Routh's, Menelaus' and Generalized Ceva's Theorems

Boris A. Shminke
Shakhtyorskaya 2
453850 Meleuz, Russia

Abstract

Summary. The goal of this article is to formalize Ceva's theorem that is in the [8] on the web. Alongside with it formalizations of Routh's, Menelaus' and generalized form of Ceva's theorem itself are provided.

MML identifier: MENELAUS, version: $\underline{7.12 .024 .181 .1147}$

The papers [1], [4], [3], [6], [5], [2], [7], and [9] provide the notation and terminology for this paper.

1. Some Properties of the Area of Triangle

We use the following convention: $A, B, C, A_{1}, B_{1}, C_{1}, A_{2}, B_{2}, C_{2}$ are points of $\mathcal{E}_{\mathrm{T}}^{2}, l_{1}, m_{1}, n_{1}$ are real numbers, and X, Y, Z are subsets of $\mathcal{E}_{\mathrm{T}}^{2}$.

Let us consider X, Y. We introduce X is parallel to Y as a synonym of X misses Y.

Let us consider X, Y, Z. We say that X, Y, Z are concurrent if and only if:
(Def. 1) X is parallel to Y and Y is parallel to Z and Z is parallel to X or there exists A such that $A \in X$ and $A \in Y$ and $A \in Z$.
One can prove the following propositions:
(1) $(A+B)_{\mathbf{1}}=A_{\mathbf{1}}+B_{1}$ and $(A+B)_{\mathbf{2}}=A_{\mathbf{2}}+B_{\mathbf{2}}$.
(2) $\left(l_{1} \cdot A\right)_{1}=l_{1} \cdot A_{\mathbf{1}}$ and $\left(l_{1} \cdot A\right)_{\mathbf{2}}=l_{1} \cdot A_{2}$.
(3) $(-A)_{1}=-A_{1}$ and $(-A)_{2}=-A_{2}$.
(4) $\left(l_{1} \cdot A+m_{1} \cdot B\right)_{\mathbf{1}}=l_{1} \cdot A_{\mathbf{1}}+m_{1} \cdot B_{\mathbf{1}}$ and $\left(l_{1} \cdot A+m_{1} \cdot B\right)_{\mathbf{2}}=l_{1} \cdot A_{\mathbf{2}}+$ $m_{1} \cdot B_{2}$.
(5) $\quad\left(\left(-l_{1}\right) \cdot A\right)_{\mathbf{1}}=-l_{1} \cdot A_{1}$ and $\left(\left(-l_{1}\right) \cdot A\right)_{\mathbf{2}}=-l_{1} \cdot A_{\mathbf{2}}$.
(6) $\left(l_{1} \cdot A-m_{1} \cdot B\right)_{\mathbf{1}}=l_{1} \cdot A_{\mathbf{1}}-m_{1} \cdot B_{\mathbf{1}}$ and $\left(l_{1} \cdot A-m_{1} \cdot B\right)_{\mathbf{2}}=l_{1} \cdot A_{\mathbf{2}}-$ $m_{1} \cdot B_{\mathbf{2}}$.
(7) The area of $\Delta\left(\left(1-l_{1}\right) \cdot A+l_{1} \cdot A_{1}, B, C\right)=\left(1-l_{1}\right) \cdot$ the area of $\Delta(A, B, C)+$ $l_{1} \cdot$ the area of $\Delta\left(A_{1}, B, C\right)$.
(8) If $\measuredangle(A, B, C)=0$ and A, B, C are mutually different, then $\measuredangle(B, C, A)=$ π or $\measuredangle(B, A, C)=\pi$.
(9) $\quad A, B$ and C are collinear iff the area of $\triangle(A, B, C)=0$.
(10) The area of $\Delta\left(0_{\mathcal{E}_{\mathrm{T}}^{2}}, B, C\right)=\frac{B_{1} \cdot C_{2}-C_{1} \cdot B_{2}}{2}$.
(11) The area of $\Delta\left(A+A_{1}, B, C\right)=(($ the area of $\Delta(A, B, C))+$ (the area of $\left.\left.\Delta\left(A_{1}, B, C\right)\right)\right)$ - the area of $\Delta\left(0_{\mathcal{E}_{\mathrm{T}}^{2}}, B, C\right)$.
(12) If $A \in \mathcal{L}(B, C)$, then $A \in \operatorname{Line}(B, C)$.
(13) If $B \neq C$, then A, B and C are collinear iff $A \in \operatorname{Line}(B, C)$.
(14) If A, B, C form a triangle and $A_{1}=\left(1-l_{1}\right) \cdot B+l_{1} \cdot C$, then $A \neq A_{1}$.
(15) Suppose A, B, C form a triangle. Then
(i) A, C, B form a triangle,
(ii) B, A, C form a triangle,
(iii) B, C, A form a triangle,
(iv) C, A, B form a triangle, and
(v) C, B, A form a triangle.
(16) Suppose A, B, C form a triangle and $A_{1}=\left(1-l_{1}\right) \cdot B+l_{1} \cdot C$ and $B_{1}=\left(1-m_{1}\right) \cdot C+m_{1} \cdot A$ and $m_{1} \neq 1$. Then $\left(1-m_{1}\right)+l_{1} \cdot m_{1} \neq 0$ if and only if $\operatorname{Line}\left(A, A_{1}\right)$ is not parallel to $\operatorname{Line}\left(B, B_{1}\right)$.

2. Ceva's Theorem and Others

The following propositions are true:
(17) Suppose $A_{1}=\left(1-l_{1}\right) \cdot B+l_{1} \cdot C$ and $B_{1}=\left(1-m_{1}\right) \cdot C+m_{1} \cdot A$ and $C_{1}=\left(1-n_{1}\right) \cdot A+n_{1} \cdot B$. Then the area of $\Delta\left(A_{1}, B_{1}, C_{1}\right)=\left(\left(1-l_{1}\right) \cdot(1-\right.$ $\left.\left.m_{1}\right) \cdot\left(1-n_{1}\right)+l_{1} \cdot m_{1} \cdot n_{1}\right) \cdot$ the area of $\Delta(A, B, C)$.
(18) Suppose A, B, C form a triangle and $A_{1}=\left(1-l_{1}\right) \cdot B+l_{1} \cdot C$ and $B_{1}=\left(1-m_{1}\right) \cdot C+m_{1} \cdot A$ and $C_{1}=\left(1-n_{1}\right) \cdot A+n_{1} \cdot B$ and $l_{1} \neq 1$ and $m_{1} \neq 1$ and $n_{1} \neq 1$. Then A_{1}, B_{1} and C_{1} are collinear if and only if $\frac{l_{1}}{1-l_{1}} \cdot \frac{m_{1}}{1-m_{1}} \cdot \frac{n_{1}}{1-n_{1}}=-1$.
(19) Suppose that A, B, C form a triangle and $A_{1}=\left(1-l_{1}\right) \cdot B+l_{1} \cdot C$ and $B_{1}=\left(1-m_{1}\right) \cdot C+m_{1} \cdot A$ and $C_{1}=\left(1-n_{1}\right) \cdot A+n_{1} \cdot B$ and $l_{1} \neq 1$ and $m_{1} \neq 1$ and $n_{1} \neq 1$ and A, A_{1} and C_{2} are collinear and B, B_{1} and C_{2} are collinear and B, B_{1} and A_{2} are collinear and C, C_{1} and A_{2} are collinear and A, A_{1} and B_{2} are collinear and C, C_{1} and B_{2} are collinear. Then
(i) $\quad\left(\left(1-m_{1}\right)+l_{1} \cdot m_{1}\right) \cdot\left(\left(1-l_{1}\right)+n_{1} \cdot l_{1}\right) \cdot\left(\left(1-n_{1}\right)+m_{1} \cdot n_{1}\right) \neq 0$, and
(ii) the area of $\Delta\left(A_{2}, B_{2}, C_{2}\right)=\frac{\left(m_{1} \cdot n_{1} \cdot l_{1}-\left(1-m_{1}\right) \cdot\left(1-n_{1}\right) \cdot\left(1-l_{1}\right)\right)^{2}}{\left(\left(1-m_{1}\right)+l_{1} \cdot m_{1}\right) \cdot\left(\left(1-l_{1}\right)+n_{1} \cdot l_{1}\right) \cdot\left(\left(1-n_{1}\right)+m_{1} \cdot n_{1}\right)}$. the area of $\Delta(A, B, C)$.
(20) Suppose that A, B, C form a triangle and $A_{1}=\frac{2}{3} \cdot B+\frac{1}{3} \cdot C$ and $B_{1}=\frac{2}{3} \cdot C+\frac{1}{3} \cdot A$ and $C_{1}=\frac{2}{3} \cdot A+\frac{1}{3} \cdot B$ and A, A_{1} and C_{2} are collinear and B, B_{1} and C_{2} are collinear and B, B_{1} and A_{2} are collinear and C, C_{1} and A_{2} are collinear and A, A_{1} and B_{2} are collinear and C, C_{1} and B_{2} are collinear. Then the area of $\Delta\left(A_{2}, B_{2}, C_{2}\right)=\frac{\text { the area of } \Delta(A, B, C)}{7}$.
(21) Suppose that A, B, C form a triangle and $A_{1}=\left(1-l_{1}\right) \cdot B+l_{1} \cdot C$ and $B_{1}=\left(1-m_{1}\right) \cdot C+m_{1} \cdot A$ and $C_{1}=\left(1-n_{1}\right) \cdot A+n_{1} \cdot B$ and $l_{1} \neq 1$ and $m_{1} \neq 1$ and $n_{1} \neq 1$ and $\left(1-m_{1}\right)+l_{1} \cdot m_{1} \neq 0$ and $\left(1-l_{1}\right)+n_{1} \cdot l_{1} \neq 0$ and $\left(1-n_{1}\right)+m_{1} \cdot n_{1} \neq 0$. Then $\frac{l_{1}}{1-l_{1}} \cdot \frac{m_{1}}{1-m_{1}} \cdot \frac{n_{1}}{1-n_{1}}=1$ if and only if there exists A_{2} such that A, A_{1} and A_{2} are collinear and B, B_{1} and A_{2} are collinear and C, C_{1} and A_{2} are collinear.
(22) Suppose A, B, C form a triangle and $A_{1}=\left(1-l_{1}\right) \cdot B+l_{1} \cdot C$ and $B_{1}=\left(1-m_{1}\right) \cdot C+m_{1} \cdot A$ and $C_{1}=\left(1-n_{1}\right) \cdot A+n_{1} \cdot B$ and $l_{1} \neq 1$ and $m_{1} \neq 1$ and $n_{1} \neq 1$. Then $\frac{l_{1}}{1-l_{1}} \cdot \frac{m_{1}}{1-m_{1}} \cdot \frac{n_{1}}{1-n_{1}}=1$ if and only if $\operatorname{Line}\left(A, A_{1}\right)$, Line $\left(B, B_{1}\right)$, Line $\left(C, C_{1}\right)$ are concurrent.

References

[1] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[3] Akihiro Kubo. Lines in n-dimensional Euclidean spaces. Formalized Mathematics, 11(4):371-376, 2003.
[4] Akihiro Kubo and Yatsuka Nakamura. Angle and triangle in Euclidian topological space. Formalized Mathematics, 11(3):281-287, 2003.
[5] Beata Padlewska and Agata Darmochwat. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[6] Marco Riccardi. Heron's formula and Ptolemy's theorem. Formalized Mathematics, 16(2):97-101, 2008, doi:10.2478/v10037-008-0014-2.
[7] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[8] Freek Wiedijk. Formalizing 100 theorems. http://www.cs.ru.nl/~freek/100/.
[9] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

Received January 16, 2012

