The Borsuk-Ulam Theorem

Artur Korniłowicz ${ }^{1}$
Institute of Informatics
University of Białystok
Sosnowa 64, 15-887 Białystok
Poland

Marco Riccardi
Via del Pero 102
54038 Montignoso
Italy

Summary. The Borsuk-Ulam theorem about antipodals is proven, [18, pp. 32-33].

MML identifier: $\underline{\text { BORSUK_7 }}$, version: $\underline{7.12 .024 .176 .1140}$

The notation and terminology used here have been introduced in the following papers: [33], [36], [15], [16], [2], [5], [28], [35], [13], [26], [20], [30], [4], [34], [6], [7], [8], [38], [27], [1], [3], [9], [29], [31], [19], [41], [42], [39], [11], [43], [37], [40], [25], [32], [14], [23], [24], [22], [12], [21], [17], and [10].

1. Preliminaries

For simplicity, we adopt the following rules: a, b, x, y, z, X, Y, Z denote sets, n denotes a natural number, i denotes an integer, $r, r_{1}, r_{2}, r_{3}, s$ denote real numbers, c, c_{1}, c_{2} denote complex numbers, and p denotes a point of $\mathcal{E}_{\mathrm{T}}^{n}$.

Let us observe that every element of $\mathbb{I Q}$ is irrational.
Next we state a number of propositions:
(1) If $0 \leq r$ and $0 \leq s$ and $r^{2}=s^{2}$, then $r=s$.
(2) If frac $r \geq \operatorname{frac} s$, then $\operatorname{frac}(r-s)=\operatorname{frac} r-\operatorname{frac} s$.
(3) If frac $r<\operatorname{frac} s$, then $\operatorname{frac}(r-s)=(\operatorname{frac} r-\operatorname{frac} s)+1$.

[^0](4) There exists i such that $\operatorname{frac}(r-s)=(\operatorname{frac} r-\operatorname{frac} s)+i$ but $i=0$ or $i=1$.
(5) If $\sin r=0$, then $r=2 \cdot \pi \cdot\left\lfloor\frac{r}{2 \cdot \pi}\right\rfloor$ or $r=\pi+2 \cdot \pi \cdot\left\lfloor\frac{r}{2 \cdot \pi}\right\rfloor$.
(6) If $\cos r=0$, then $r=\frac{\pi}{2}+2 \cdot \pi \cdot\left\lfloor\frac{r}{2 \cdot \pi}\right\rfloor$ or $r=\frac{3 \cdot \pi}{2}+2 \cdot \pi \cdot\left\lfloor\frac{r}{2 \cdot \pi}\right\rfloor$.
(7) If $\sin r=0$, then there exists i such that $r=\pi \cdot i$.
(8) If $\cos r=0$, then there exists i such that $r=\frac{\pi}{2}+\pi \cdot i$.
(9) If $\sin r=\sin s$, then there exists i such that $r=s+2 \cdot \pi \cdot i$ or $r=$ $(\pi-s)+2 \cdot \pi \cdot i$.
(10) If $\cos r=\cos s$, then there exists i such that $r=s+2 \cdot \pi \cdot i$ or $r=-s+2 \cdot \pi \cdot i$.
(11) If $\sin r=\sin s$ and $\cos r=\cos s$, then there exists i such that $r=s+2 \cdot \pi \cdot i$.
(12) If $\left|c_{1}\right|=\left|c_{2}\right|$ and $\operatorname{Arg} c_{1}=\operatorname{Arg} c_{2}+2 \cdot \pi \cdot i$, then $c_{1}=c_{2}$.

Let f be a one-to-one complex-valued function and let us consider c. One can verify that $f+c$ is one-to-one.

Let f be a one-to-one complex-valued function and let us consider c. Note that $f-c$ is one-to-one.

One can prove the following propositions:
(13) For every complex-valued finite sequence f holds $\operatorname{len}(-f)=\operatorname{len} f$.

$$
\begin{equation*}
-\langle\underbrace{0, \ldots, 0}_{n}\rangle=\langle\underbrace{0, \ldots, 0}_{n}\rangle . \tag{14}
\end{equation*}
$$

(15) For every complex-valued function f such that $f \neq\langle\underbrace{0, \ldots, 0}_{n}\rangle$ holds $-f \neq$ $\langle\underbrace{0, \ldots, 0}_{n}\rangle$.
(16) ${ }^{2}\left\langle r_{1}, r_{2}, r_{3}\right\rangle=\left\langle r_{1}^{2}, r_{2}^{2}, r_{3}^{2}\right\rangle$.
(17) $\sum^{2}\left\langle r_{1}, r_{2}, r_{3}\right\rangle=r_{1}^{2}+r_{2}^{2}+r_{3}{ }^{2}$.
(18) For every complex-valued finite sequence f holds $(c \cdot f)^{2}=c^{2} \cdot f^{2}$.
(19) For every complex-valued finite sequence f holds $(f / c)^{2}=f^{2} / c^{2}$.
(20) For every real-valued finite sequence f such that $\sum f \neq 0$ holds $\sum\left(f / \sum f\right)=1$.
Let a, b, c, x, y, z be sets. The functor $[a \mapsto x, b \mapsto y, c \mapsto z]$ is defined by:
(Def. 1) $\quad[a \mapsto x, b \mapsto y, c \mapsto z]=[a \longmapsto x, b \longmapsto y]+\cdot(c \longmapsto z)$.
Let a, b, c, x, y, z be sets. One can check that $[a \mapsto x, b \mapsto y, c \mapsto z]$ is function-like and relation-like.

The following propositions are true:
(21) $\operatorname{dom}([a \mapsto x, b \mapsto y, c \mapsto z])=\{a, b, c\}$.
(25) If $a \neq b$, then $[a \mapsto x, b \mapsto y, a \mapsto z]=[a \longmapsto z, b \longmapsto y]$.
(26) $\quad[a \mapsto x, b \mapsto y, b \mapsto z]=[a \longmapsto x, b \longmapsto z]$.
(27) If $a \neq b$ and $a \neq c$, then $([a \mapsto x, b \mapsto y, c \mapsto z])(a)=x$.
(28) If a, b, c are mutually different, then $([a \mapsto x, b \mapsto y, c \mapsto z])(a)=x$ and $([a \mapsto x, b \mapsto y, c \mapsto z])(b)=y$ and $([a \mapsto x, b \mapsto y, c \mapsto z])(c)=z$.
(29) For every function f such that $\operatorname{dom} f=\{a, b, c\}$ and $f(a)=x$ and $f(b)=y$ and $f(c)=z$ holds $f=[a \mapsto x, b \mapsto y, c \mapsto z]$.
(30) $\langle a, b, c\rangle=[1 \mapsto a, 2 \mapsto b, 3 \mapsto c]$.
(31) If a, b, c are mutually different, then $\prod([a \mapsto\{x\}, b \mapsto\{y\}, c \mapsto\{z\}])=$ $\{[a \mapsto x, b \mapsto y, c \mapsto z]\}$.
(32) For all sets A, B, C, D, E, F such that $A \subseteq B$ and $C \subseteq D$ and $E \subseteq F$ holds $\prod([a \mapsto A, b \mapsto C, c \mapsto E]) \subseteq \prod([a \mapsto B, b \mapsto D, c \mapsto F])$.
(33) If a, b, c are mutually different and $x \in X$ and $y \in Y$ and $z \in Z$, then $[a \mapsto x, b \mapsto y, c \mapsto z] \in \Pi([a \mapsto X, b \mapsto Y, c \mapsto Z])$.
Let f be a function. We say that f is odd if and only if:
(Def. 2) For all complex-valued functions x, y such that $x,-x \in \operatorname{dom} f$ and $y=f(x)$ holds $f(-x)=-y$.
Let us mention that \emptyset is odd.
Let us observe that there exists a function which is odd and complex-functions-valued.

The following propositions are true:
(34) For every point p of $\mathcal{E}_{\text {T }}^{3}$ holds ${ }^{2} p=\left\langle\left(p_{\mathbf{1}}\right)^{2},\left(p_{\mathbf{2}}\right)^{2},\left(p_{\mathbf{3}}\right)^{2}\right\rangle$.
(35) For every point p of $\mathcal{E}_{\mathrm{T}}^{3}$ holds $\sum^{2} p=\left(p_{\mathbf{1}}\right)^{2}+\left(p_{\mathbf{2}}\right)^{2}+\left(p_{\mathbf{3}}\right)^{2}$.

The following two propositions are true:
(36) For every subset S of $\mathbb{R}^{\mathbf{1}}$ such that $S=\mathbb{Q}$ holds $\left.\mathbb{Q} \cap\right]-\infty, r[$ is an open subset of $\mathbb{R}^{1} \mid S$.
(37) For every subset S of $\mathbb{R}^{\mathbf{1}}$ such that $S=\mathbb{Q}$ holds $\left.\mathbb{Q} \cap\right] r,+\infty[$ is an open subset of $\mathbb{R}^{1} \mid S$.
Let X be a connected non empty topological space, let Y be a non empty topological space, and let f be a continuous function from X into Y. Note that $\operatorname{Im} f$ is connected.

Next we state two propositions:
(38) Let S be a subset of $\mathbb{R}^{\mathbf{1}}$. Suppose $S=\mathbb{Q}$. Let T be a connected topological space and f be a function from T into $\mathbb{R}^{\mathbf{1}} \upharpoonright S$. If f is continuous, then f is constant.
(39) Let a, b be real numbers, f be a continuous function from $[a, b]_{\mathrm{T}}$ into $\mathbb{R}^{\mathbf{1}}$, and g be a partial function from \mathbb{R} to \mathbb{R}. If $a \leq b$ and $f=g$, then g is continuous.
Let s be a point of $\mathbb{R}^{\mathbf{1}}$ and let r be a real number. Then $s+r$ is a point of $\mathbb{R}^{\mathbf{1}}$.

Let s be a point of \mathbb{R}^{1} and let r be a real number. Then $s-r$ is a point of \mathbb{R}^{1}.

Let X be a set, let f be a function from X into $\mathbb{R}^{\mathbf{1}}$, and let us consider r. Then $f+r$ is a function from X into $\mathbb{R}^{\mathbf{1}}$.

Let X be a set, let f be a function from X into $\mathbb{R}^{\mathbf{1}}$, and let us consider r. Then $f-r$ is a function from X into $\mathbb{R}^{\mathbf{1}}$.

Let s, t be points of \mathbb{R}^{1}, let f be a path from s to t, and let r be a real number. Then $f+r$ is a path from $s+r$ to $t+r$. Then $f-r$ is a path from $s-r$ to $t-r$.

The point c[100] of TopUnitCircle 3 is defined by:
(Def. 3) $c[100]=[1,0,0]$.
The point $c[-100]$ of TopUnitCircle 3 is defined by:
(Def. 4) $c[-100]=[-1,0,0]$.
Next we state several propositions:
(40) $-c[100]=c[-100]$.
(41) $-c[-100]=c[100]$.
(42) $\mathrm{c}[100]-\mathrm{c}[-100]=[2,0,0]$.
(43) For every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $p_{\mathbf{1}}=|p| \cdot \cos \operatorname{Arg} p$ and $p_{\mathbf{2}}=|p| \cdot \sin \operatorname{Arg} p$.
(44) For every point p of \mathcal{E}_{T}^{2} holds $p=\operatorname{cpx} 2 \operatorname{euc}(|p| \cdot \cos \operatorname{Arg} p+|p| \cdot \sin \operatorname{Arg} p \cdot i)$.
(45) For all points p_{1}, p_{2} of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $\left|p_{1}\right|=\left|p_{2}\right|$ and $\operatorname{Arg} p_{1}=\operatorname{Arg} p_{2}+2 \cdot \pi \cdot i$ holds $p_{1}=p_{2}$.
One can prove the following propositions:
(46) For every point p of $\mathcal{E}_{\text {T }}^{2}$ such that $p=\operatorname{CircleMap}(r)$ holds $\operatorname{Arg} p=$ $2 \cdot \pi \cdot \operatorname{frac} r$.
(47) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{3}$ and u_{1}, u_{2} be points of \mathcal{E}^{3}. If $u_{1}=p_{1}$ and $u_{2}=p_{2}$, then $\rho^{3}\left(u_{1}, u_{2}\right)=$
$\sqrt{\left(\left(p_{1}\right)_{\mathbf{1}}-\left(p_{2}\right)_{\mathbf{1}}\right)^{\mathbf{2}}+\left(\left(p_{1}\right)_{\mathbf{2}}-\left(p_{2}\right)_{\mathbf{2}}\right)^{\mathbf{2}}+\left(\left(p_{1}\right)_{\mathbf{3}}-\left(p_{2}\right)_{\mathbf{3}}\right)^{\mathbf{2}}}$.
(48) Let p be a point of $\mathcal{E}_{\mathrm{T}}^{3}$ and e be a point of \mathcal{E}^{3}. If $p=e$ and $p_{\boldsymbol{3}}=0$, then $\Pi\left([1 \mapsto] p_{\mathbf{1}}-\frac{r}{\sqrt{2}}, p_{\mathbf{1}}+\frac{r}{\sqrt{2}}[, 2 \mapsto] p_{\mathbf{2}}-\frac{r}{\sqrt{2}}, p_{\mathbf{2}}+\frac{r}{\sqrt{2}}[, 3 \mapsto\{0\}]\right) \subseteq \operatorname{Ball}(e, r)$.
(49) For every real number s holds $c \circlearrowleft s=c \circlearrowleft s+2 \cdot \pi \cdot i$.
(50) For every real number s holds Rotate $s=\operatorname{Rotate}(s+2 \cdot \pi \cdot i)$.
(51) For every real number s and for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\mid($ Rotate $s)(p)|=|p|$.
(52) For every real number s and for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\operatorname{Arg}($ Rotate $s)(p)=\operatorname{Arg}(\operatorname{euc} 2 \operatorname{cpx}(p) \circlearrowleft s)$.
(53) For every real number s and for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \neq 0_{\mathcal{E}_{\mathrm{T}}^{2}}$ there exists i such that $\operatorname{Arg}($ Rotate $s)(p)=s+\operatorname{Arg} p+2 \cdot \pi \cdot i$.
(54) For every real number s holds (Rotate $s)\left(0_{\mathcal{E}_{T}^{2}}\right)=0_{\mathcal{E}_{\mathrm{T}}^{2}}$.
(55) For every real number s and for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $($ Rotate $s)(p)=0_{\mathcal{E}_{\mathrm{T}}^{2}}$ holds $p=0_{\mathcal{E}_{\mathrm{T}}^{2}}$.
(56) For every real number s and for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $($ Rotate $s)((\operatorname{Rotate}(-s))(p))=p$.
(57) For every real number s holds Rotate $s \cdot \operatorname{Rotate}(-s)=\operatorname{id}_{\mathcal{E}_{\vec{T}}^{2}}$.
(58) For every real number s and for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $p \in$ Sphere $\left(\left(0_{\mathcal{E}_{\mathrm{T}}^{2}}\right), r\right)$ iff (Rotate $\left.s\right)(p) \in \operatorname{Sphere}\left(\left(0_{\mathcal{E}_{\mathrm{T}}^{2}}\right), r\right)$.
(59) For every non negative real number r and for every real number s holds $(\text { Rotate } s)^{\circ} \operatorname{Sphere}\left(\left(0_{\mathcal{E}_{\mathrm{T}}^{2}}\right), r\right)=\operatorname{Sphere}\left(\left(0_{\mathcal{E}_{\mathrm{T}}^{2}}\right), r\right)$.
Let r be a non negative real number and let s be a real number. The functor $\operatorname{RotateCircle}(r, s)$ yields a function from $\operatorname{Tcircle}\left(0_{\mathcal{E}_{\mathrm{T}}^{2}}, r\right)$ into $\operatorname{Tcircle}\left(0_{\mathcal{E}_{\mathrm{T}}^{2}}, r\right)$ and is defined by:
(Def. 5) RotateCircle $(r, s)=$ Rotate $s \upharpoonright \operatorname{Tcircle}\left(0_{\mathcal{E}_{\mathrm{T}}^{2}}, r\right)$.
Let r be a non negative real number and let s be a real number. Note that RotateCircle (r, s) is homeomorphism.

One can prove the following proposition
(60) For every point p of \mathcal{E}_{T}^{2} such that $p=\operatorname{CircleMap}\left(r_{2}\right)$ holds $(\operatorname{RotateCircle}(1,(-\operatorname{Arg} p)))\left(\operatorname{CircleMap}\left(r_{1}\right)\right)=\operatorname{CircleMap}\left(r_{1}-r_{2}\right)$.

2. On the Antipodals

Let n be a non empty natural number, let p be a point of $\mathcal{E}_{\mathrm{T}}^{n}$, and let r be a non negative real number. The functor $\operatorname{CircleIso}(p, r)$ yields a function from TopUnitCircle n into $\operatorname{Tcircle}(p, r)$ and is defined as follows:
(Def. 6) For every point a of TopUnitCircle n and for every point b of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $a=b$ holds $(\operatorname{CircleIso}(p, r))(a)=r \cdot b+p$.
Let n be a non empty natural number, let p be a point of $\mathcal{E}_{\mathrm{T}}^{n}$, and let r be a positive real number. Note that $\operatorname{CircleIso}(p, r)$ is homeomorphism.

The function SphereMap from \mathbb{R}^{1} into TopUnitCircle 3 is defined by:
(Def. 7) For every real number x holds (SphereMap) $(x)=[\cos (2 \cdot \pi \cdot x), \sin (2 \cdot \pi$. $x), 0]$.
We now state the proposition
(61) $\quad($ SphereMap $)(i)=c[100]$.

Let us note that SphereMap is continuous.
Let r be a real number. The functor eLoop r yields a function from \mathbb{I} into TopUnitCircle 3 and is defined as follows:
(Def. 8) For every point x of \mathbb{I} holds $(\mathrm{eLoop} r)(x)=[\cos (2 \cdot \pi \cdot r \cdot x), \sin (2 \cdot \pi \cdot r \cdot x), 0]$.
We now state the proposition
(62) eLoop $r=$ SphereMap \cdot ExtendInt r.

Let us consider i. Then eLoop i is a loop of c[100].
One can check that eLoop i is null-homotopic as a loop of $c[100]$.
One can prove the following proposition
(63) If $p \neq 0_{\mathcal{E}_{\mathrm{T}}^{n}}$, then $|p /|p||=1$.

Let n be a natural number and let p be a point of $\mathcal{E}_{\mathrm{T}}^{n}$. Let us assume that $p \neq 0_{\mathcal{E}_{\mathrm{T}}^{n}}$. The functor $\left(R^{n} \rightarrow S^{1}\right) p$ yields a point of $\operatorname{Tcircle}\left(0_{\mathcal{E}_{\mathrm{T}}^{n}}, 1\right)$ and is defined by:
(Def. 9) ($\left.R^{n} \rightarrow S^{1}\right) p=p /|p|$.
Let n be a non zero natural number and let f be a function
from $\operatorname{Tcircle}\left(0_{\mathcal{E}_{\mathrm{T}}}, 1\right)$ into $\mathcal{E}_{\mathrm{T}}^{n}$. The functor $\left(S^{n+1} \rightarrow S^{n}\right) f$ yielding a function from TopUnitCircle $(n+1)$ into TopUnitCircle n is defined as follows:
(Def. 10) For all points x, y of $\operatorname{Tcircle}\left(0_{\mathcal{E}_{T}^{n+1}}, 1\right)$ such that $y=-x$ holds $\left(\left(S^{n+1} \rightarrow S^{n}\right) f\right)(x)=\left(R^{n} \rightarrow S^{1}\right)(f(x)-f(y))$.
Let x_{0}, y_{0} be points of TopUnitCircle 2 , let x_{1} be a set, and let f be a path from x_{0} to y_{0}. Let us assume that $x_{1} \in \operatorname{CircleMap}^{-1}\left(\left\{x_{0}\right\}\right)$. The functor $\operatorname{liftPath}\left(f, x_{1}\right)$ yielding a function from \mathbb{I} into \mathbb{R}^{1} is defined by the conditions (Def. 11).
(Def. 11)(i) $\quad\left(\operatorname{liftPath}\left(f, x_{1}\right)\right)(0)=x_{1}$,
(ii) $f=\operatorname{CircleMap} \cdot \operatorname{liftPath}\left(f, x_{1}\right)$,
(iii) $\operatorname{lift} \operatorname{Path}\left(f, x_{1}\right)$ is continuous, and
(iv) for every function f_{1} from \mathbb{I} into $\mathbb{R}^{\mathbf{1}}$ such that f_{1} is continuous and $f=\operatorname{CircleMap} \cdot f_{1}$ and $f_{1}(0)=x_{1}$ holds $\operatorname{liftPath}\left(f, x_{1}\right)=f_{1}$.
Let n be a natural number, let p, x, y be points of $\mathcal{E}_{\mathrm{T}}^{n}$, and let r be a real number. We say that x and y are antipodals of p and r if and only if:
(Def. 12) x is a point of $\operatorname{Tcircle}(p, r)$ and y is a point of $\operatorname{Tcircle}(p, r)$ and $p \in$ $\mathcal{L}(x, y)$.
Let n be a natural number, let p, x, y be points of $\mathcal{E}_{\mathrm{T}}^{n}$, let r be a real number, and let f be a function. We say that x and y are antipodals of p, r and f if and only if:
(Def. 13) $\quad x$ and y are antipodals of p and r and $x, y \in \operatorname{dom} f$ and $f(x)=f(y)$.
Let m, n be natural numbers, let p be a point of $\mathcal{E}_{\mathrm{T}}^{m}$, let r be a real number, and let f be a function from $\operatorname{Tcircle}(p, r)$ into $\mathcal{E}_{\mathrm{T}}^{n}$. We say that f has antipodals if and only if:
(Def. 14) There exist points x, y of $\mathcal{E}_{\mathrm{T}}^{m}$ such that x and y are antipodals of p, r and f.
Let m, n be natural numbers, let p be a point of $\mathcal{E}_{\mathrm{T}}^{m}$, let r be a real number, and let f be a function from $\operatorname{Tcircle}(p, r)$ into $\mathcal{E}_{\mathrm{T}}^{n}$. We introduce f is without antipodals as an antonym of f has antipodals.

One can prove the following propositions:
(64) Let n be a non empty natural number, r be a non negative real number, and x be a point of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose x is a point of $\operatorname{Tcircle}\left(0_{\mathcal{E}_{\mathrm{T}}^{n}}, r\right)$. Then x and $-x$ are antipodals of $0_{\mathcal{E}_{T}^{n}}$ and r.
(65) Let n be a non empty natural number, p, x, y, x_{2}, y_{1} be points of $\mathcal{E}_{\mathrm{T}}^{n}$, and r be a positive real number. Suppose x and y are antipodals of $0_{\mathcal{E}_{\mathrm{T}}^{n}}$ and 1 and $x_{2}=(\operatorname{CircleIso}(p, r))(x)$ and $y_{1}=(\operatorname{CircleIso}(p, r))(y)$. Then x_{2} and y_{1} are antipodals of p and r.
(66) Let f be a function from $\operatorname{Tcircle}\left(0_{\mathcal{E}_{\mathrm{T}}^{n+1}}, 1\right)$ into $\mathcal{E}_{\mathrm{T}}^{n}$ and x be a point of $\operatorname{Tcircle}\left(0_{\mathcal{E}_{\mathrm{T}}^{n+1}}, 1\right)$. If f is without antipodals, then $f(x)-f(-x) \neq 0_{\mathcal{E}_{\mathrm{T}}^{n}}$.
(67) For every function f from $\operatorname{Tcircle}\left(0_{\mathcal{E}_{\mathrm{T}}^{n+1}}, 1\right)$ into $\mathcal{E}_{\mathrm{T}}^{n}$ such that f is without antipodals holds $\left(S^{n+1} \rightarrow S^{n}\right) f$ is odd.
(68) Let f be a function from $\operatorname{Tcircle}\left(0_{\mathcal{E}_{\mathrm{T}}^{n+1}}, 1\right)$ into $\mathcal{E}_{\mathrm{T}}^{n}$ and g, B_{1} be functions from $\operatorname{Tcircle}\left(0_{\mathcal{E}_{\mathrm{T}}^{n+1}}, 1\right)$ into $\mathcal{E}_{\mathrm{T}}^{n}$. If $g=f \circ-$ and $B_{1}=f-g$ and f is without antipodals, then $\left(S^{n+1} \rightarrow S^{n}\right) f=B_{1} /\left(n\right.$ NormF $\left.\cdot B_{1}\right)$.
Let us consider n, let r be a negative real number, and let p be a point of $\mathcal{E}_{\mathrm{T}}^{n+1}$. Observe that every function from $\operatorname{Tcircle}(p, r)$ into $\mathcal{E}_{\mathrm{T}}^{n}$ is without antipodals.

Let r be a non negative real number and let p be a point of $\mathcal{E}_{\mathrm{T}}^{3}$. Note that every function from $\operatorname{Tcircle}(p, r)$ into $\mathcal{E}_{\mathrm{T}}^{2}$ which is continuous also has antipodals. ${ }^{2}$

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[11] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[12] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[13] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[14] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.

[^1][15] Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics, 6(4):449-454, 1997.
[16] Adam Grabowski. On the subcontinua of a real line. Formalized Mathematics, 11(3):313322, 2003.
[17] Jarosław Gryko. Injective spaces. Formalized Mathematics, 7(1):57-62, 1998.
[18] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.
[19] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[20] Kanchun, Hiroshi Yamazaki, and Yatsuka Nakamura. Cross products and tripple vector products in 3-dimensional Euclidean space. Formalized Mathematics, 11(4):381-383, 2003.
[21] Artur Korniłowicz. Arithmetic operations on functions from sets into functional sets. Formalized Mathematics, 17(1):43-60, 2009, doi:10.2478/v10037-009-0005-y.
[22] Artur Korniłowicz. On the continuity of some functions. Formalized Mathematics, 18(3):175-183, 2010, doi: 10.2478/v10037-010-0020-z.
[23] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in $\mathcal{E}_{\mathrm{T}}^{n}$. Formalized Mathematics, 12(3):301-306, 2004.
[24] Artur Korniłowicz and Yasunari Shidama. Some properties of circles on the plane. Formalized Mathematics, 13(1):117-124, 2005.
[25] Artur Korniłowicz, Yasunari Shidama, and Adam Grabowski. The fundamental group. Formalized Mathematics, 12(3):261-268, 2004.
[26] Akihiro Kubo and Yatsuka Nakamura. Angle and triangle in Euclidian topological space. Formalized Mathematics, 11(3):281-287, 2003.
[27] Adam Naumowicz and Grzegorz Bancerek. Homeomorphisms of Jordan curves. Formalized Mathematics, 13(4):477-480, 2005.
[28] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[29] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[30] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[31] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[32] Marco Riccardi and Artur Korniłowicz. Fundamental group of n-sphere for $n \geq 2$. Formalized Mathematics, 20(2):97-104, 2012, doi: 10.2478/v10037-012-0013-1.
[33] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
[34] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[35] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[36] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[37] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[38] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[39] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[40] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[41] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[42] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[43] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

[^0]: ${ }^{1}$ This work has been supported by the Polish Ministry of Science and Higher Education project "Managing a Large Repository of Computer-verified Mathematical Knowledge" (N N519 385136).
 (C) 2012 University of Białystok CC-BY-SA License ver. 3.0 or later

[^1]: ${ }^{2}$ The Borsuk-Ulam Theorem

