and consistent.

Let us consider A_{1}. One can check that every subset of CQC-WFF A_{1} which is consistent is also A_{1}-consistent and every subset of CQC-WFF A_{1} which is A_{1}-consistent is also consistent.

For simplicity, we follow the rules: A_{4} is an A_{1}-expanding alphabet, J_{2} is an interpretation of A_{4} and A, J_{1} is an interpretation of A_{1} and A, v_{2} is an element of the valuations in A_{4} and A, and v_{1} is an element of the valuations in A_{1} and A.

Next we state several propositions:
(1) $\operatorname{Arity}(P)=\operatorname{len} l$.
(2) $\operatorname{Symb} A_{1} \subseteq \operatorname{Symb} A_{4}$.
(3) The predicate symbols of $A_{1} \subseteq$ the predicate symbols of A_{4}.
(4) The bound variables of $A_{1} \subseteq$ the bound variables of A_{4}.
(5) For every k holds every l is a CQC-variable list of k and A_{4}.
(6) P is a predicate symbol of k and A_{4}.
(7) For every A_{1}-expanding alphabet A_{4} holds every p is an element of CQC-WFF A_{4}.
Let us consider A_{1}, let A_{4} be an A_{1}-expanding alphabet, and let p be an element of CQC-WFF A_{1}. The functor A_{4}-Cast p yields an element of CQC-WFF A_{4} and is defined by:
(Def. 3) $\quad A_{4}$-Cast $p=p$.

Let us consider A_{1}, let A_{4} be an A_{1}-expanding alphabet, and let x be a bound variable of A_{1}. The functor A_{4}-Cast x yields a bound variable of A_{4} and is defined as follows:
(Def. 4) $\quad A_{4}$-Cast $x=x$.
Let us consider A_{1}, let A_{4} be an A_{1}-expanding alphabet, let us consider k, and let P be a predicate symbol of k and A_{1}. The functor A_{4}-Cast P yielding a predicate symbol of k and A_{4} is defined as follows:
(Def. 5) $\quad A_{4}$-Cast $P=P$.
Let us consider A_{1}, let A_{4} be an A_{1}-expanding alphabet, let us consider k, and let l be a CQC-variable list of k and A_{1}. The functor A_{4}-Cast l yielding a CQC-variable list of k and A_{4} is defined as follows:
(Def. 6) $\quad A_{4}$-Cast $l=l$.
Next we state the proposition
(8) Let given p, r, x, P, l and A_{4} be an A_{1}-expanding alphabet. Then A_{4}-Cast VERUM $A_{1}=$ VERUM A_{4} and A_{4}-Cast $P[l]=$ $\left(A_{4}\right.$-Cast $\left.P\right)\left[A_{4}\right.$-Cast $\left.l\right]$ and A_{4}-Cast $\neg p=\neg\left(A_{4}\right.$-Cast $\left.p\right)$ and A_{4} - $\operatorname{Cast}(p \wedge$ $r)=\left(A_{4}\right.$-Cast $\left.p\right) \wedge\left(A_{4}\right.$-Cast $\left.r\right)$ and A_{4}-Cast $\forall_{x} p=\forall_{A_{4}-\text { Cast } x}\left(A_{4}\right.$-Cast $\left.p\right)$.

2. Downward Transfer of Consistency and Satisfiability

The following propositions are true:
(9) Suppose $J_{1}=J_{2}$ 「the predicate symbols of A_{1} and $v_{1}=v_{2}$ 「the bound variables of A_{1}. Then $J_{2} \models{ }_{v_{2}} A_{4}$-Cast r if and only if $J_{1} \models_{v_{1}} r$.
(10) Let A_{4} be an A_{1}-expanding alphabet and T_{1} be a subset of CQC-WFF A_{4}. Suppose $P_{1} \subseteq T_{1}$. Let A_{2} be a non empty set, J_{2} be an interpretation of A_{4} and A_{2}, and v_{2} be an element of the valuations in A_{4} and A_{2}. If $J_{2} \models_{v_{2}} T_{1}$, then there exist A, J, v such that $J \models_{v} P_{1}$.
(11) Let f be a finite sequence of elements of CQC-WFF A_{4} and g be a finite sequence of elements of CQC-WFF A_{1}. If $f=g$, then $\operatorname{Ant}(f)=\operatorname{Ant}(g)$ and $\operatorname{Suc}(f)=\operatorname{Suc}(g)$.
(12) For every p holds the still not bound in $p=$ the still not bound in A_{4}-Cast p.
(13) Let p_{2} be an element of CQC-WFF A_{4}, S be a substitution of A_{1}, S_{2} be a substitution of A_{4}, x_{2} be a bound variable of A_{4}, and given x, p. If $p=p_{2}$ and $S=S_{2}$ and $x=x_{2}$, then $\operatorname{RestrictSub}(x, p, S)=$ RestrictSub $\left(x_{2}, p_{2}, S_{2}\right)$.
(14) Let p_{2} be an element of CQC-WFF A_{4}, S be a finite substitution of A_{1}, S_{2} be a finite substitution of A_{4}, and given p. If $S=S_{2}$ and $p=p_{2}$, then $\operatorname{up} \operatorname{Var}(S, p)=\operatorname{up} \operatorname{Var}\left(S_{2}, p_{2}\right)$.
(15) Let p_{2} be an element of CQC-WFF A_{4}, S be a substitution of A_{1}, S_{2} be a substitution of A_{4}, x_{2} be a bound variable of A_{4}, and given x, p. If $p=p_{2}$ and $S=S_{2}$ and $x=x_{2}$, then ExpandSub $\left(x, p, \operatorname{RestrictSub}\left(x, \forall_{x} p, S\right)\right)=$ $\operatorname{ExpandSub}\left(x_{2}, p_{2}, \operatorname{RestrictSub}\left(x_{2}, \forall_{x_{2}} p_{2}, S_{2}\right)\right)$.
(16) Let Z be an element of CQC-Sub-WFF A_{1} and Z_{2} be an element of CQC-Sub-WFF A_{4}. Suppose Z_{1} is universal and $\left(Z_{2}\right)_{1}$ is universal and $\operatorname{Bound}\left(Z_{1}\right)=\operatorname{Bound}\left(\left(Z_{2}\right)_{1}\right)$ and $\operatorname{Scope}\left(Z_{1}\right)=\operatorname{Scope}\left(\left(Z_{2}\right)_{1}\right)$ and $Z=Z_{2}$. Then S-Bound $\left({ }^{@} Z\right)=S$-Bound $\left({ }^{@} Z_{2}\right)$.
(17) Let p_{2} be an element of CQC-WFF A_{4}, x_{2}, y_{2} be bound variables of A_{4}, and given p, x, y. If $p=p_{2}$ and $x=x_{2}$ and $y=y_{2}$, then $p(x, y)=$ $p_{2}\left(x_{2}, y_{2}\right)$.
(18) For every consistent subset P_{1} of CQC-WFF A_{4} such that P_{1} is a subset of CQC-WFF A_{1} holds P_{1} is A_{1}-consistent.

3. Upward Transfer of Consistency and Satisfiability

Next we state two propositions:
(19) For every p there exists a countable alphabet A_{3} such that p is an element of CQC-WFF A_{3} and A_{1} is A_{3}-expanding.
(20) Let P_{1} be a finite subset of CQC-WFF A_{1}. Then there exists a countable alphabet A_{3} such that P_{1} is a finite subset of CQC-WFF A_{3} and A_{1} is A_{3} expanding.
Let us consider A_{1} and let P_{1} be a finite subset of CQC-WFF A_{1}. Note that the still not bound in P_{1} is finite.

Next we state three propositions:
(21) Let T_{1} be a subset of CQC-WFF A_{4}. Suppose $P_{1}=T_{1}$. Let given A, J, v. Suppose $J \models_{v} P_{1}$. Then there exists a non empty set A_{2} and there exists an interpretation J_{2} of A_{4} and A_{2} and there exists an element v_{2} of the valuations in A_{4} and A_{2} such that $J_{2} \models_{v_{2}} T_{1}$.
(22) For every subset C_{1} of CQC-WFF A_{1} such that $C_{1} \subseteq P_{1}$ holds C_{1} is consistent.
(23) $\quad P_{1}$ is A_{4}-consistent.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Patrick Braselmann and Peter Koepke. Coincidence lemma and substitution lemma. Formalized Mathematics, 13(1):17-26, 2005.
[6] Patrick Braselmann and Peter Koepke. Equivalences of inconsistency and Henkin models. Formalized Mathematics, 13(1):45-48, 2005.
[7] Patrick Braselmann and Peter Koepke. Gödel's completeness theorem. Formalized Mathematics, 13(1):49-53, 2005.
[8] Patrick Braselmann and Peter Koepke. A sequent calculus for first-order logic. Formalized Mathematics, 13(1):33-39, 2005.
[9] Patrick Braselmann and Peter Koepke. Substitution in first-order formulas: Elementary properties. Formalized Mathematics, 13(1):5-15, 2005.
[10] Patrick Braselmann and Peter Koepke. Substitution in first-order formulas. Part II. The construction of first-order formulas. Formalized Mathematics, 13(1):27-32, 2005.
[11] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669-676, 1990.
[12] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[13] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[14] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[15] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[16] Agata Darmochwał. A first-order predicate calculus. Formalized Mathematics, 1(4):689695, 1990.
[17] Kurt Gödel. Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monatshefte für Mathematik und Physik 37, 1930.
[18] W. Thomas H.-D. Ebbinghaus, J. Flum. Einführung in die Mathematische Logik. Springer-Verlag, Berlin Heidelberg, 2007.
[19] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics, 1(2):303-311, 1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[21] Edmund Woronowicz. Interpretation and satisfiability in the first order logic. Formalized Mathematics, 1(4):739-743, 1990.
[22] Edmund Woronowicz. Many argument relations. Formalized Mathematics, 1(4):733-737, 1990.
[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[24] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received May 7, 2012

[^0]: ${ }^{1}$ This article is part of the first author's Bachelor thesis under the supervision of the second author.
 (C) 2012 University of Białystok CC-BY-SA License ver. 3.0 or later

