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Differentiable Functions on Normed Linear
Spaces1

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article, we formalize differentiability of functions on
normed linear spaces. Partial derivative, mean value theorem for vector-valued
functions, continuous differentiability, etc. are formalized. As it is well known,
there is no exact analog of the mean value theorem for vector-valued functions.
However a certain type of generalization of the mean value theorem for vector-
valued functions is obtained as follows: If ||f ′(x+ t ·h)|| is bounded for t between
0 and 1 by some constant M, then ||f(x+t ·h)−f(x)|| ≤M · ||h||. This theorem is
called the mean value theorem for vector-valued functions. By this theorem, the
relation between the (total) derivative and the partial derivatives of a function
is derived [23].
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The notation and terminology used here have been introduced in the following
papers: [28], [29], [9], [4], [30], [12], [10], [25], [11], [1], [2], [26], [7], [3], [5], [8],
[17], [22], [20], [27], [21], [31], [14], [24], [18], [16], [15], [19], [13], and [6].

1. Preliminaries

In this paper r is a real number and S, T are non trivial real normed spaces.
Next we state several propositions:

(1) Let R be a function from R into S. Then R is rest-like if and only if for
every real number r such that r > 0 there exists a real number d such
that d > 0 and for every real number z such that z 6= 0 and |z| < d holds
|z|−1 · ‖Rz‖ < r.

1This work was supported by JSPS KAKENHI 22300285.
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(2) Let R be a rest of S. Suppose R0 = 0S . Let e be a real number. Suppose
e > 0. Then there exists a real number d such that d > 0 and for every
real number h such that |h| < d holds ‖Rh‖ ≤ e · |h|.

(3) For every rest R of S and for every bounded linear operator L from S

into T holds L ·R is a rest of T .

(4) Let R1 be a rest of S. Suppose (R1)0 = 0S . Let R2 be a rest of S, T . If
(R2)0S = 0T , then for every linear L of S holds R2 · (L + R1) is a rest of
T .

(5) Let R1 be a rest of S. Suppose (R1)0 = 0S . Let R2 be a rest of S, T .
Suppose (R2)0S = 0T . Let L1 be a linear of S and L2 be a bounded linear
operator from S into T . Then L2 ·R1 +R2 · (L1 +R1) is a rest of T .

(6) Let x0 be an element of R and g be a partial function from R to the
carrier of S. Suppose g is differentiable in x0. Let f be a partial function
from the carrier of S to the carrier of T . Suppose f is differentiable in gx0 .
Then f · g is differentiable in x0 and (f · g)′(x0) = f ′(gx0)(g

′(x0)).

(7) Let S be a real normed space, x1 be a finite sequence of elements of S,
and y1 be a finite sequence of elements of R. Suppose lenx1 = len y1 and
for every element i of N such that i ∈ domx1 holds y1(i) = ‖(x1)i‖. Then
‖
∑
x1‖ ≤

∑
y1.

(8) Let S be a real normed space, x be a point of S, and N1, N2 be neigh-
bourhoods of x. Then N1 ∩N2 is a neighbourhood of x.

(9) For every non-empty finite sequence X and for every set x such that
x ∈

∏
X holds x is a finite sequence.

Let G be a real norm space sequence. One can verify that
∏
G is constituted

finite sequences.
Let G be a real linear space sequence, let z be an element of

∏
G, and let j

be an element of domG. Then z(j) is an element of G(j).
One can prove the following propositions:

(10) The carrier of
∏
G =

∏
G.

(11) Let i be an element of domG, r be a set, and x be a function. If r ∈ the
carrier of G(i) and x ∈

∏
G, then x+· (i, r) ∈ the carrier of

∏
G.

Let G be a real norm space sequence. We say that G is nontrivial if and only
if:

(Def. 1) For every element j of domG holds G(j) is non trivial.

Let us mention that there exists a real norm space sequence which is non-
trivial.

Let G be a nontrivial real norm space sequence and let i be an element of
domG. Note that G(i) is non trivial.

Let G be a nontrivial real norm space sequence. Note that
∏
G is non trivial.

The following propositions are true:
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(12) Let G be a real norm space sequence, p, q be points of
∏
G, and r0, p0,

q0 be elements of
∏
G. Suppose p = p0 and q = q0. Then p+ q = r0 if and

only if for every element i of domG holds r0(i) = p0(i) + q0(i).

(13) Let G be a real norm space sequence, p be a point of
∏
G, r be a real

number, and r0, p0 be elements of
∏
G. Suppose p = p0. Then r · p = r0

if and only if for every element i of domG holds r0(i) = r · p0(i).
(14) Let G be a real norm space sequence and p0 be an element of

∏
G. Then

0∏G = p0 if and only if for every element i of domG holds p0(i) = 0G(i).

(15) Let G be a real norm space sequence, p, q be points of
∏
G, and r0, p0,

q0 be elements of
∏
G. Suppose p = p0 and q = q0. Then p− q = r0 if and

only if for every element i of domG holds r0(i) = p0(i)− q0(i).

2. Mean Value Theorem for Vector-Valued Functions

Let S be a real linear space and let p, q be points of S. The functor ]p, q[
yielding a subset of S is defined as follows:

(Def. 2) ]p, q[ = {p+ t · (q − p); t ranges over real numbers: 0 < t ∧ t < 1}.
Let S be a real linear space and let p, q be points of S. We introduce [p, q]

as a synonym of L(p, q).
Next we state several propositions:

(16) For every real linear space S and for all points p, q of S holds ]p, q[ ⊆
[p, q].

(17) Let T be a non trivial real normed space and R be a partial function
from R to T . Suppose R is total. Then R is rest-like if and only if for every
real number r such that r > 0 there exists a real number d such that d > 0
and for every real number z such that z 6= 0 and |z| < d holds ‖Rz‖|z| < r.

(18) Let R be a function from R into R. Then R is rest-like if and only if
for every real number r such that r > 0 there exists a real number d such
that d > 0 and for every real number z such that z 6= 0 and |z| < d holds
|R(z)|
|z| < r.

(19) Let S, T be non trivial real normed spaces, f be a partial function from
S to T , p, q be points of S, and M be a real number. Suppose that

(i) [p, q] ⊆ dom f,

(ii) for every point x of S such that x ∈ [p, q] holds f is continuous in x,
(iii) for every point x of S such that x ∈ ]p, q[ holds f is differentiable in x,

and
(iv) for every point x of S such that x ∈ ]p, q[ holds ‖f ′(x)‖ ≤M.

Then ‖fq − fp‖ ≤M · ‖q − p‖.
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(20) Let S, T be non trivial real normed spaces, f be a partial function from
S to T , p, q be points of S, M be a real number, and L be a point of the
real norm space of bounded linear operators from S into T . Suppose that

(i) [p, q] ⊆ dom f,

(ii) for every point x of S such that x ∈ [p, q] holds f is continuous in x,
(iii) for every point x of S such that x ∈ ]p, q[ holds f is differentiable in x,

and
(iv) for every point x of S such that x ∈ ]p, q[ holds ‖f ′(x)− L‖ ≤M.

Then ‖fq − fp − L(q − p)‖ ≤M · ‖q − p‖.

3. Partial Derivative of a Function of Several Variables

Let G be a real norm space sequence and let i be an element of domG. The
projection onto i yielding a function from

∏
G into G(i) is defined by:

(Def. 3) For every element x of
∏
G holds (the projection onto i)(x) = x(i).

Let G be a real norm space sequence, let i be an element of domG, and let
x be an element of

∏
G. The functor reproj(i, x) yielding a function from G(i)

into
∏
G is defined by:

(Def. 4) For every element r of G(i) holds (reproj(i, x))(r) = x+· (i, r).
Let G be a nontrivial real norm space sequence and let j be a set. Let

us assume that j ∈ domG. The functor modetrans(G, j) yields an element of
domG and is defined by:

(Def. 5) modetrans(G, j) = j.

Let G be a nontrivial real norm space sequence, let F be a non trivial real
normed space, let i be a set, let f be a partial function from

∏
G to F , and let

x be an element of
∏
G. We say that f is partially differentiable in x w.r.t. i if

and only if:

(Def. 6) f · reproj(modetrans(G, i), x) is differentiable in (the projection onto
modetrans(G, i))(x).

Let G be a nontrivial real norm space sequence, let F be a non trivial real
normed space, let i be a set, let f be a partial function from

∏
G to F , and let x

be a point of
∏
G. The functor partdiff(f, x, i) yielding a point of the real norm

space of bounded linear operators from G(modetrans(G, i)) into F is defined as
follows:

(Def. 7) partdiff(f, x, i) = (f · reproj(modetrans(G, i), x))′((the projection onto
modetrans(G, i))(x)).
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4. Linearity of Partial Differential Operator

For simplicity, we adopt the following rules: G denotes a nontrivial real norm
space sequence, F denotes a non trivial real normed space, i denotes an element
of domG, f , f1, f2 denote partial functions from

∏
G to F , x denotes a point

of
∏
G, and X denotes a set.

Let G be a nontrivial real norm space sequence, let F be a non trivial real
normed space, let i be a set, let f be a partial function from

∏
G to F , and let

X be a set. We say that f is partially differentiable on X w.r.t. i if and only if:

(Def. 8) X ⊆ dom f and for every point x of
∏
G such that x ∈ X holds f�X is

partially differentiable in x w.r.t. i.

Next we state several propositions:

(21) For every element x2 of G(i) holds ‖(reproj(i, 0∏G))(x2)‖ = ‖x2‖.
(22) LetG be a nontrivial real norm space sequence, i be an element of domG,

x be a point of
∏
G, and r be a point of G(i). Then (reproj(i, x))(r)−x =

(reproj(i, 0∏G))(r−(the projection onto i)(x)) and x−(reproj(i, x))(r) =
(reproj(i, 0∏G))((the projection onto i)(x)− r).

(23) LetG be a nontrivial real norm space sequence, i be an element of domG,

x be a point of
∏
G, and Z be a subset of

∏
G. Suppose Z is open and

x ∈ Z. Then there exists a neighbourhood N of (the projection onto i)(x)
such that for every point z of G(i) if z ∈ N, then (reproj(i, x))(z) ∈ Z.

(24) Let G be a nontrivial real norm space sequence, T be a non trivial real
normed space, i be a set, f be a partial function from

∏
G to T , and Z

be a subset of
∏
G. Suppose Z is open. Then f is partially differentiable

on Z w.r.t. i if and only if Z ⊆ dom f and for every point x of
∏
G such

that x ∈ Z holds f is partially differentiable in x w.r.t. i.

(25) For every set i such that i ∈ domG and f is partially differentiable on
X w.r.t. i holds X is a subset of

∏
G.

Let G be a nontrivial real norm space sequence, let S be a non trivial real
normed space, and let i be a set. Let us assume that i ∈ domG. Let f be a partial
function from

∏
G to S and let X be a set. Let us assume that f is partially

differentiable on X w.r.t. i. The functor f�iX yields a partial function from
∏
G

to the real norm space of bounded linear operators from G(modetrans(G, i)) into
S and is defined by:

(Def. 9) dom(f�iX) = X and for every point x of
∏
G such that x ∈ X holds

(f�iX)x = partdiff(f, x, i).

One can prove the following propositions:

(26) For every set i such that i ∈ domG holds (f1 + f2) ·
reproj(modetrans(G, i), x) = f1 · reproj(modetrans(G, i), x) + f2 ·
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reproj(modetrans(G, i), x) and (f1 − f2) · reproj(modetrans(G, i), x) =
f1 · reproj(modetrans(G, i), x)− f2 · reproj(modetrans(G, i), x).

(27) For every set i such that i ∈ domG holds r·(f ·reproj(modetrans(G, i), x)) =
(r · f) · reproj(modetrans(G, i), x).

(28) Let i be a set. Suppose i ∈ domG and f1 is partially differentiable in x

w.r.t. i and f2 is partially differentiable in x w.r.t. i. Then f1+f2 is partially
differentiable in x w.r.t. i and partdiff(f1 + f2, x, i) = partdiff(f1, x, i) +
partdiff(f2, x, i).

(29) Let i be a set. Suppose i ∈ domG and f1 is partially differentiable in x

w.r.t. i and f2 is partially differentiable in x w.r.t. i. Then f1−f2 is partially
differentiable in x w.r.t. i and partdiff(f1 − f2, x, i) = partdiff(f1, x, i) −
partdiff(f2, x, i).

(30) Let i be a set. Suppose i ∈ domG and f is partially differentiable in x

w.r.t. i. Then r · f is partially differentiable in x w.r.t. i and partdiff(r ·
f, x, i) = r · partdiff(f, x, i).

5. Continuous Differentiatibility of Partial Derivative

Next we state the proposition

(31) ‖(the projection onto i)(x)‖ ≤ ‖x‖.
Let G be a nontrivial real norm space sequence. One can verify that every

point of
∏
G is lenG-element.

We now state a number of propositions:

(32) Let G be a nontrivial real norm space sequence, T be a non trivial real
normed space, i be a set, Z be a subset of

∏
G, and f be a partial function

from
∏
G to T . Suppose Z is open. Then f is partially differentiable on

Z w.r.t. i if and only if Z ⊆ dom f and for every point x of
∏
G such that

x ∈ Z holds f is partially differentiable in x w.r.t. i.

(33) Let i, j be elements of domG, x be a point of G(i), and z be an element
of
∏
G such that z = (reproj(i, 0∏G))(x). Then

(i) if i = j, then z(j) = x, and
(ii) if i 6= j, then z(j) = 0G(j).

(34) For all points x, y of G(i) holds (reproj(i, 0∏G))(x + y) =
(reproj(i, 0∏G))(x) + (reproj(i, 0∏G))(y).

(35) Let x, y be points of
∏
G. Then (the projection onto i)(x + y) = (the

projection onto i)(x) + (the projection onto i)(y).

(36) For all points x, y of G(i) holds (reproj(i, 0∏G))(x − y) =
(reproj(i, 0∏G))(x)− (reproj(i, 0∏G))(y).
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(37) Let x, y be points of
∏
G. Then (the projection onto i)(x − y) = (the

projection onto i)(x)− (the projection onto i)(y).

(38) For every point x of G(i) such that x 6= 0G(i) holds (reproj(i, 0∏G))(x) 6=
0∏G.

(39) For every point x of G(i) and for every element a of R holds
(reproj(i, 0∏G))(a · x) = a · (reproj(i, 0∏G))(x).

(40) Let x be a point of
∏
G and a be an element of R. Then (the projection

onto i)(a · x) = a · (the projection onto i)(x).

(41) Let G be a nontrivial real norm space sequence, S be a non trivial
real normed space, f be a partial function from

∏
G to S, x be a

point of
∏
G, and i be a set. Suppose f is differentiable in x. Then

f is partially differentiable in x w.r.t. i and partdiff(f, x, i) = f ′(x) ·
reproj(modetrans(G, i), 0∏G).

(42) Let S be a real normed space and h, g be finite sequences of elements
of S. Suppose lenh = len g + 1 and for every natural number i such that
i ∈ dom g holds gi = hi − hi+1. Then h1 − hlenh =

∑
g.

(43) Let G be a nontrivial real norm space sequence, x, y be elements of
∏
G,

and Z be a set. Then x+·y�Z is an element of
∏
G.

(44) Let G be a nontrivial real norm space sequence, x, y be points of
∏
G,

Z, x0 be elements of
∏
G, and X be a set. If Z = 0∏G and x0 = x and

y = Z+·x0�X, then ‖y‖ ≤ ‖x‖.
(45) Let G be a nontrivial real norm space sequence, S be a non trivial real

normed space, f be a partial function from
∏
G to S, and x, y be points

of
∏
G. Then there exists a finite sequence h of elements of

∏
G and there

exists a finite sequence g of elements of S and there exist elements Z, y0
of
∏
G such that

y0 = y and Z = 0∏G and lenh = lenG+1 and len g = lenG and for every
natural number i such that i ∈ domh holds hi = Z+·y0� Seg((lenG+1)−′
i) and for every natural number i such that i ∈ dom g holds gi = fx+hi −
fx+hi+1 and for every natural number i and for every point h1 of

∏
G such

that i ∈ domh and hi = h1 holds ‖h1‖ ≤ ‖y‖ and fx+y − fx =
∑
g.

(46) LetG be a nontrivial real norm space sequence, i be an element of domG,

x, y be points of
∏
G, and x2 be a point of G(i). If y = (reproj(i, x))(x2),

then (the projection onto i)(y) = x2.

(47) LetG be a nontrivial real norm space sequence, i be an element of domG,

y be a point of
∏
G, and q be a point of G(i). If q = (the projection onto

i)(y), then y = (reproj(i, y))(q).

(48) LetG be a nontrivial real norm space sequence, i be an element of domG,

x, y be points of
∏
G, and x2 be a point of G(i). If y = (reproj(i, x))(x2),

then reproj(i, x) = reproj(i, y).
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(49) Let G be a nontrivial real norm space sequence, i, j be elements of
domG, x, y be points of

∏
G, and x2 be a point of G(i). Suppose

y = (reproj(i, x))(x2) and i 6= j. Then (the projection onto j)(x) = (the
projection onto j)(y).

(50) Let G be a nontrivial real norm space sequence, F be a non trivial real
normed space, i be an element of domG, x be a point of

∏
G, x2 be a point

of G(i), f be a partial function from
∏
G to F , and g be a partial function

from G(i) to F . If (the projection onto i)(x) = x2 and g = f · reproj(i, x),
then g′(x2) = partdiff(f, x, i).

(51) Let G be a nontrivial real norm space sequence, F be a non trivial real
normed space, f be a partial function from

∏
G to F , x be a point of∏

G, i be a set, M be a real number, L be a point of the real norm space
of bounded linear operators from G(modetrans(G, i)) into F , and p, q be
points of G(modetrans(G, i)). Suppose that

(i) i ∈ domG,

(ii) for every point h of G(modetrans(G, i)) such that h ∈ ]p, q[ holds
‖partdiff(f, (reproj(modetrans(G, i), x))(h), i)− L‖ ≤M,

(iii) for every point h of G(modetrans(G, i)) such that h ∈ [p, q] holds
(reproj(modetrans(G, i), x))(h) ∈ dom f, and

(iv) for every point h of G(modetrans(G, i)) such that h ∈ [p, q] holds f is
partially differentiable in (reproj(modetrans(G, i), x))(h) w.r.t. i.
Then ‖f(reproj(modetrans(G,i),x))(q) − f(reproj(modetrans(G,i),x))(p) −L(q − p)‖ ≤
M · ‖q − p‖.

(52) Let G be a nontrivial real norm space sequence, x, y, z, w be points of∏
G, i be an element of domG, d be a real number, and p, q, r be points

of G(i). Suppose ‖y − x‖ < d and ‖z − x‖ < d and p = (the projection
onto i)(y) and z = (reproj(i, y))(q) and r ∈ [p, q] and w = (reproj(i, y))(r).
Then ‖w − x‖ < d.

(53) Let G be a nontrivial real norm space sequence, S be a non trivial real
normed space, f be a partial function from

∏
G to S, X be a subset of

∏
G,

x, y, z be points of
∏
G, i be a set, p, q be points of G(modetrans(G, i)),

and d, r be real numbers. Suppose that i ∈ domG and X is open and x ∈
X and ‖y−x‖ < d and ‖z−x‖ < d and X ⊆ dom f and for every point x of∏
G such that x ∈ X holds f is partially differentiable in x w.r.t. i and for

every point z of
∏
G such that ‖z−x‖ < d holds z ∈ X and for every point

z of
∏
G such that ‖z−x‖ < d holds ‖partdiff(f, z, i)−partdiff(f, x, i)‖ ≤

r and z = (reproj(modetrans(G, i), y))(p) and q = (the projection onto
modetrans(G, i))(y). Then ‖fz−fy−(partdiff(f, x, i))(p−q)‖ ≤ ‖p−q‖·r.

(54) Let G be a nontrivial real norm space sequence, h be a finite sequ-
ence of elements of

∏
G, y, x be points of

∏
G, y0, Z be elements of∏

G, and j be an element of N. Suppose y = y0 and Z = 0∏G and
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lenh = lenG + 1 and 1 ≤ j ≤ lenG and for every natural number
i such that i ∈ domh holds hi = Z+·y0� Seg((lenG + 1) −′ i). Then
x+hj = (reproj(modetrans(G, (lenG+ 1)−′ j), x+hj+1))((the projection
onto modetrans(G, (lenG+ 1)−′ j))(x+ y)).

(55) Let G be a nontrivial real norm space sequence, h be a finite sequ-
ence of elements of

∏
G, y, x be points of

∏
G, y0, Z be elements of∏

G, and j be an element of N. Suppose y = y0 and Z = 0∏G and
lenh = lenG + 1 and 1 ≤ j ≤ lenG and for every natural number i
such that i ∈ domh holds hi = Z+·y0� Seg((lenG + 1) −′ i). Then (the
projection onto modetrans(G, (lenG + 1) −′ j))(x + y) − (the projection
onto modetrans(G, (lenG + 1) −′ j))(x + hj+1) = (the projection onto
modetrans(G, (lenG+ 1)−′ j))(y).

(56) Let G be a nontrivial real norm space sequence, S be a non trivial real
normed space, f be a partial function from

∏
G to S, X be a subset of∏

G, and x be a point of
∏
G. Suppose that

(i) X is open,
(ii) x ∈ X, and
(iii) for every set i such that i ∈ domG holds f is partially differentiable

on X w.r.t. i and f�iX is continuous on X.
Then

(iv) f is differentiable in x, and
(v) for every point h of

∏
G there exists a finite sequence w of elements

of S such that domw = domG and for every set i such that i ∈ domG

holds w(i) = (partdiff(f, x, i))((the projection onto modetrans(G, i))(h))
and f ′(x)(h) =

∑
w.

(57) Let G be a nontrivial real norm space sequence, F be a non trivial real
normed space, f be a partial function from

∏
G to F , and X be a subset

of
∏
G. Suppose X is open. Then for every set i such that i ∈ domG holds

f is partially differentiable on X w.r.t. i and f�iX is continuous on X if
and only if f is differentiable on X and f ′�X is continuous on X.
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