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Summary. In this article we demonstrate basic properties of the continu-
ous functions from R to Rn which correspond to state space equations in control
engineering.
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The terminology and notation used here have been introduced in the following
articles: [3], [7], [17], [2], [4], [12], [13], [14], [16], [1], [5], [9], [15], [18], [10], [8],
[20], [21], [19], [11], [22], and [6].

For simplicity, we use the following convention: n, i denote elements of N, X,
X1 denote sets, r, p, s, x0, x1, x2 denote real numbers, f , f1, f2 denote partial
functions from R to Rn, and h denotes a partial function from R to the carrier
of 〈En, ‖ · ‖〉.

Let us consider n, f , x0. We say that f is continuous in x0 if and only if:

(Def. 1) There exists a partial function g from R to the carrier of 〈En, ‖ · ‖〉 such
that f = g and g is continuous in x0.

We now state four propositions:

(1) If h = f, then f is continuous in x0 iff h is continuous in x0.

(2) If x0 ∈ X and f is continuous in x0, then f�X is continuous in x0.

1This work was supported by JSPS KAKENHI 22300285.
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(3) f is continuous in x0 if and only if the following conditions are satisfied:
(i) x0 ∈ dom f, and
(ii) for every r such that 0 < r there exists s such that 0 < s and for every

x1 such that x1 ∈ dom f and |x1 − x0| < s holds |fx1 − fx0 | < r.

(4) Let r be a real number, z be an element of Rn, and w be a point of
〈En, ‖ · ‖〉. Suppose z = w. Then {y ∈ Rn: |y− z| < r} = {y; y ranges over
points of 〈En, ‖ · ‖〉: ‖y − w‖ < r}.

Let n be an element of N, let Z be a set, and let f be a partial function from
Z to Rn. The functor |f | yielding a partial function from Z to R is defined by:

(Def. 2) dom |f | = dom f and for every set x such that x ∈ dom |f | holds |f |x =
|fx|.

Let n be an element of N, let Z be a non empty set, and let f be a partial
function from Z to Rn. The functor −f yields a partial function from Z to Rn
and is defined by:

(Def. 3) dom(−f) = dom f and for every set c such that c ∈ dom(−f) holds
(−f)c = −fc.

One can prove the following propositions:

(5) Let f1, f2 be partial functions from R to the carrier of 〈En, ‖ · ‖〉 and
g1, g2 be partial functions from R to Rn. If f1 = g1 and f2 = g2, then
f1 + f2 = g1 + g2.

(6) Let f1 be a partial function from R to the carrier of 〈En, ‖ · ‖〉, g1 be a
partial function from R to Rn, and a be a real number. If f1 = g1, then
a · f1 = a · g1.

(7) For every partial function f1 from R to Rn holds (−1) · f1 = −f1.
(8) Let f1 be a partial function from R to the carrier of 〈En, ‖ · ‖〉 and g1 be

a partial function from R to Rn. If f1 = g1, then −f1 = −g1.
(9) Let f1 be a partial function from R to the carrier of 〈En, ‖ · ‖〉 and g1 be

a partial function from R to Rn. If f1 = g1, then ‖f1‖ = |g1|.
(10) Let f1, f2 be partial functions from R to the carrier of 〈En, ‖ · ‖〉 and

g1, g2 be partial functions from R to Rn. If f1 = g1 and f2 = g2, then
f1 − f2 = g1 − g2.

(11) f is continuous in x0 if and only if the following conditions are satisfied:
(i) x0 ∈ dom f, and

(ii) for every subset N1 of Rn such that there exists a real number r such
that 0 < r and {y ∈ Rn: |y−fx0 | < r} = N1 there exists a neighbourhood
N of x0 such that for every x1 such that x1 ∈ dom f and x1 ∈ N holds
fx1 ∈ N1.

(12) f is continuous in x0 if and only if the following conditions are satisfied:
(i) x0 ∈ dom f, and
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(ii) for every subset N1 of Rn such that there exists a real number r such
that 0 < r and {y ∈ Rn: |y−fx0 | < r} = N1 there exists a neighbourhood
N of x0 such that f◦N ⊆ N1.

(13) If there exists a neighbourhood N of x0 such that dom f ∩ N = {x0},
then f is continuous in x0.

(14) If x0 ∈ dom f1 ∩ dom f2 and f1 is continuous in x0 and f2 is continuous
in x0, then f1 + f2 is continuous in x0.

(15) If x0 ∈ dom f1 ∩ dom f2 and f1 is continuous in x0 and f2 is continuous
in x0, then f1 − f2 is continuous in x0.

(16) If f is continuous in x0, then r · f is continuous in x0.

(17) If x0 ∈ dom f and f is continuous in x0, then |f | is continuous in x0.

(18) If x0 ∈ dom f and f is continuous in x0, then −f is continuous in x0.

(19) Let S be a real normed space, z be a point of 〈En, ‖ · ‖〉, f1 be a partial
function from R to Rn, and f2 be a partial function from the carrier of
〈En, ‖·‖〉 to the carrier of S. Suppose x0 ∈ dom(f2 ·f1) and f1 is continuous
in x0 and z = (f1)x0 and f2 is continuous in z. Then f2 · f1 is continuous
in x0.

(20) Let S be a real normed space, f1 be a partial function from R to the
carrier of S, and f2 be a partial function from the carrier of S to R.
Suppose x0 ∈ dom(f2 · f1) and f1 is continuous in x0 and f2 is continuous
in (f1)x0 . Then f2 · f1 is continuous in x0.

Let us consider n, let f be a partial function from Rn to R, and let x0 be
an element of Rn. We say that f is continuous in x0 if and only if the condition
(Def. 4) is satisfied.

(Def. 4) There exists a point y0 of 〈En, ‖ · ‖〉 and there exists a partial function
g from the carrier of 〈En, ‖ · ‖〉 to R such that x0 = y0 and f = g and g is
continuous in y0.

One can prove the following two propositions:

(21) Let f be a partial function from Rn to R, h be a partial function from
the carrier of 〈En, ‖ · ‖〉 to R, x0 be an element of Rn, and y0 be a point
of 〈En, ‖ · ‖〉. Suppose f = h and x0 = y0. Then f is continuous in x0 if
and only if h is continuous in y0.

(22) Let f1 be a partial function from R to Rn and f2 be a partial function
from Rn to R. Suppose x0 ∈ dom(f2 · f1) and f1 is continuous in x0 and
f2 is continuous in (f1)x0 . Then f2 · f1 is continuous in x0.

Let us consider n, f . We say that f is continuous if and only if:

(Def. 5) For every x0 such that x0 ∈ dom f holds f is continuous in x0.

One can prove the following propositions:
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(23) Let g be a partial function from R to the carrier of 〈En, ‖ · ‖〉 and f be
a partial function from R to Rn. If g = f, then g is continuous iff f is
continuous.

(24) Suppose X ⊆ dom f. Then f�X is continuous if and only if for all x0, r
such that x0 ∈ X and 0 < r there exists s such that 0 < s and for every
x1 such that x1 ∈ X and |x1 − x0| < s holds |fx1 − fx0 | < r.

Let us consider n. Observe that every partial function from R to Rn which
is constant is also continuous.

Let us consider n. Observe that there exists a partial function from R to Rn
which is continuous.

Let us consider n, let f be a continuous partial function from R to Rn, and
let X be a set. One can verify that f�X is continuous.

One can prove the following proposition

(25) If f�X is continuous and X1 ⊆ X, then f�X1 is continuous.

Let us consider n. Note that every partial function from R to Rn which is
empty is also continuous.

Let us consider n, f and let X be a trivial set. One can verify that f�X is
continuous.

Let us consider n and let f1, f2 be continuous partial functions from R to
Rn. One can check that f1 + f2 is continuous.

The following propositions are true:

(26) If X ⊆ dom f1 ∩dom f2 and f1�X is continuous and f2�X is continuous,
then (f1 + f2)�X is continuous and (f1 − f2)�X is continuous.

(27) If X ⊆ dom f1 and X1 ⊆ dom f2 and f1�X is continuous and f2�X1 is
continuous, then (f1+ f2)�(X ∩X1) is continuous and (f1− f2)�(X ∩X1)
is continuous.

Let us consider n, let f be a continuous partial function from R to Rn, and
let us consider r. Observe that r · f is continuous.

The following propositions are true:

(28) If X ⊆ dom f and f�X is continuous, then (r · f)�X is continuous.

(29) If X ⊆ dom f and f�X is continuous, then |f |�X is continuous and
(−f)�X is continuous.

(30) If f is total and for all x1, x2 holds fx1+x2 = fx1 + fx2 and there exists
x0 such that f is continuous in x0, then f�R is continuous.

(31) For every subset Y of 〈En, ‖·‖〉 such that dom f is compact and f� dom f

is continuous and Y = rng f holds Y is compact.

(32) Let Y be a subset of R and Z be a subset of 〈En, ‖·‖〉. Suppose Y ⊆ dom f

and Z = f◦Y and Y is compact and f�Y is continuous. Then Z is compact.

Let us consider n, f . We say that f is Lipschitzian if and only if:
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(Def. 6) There exists a partial function g from R to the carrier of 〈En, ‖ · ‖〉 such
that g = f and g is Lipschitzian.

The following propositions are true:

(33) f is Lipschitzian if and only if there exists a real number r such that 0 < r

and for all x1, x2 such that x1, x2 ∈ dom f holds |fx1 − fx2 | ≤ r · |x1−x2|.
(34) If f = h, then f is Lipschitzian iff h is Lipschitzian.

(35) f�X is Lipschitzian if and only if there exists a real number r such that
0 < r and for all x1, x2 such that x1, x2 ∈ dom(f�X) holds |fx1 − fx2 | ≤
r · |x1 − x2|.

Let us consider n. Note that every partial function from R to Rn which is
empty is also Lipschitzian.

Let us consider n. Note that there exists a partial function from R to Rn
which is empty.

Let us consider n, let f be a Lipschitzian partial function from R to Rn, and
let X be a set. Note that f�X is Lipschitzian.

We now state the proposition

(36) If f�X is Lipschitzian and X1 ⊆ X, then f�X1 is Lipschitzian.

Let us consider n and let f1, f2 be Lipschitzian partial functions from R to
Rn. Observe that f1 + f2 is Lipschitzian and f1 − f2 is Lipschitzian.

We now state two propositions:

(37) If f1�X is Lipschitzian and f2�X1 is Lipschitzian, then (f1+f2)�(X∩X1)
is Lipschitzian.

(38) If f1�X is Lipschitzian and f2�X1 is Lipschitzian, then (f1−f2)�(X∩X1)
is Lipschitzian.

Let us consider n, let f be a Lipschitzian partial function from R to Rn, and
let us consider p. Observe that p · f is Lipschitzian.

Next we state the proposition

(39) If f�X is Lipschitzian and X ⊆ dom f, then (p · f)�X is Lipschitzian.

Let us consider n and let f be a Lipschitzian partial function from R to Rn.
Observe that |f | is Lipschitzian.

Next we state the proposition

(40) If f�X is Lipschitzian, then −f�X is Lipschitzian and |f |�X is Lipschit-
zian and (−f)�X is Lipschitzian.

Let us consider n. One can check that every partial function from R to Rn
which is constant is also Lipschitzian.

Let us consider n. One can verify that every partial function from R to Rn
which is Lipschitzian is also continuous.

The following propositions are true:

(41) For all elements r, p of Rn such that for every x0 such that x0 ∈ X holds
fx0 = x0 · r + p holds f�X is continuous.
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(42) For every element x0 of Rn such that 1 ≤ i ≤ n holds proj(i, n) is
continuous in x0.

(43) Let n be a non empty element of N and h be a partial function from R
to Rn. Then h is continuous in x0 if and only if the following conditions
are satisfied:

(i) x0 ∈ domh, and
(ii) for every element i of N such that i ∈ Seg n holds proj(i, n) · h is

continuous in x0.

(44) Let n be a non empty element of N and h be a partial function from R
to Rn. Then h is continuous if and only if for every element i of N such
that i ∈ Seg n holds proj(i, n) · h is continuous.

(45) For every point x0 of 〈En, ‖ · ‖〉 such that 1 ≤ i ≤ n holds Proj(i, n) is
continuous in x0.

(46) Let n be a non empty element of N and h be a partial function from R
to the carrier of 〈En, ‖ · ‖〉. Then h is continuous in x0 if and only if for
every element i of N such that i ∈ Seg n holds Proj(i, n) · h is continuous
in x0.

(47) Let n be a non empty element of N and h be a partial function from R
to the carrier of 〈En, ‖ · ‖〉. Then h is continuous if and only if for every
element i of N such that i ∈ Seg n holds Proj(i, n) · h is continuous.
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