More on the Continuity of Real Functions ${ }^{1}$

Keiko Narita
Hirosaki-city
Aomori, Japan

Artur Kornilowicz
Institute of Informatics
University of Białystok
Sosnowa 64, 15-887 Białystok, Poland
Yasunari Shidama
Shinshu University
Nagano, Japan

Abstract

Summary. In this article we demonstrate basic properties of the continuous functions from \mathbb{R} to \mathcal{R}^{n} which correspond to state space equations in control engineering.

MML identifier: NFCONT_4, version: $\underline{7.11 .074 .160 .1126}$

The terminology and notation used here have been introduced in the following articles: [3], [7], [17], [2], [4], [12], [13], [14], [16], [1], [5], [9], [15], [18], [10], [8], [20], [21], [19], [11], [22], and [6].

For simplicity, we use the following convention: n, i denote elements of \mathbb{N}, X, X_{1} denote sets, $r, p, s, x_{0}, x_{1}, x_{2}$ denote real numbers, f, f_{1}, f_{2} denote partial functions from \mathbb{R} to \mathcal{R}^{n}, and h denotes a partial function from \mathbb{R} to the carrier of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$.

Let us consider n, f, x_{0}. We say that f is continuous in x_{0} if and only if:
(Def. 1) There exists a partial function g from \mathbb{R} to the carrier of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ such that $f=g$ and g is continuous in x_{0}.
We now state four propositions:
(1) If $h=f$, then f is continuous in x_{0} iff h is continuous in x_{0}.
(2) If $x_{0} \in X$ and f is continuous in x_{0}, then $f \upharpoonright X$ is continuous in x_{0}.

[^0](3) f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every r such that $0<r$ there exists s such that $0<s$ and for every x_{1} such that $x_{1} \in \operatorname{dom} f$ and $\left|x_{1}-x_{0}\right|<s$ holds $\left|f_{x_{1}}-f_{x_{0}}\right|<r$.
(4) Let r be a real number, z be an element of \mathcal{R}^{n}, and w be a point of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $z=w$. Then $\left\{y \in \mathcal{R}^{n}:|y-z|<r\right\}=\{y ; y$ ranges over points of $\left.\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle:\|y-w\|<r\right\}$.
Let n be an element of \mathbb{N}, let Z be a set, and let f be a partial function from Z to \mathcal{R}^{n}. The functor $|f|$ yielding a partial function from Z to \mathbb{R} is defined by:
(Def. 2) $\quad \operatorname{dom}|f|=\operatorname{dom} f$ and for every set x such that $x \in \operatorname{dom}|f|$ holds $|f|_{x}=$ $\left|f_{x}\right|$.
Let n be an element of \mathbb{N}, let Z be a non empty set, and let f be a partial function from Z to \mathcal{R}^{n}. The functor $-f$ yields a partial function from Z to \mathcal{R}^{n} and is defined by:
(Def. 3) $\operatorname{dom}(-f)=\operatorname{dom} f$ and for every set c such that $c \in \operatorname{dom}(-f)$ holds $(-f)_{c}=-f_{c}$.
One can prove the following propositions:
(5) Let f_{1}, f_{2} be partial functions from \mathbb{R} to the carrier of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ and g_{1}, g_{2} be partial functions from \mathbb{R} to \mathcal{R}^{n}. If $f_{1}=g_{1}$ and $f_{2}=g_{2}$, then $f_{1}+f_{2}=g_{1}+g_{2}$.
(6) Let f_{1} be a partial function from \mathbb{R} to the carrier of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle, g_{1}$ be a partial function from \mathbb{R} to \mathcal{R}^{n}, and a be a real number. If $f_{1}=g_{1}$, then $a \cdot f_{1}=a \cdot g_{1}$.
(7) For every partial function f_{1} from \mathbb{R} to \mathcal{R}^{n} holds $(-1) \cdot f_{1}=-f_{1}$.
(8) Let f_{1} be a partial function from \mathbb{R} to the carrier of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ and g_{1} be a partial function from \mathbb{R} to \mathcal{R}^{n}. If $f_{1}=g_{1}$, then $-f_{1}=-g_{1}$.
(9) Let f_{1} be a partial function from \mathbb{R} to the carrier of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ and g_{1} be a partial function from \mathbb{R} to \mathcal{R}^{n}. If $f_{1}=g_{1}$, then $\left\|f_{1}\right\|=\left|g_{1}\right|$.
(10) Let f_{1}, f_{2} be partial functions from \mathbb{R} to the carrier of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ and g_{1}, g_{2} be partial functions from \mathbb{R} to \mathcal{R}^{n}. If $f_{1}=g_{1}$ and $f_{2}=g_{2}$, then $f_{1}-f_{2}=g_{1}-g_{2}$.
(11) f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every subset N_{1} of \mathcal{R}^{n} such that there exists a real number r such that $0<r$ and $\left\{y \in \mathcal{R}^{n}:\left|y-f_{x_{0}}\right|<r\right\}=N_{1}$ there exists a neighbourhood N of x_{0} such that for every x_{1} such that $x_{1} \in \operatorname{dom} f$ and $x_{1} \in N$ holds $f_{x_{1}} \in N_{1}$.
(12) f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every subset N_{1} of \mathcal{R}^{n} such that there exists a real number r such that $0<r$ and $\left\{y \in \mathcal{R}^{n}:\left|y-f_{x_{0}}\right|<r\right\}=N_{1}$ there exists a neighbourhood N of x_{0} such that $f^{\circ} N \subseteq N_{1}$.
(13) If there exists a neighbourhood N of x_{0} such that $\operatorname{dom} f \cap N=\left\{x_{0}\right\}$, then f is continuous in x_{0}.
(14) If $x_{0} \in \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and f_{1} is continuous in x_{0} and f_{2} is continuous in x_{0}, then $f_{1}+f_{2}$ is continuous in x_{0}.
(15) If $x_{0} \in \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and f_{1} is continuous in x_{0} and f_{2} is continuous in x_{0}, then $f_{1}-f_{2}$ is continuous in x_{0}.
(16) If f is continuous in x_{0}, then $r \cdot f$ is continuous in x_{0}.
(17) If $x_{0} \in \operatorname{dom} f$ and f is continuous in x_{0}, then $|f|$ is continuous in x_{0}.
(18) If $x_{0} \in \operatorname{dom} f$ and f is continuous in x_{0}, then $-f$ is continuous in x_{0}.
(19) Let S be a real normed space, z be a point of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle, f_{1}$ be a partial function from \mathbb{R} to \mathcal{R}^{n}, and f_{2} be a partial function from the carrier of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ to the carrier of S. Suppose $x_{0} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and f_{1} is continuous in x_{0} and $z=\left(f_{1}\right)_{x_{0}}$ and f_{2} is continuous in z. Then $f_{2} \cdot f_{1}$ is continuous in x_{0}.
(20) Let S be a real normed space, f_{1} be a partial function from \mathbb{R} to the carrier of S, and f_{2} be a partial function from the carrier of S to \mathbb{R}. Suppose $x_{0} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and f_{1} is continuous in x_{0} and f_{2} is continuous in $\left(f_{1}\right)_{x_{0}}$. Then $f_{2} \cdot f_{1}$ is continuous in x_{0}.
Let us consider n, let f be a partial function from \mathcal{R}^{n} to \mathbb{R}, and let x_{0} be an element of \mathcal{R}^{n}. We say that f is continuous in x_{0} if and only if the condition (Def. 4) is satisfied.
(Def. 4) There exists a point y_{0} of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ and there exists a partial function g from the carrier of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ to \mathbb{R} such that $x_{0}=y_{0}$ and $f=g$ and g is continuous in y_{0}.
One can prove the following two propositions:
(21) Let f be a partial function from \mathcal{R}^{n} to \mathbb{R}, h be a partial function from the carrier of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ to \mathbb{R}, x_{0} be an element of \mathcal{R}^{n}, and y_{0} be a point of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $f=h$ and $x_{0}=y_{0}$. Then f is continuous in x_{0} if and only if h is continuous in y_{0}.
(22) Let f_{1} be a partial function from \mathbb{R} to \mathcal{R}^{n} and f_{2} be a partial function from \mathcal{R}^{n} to \mathbb{R}. Suppose $x_{0} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and f_{1} is continuous in x_{0} and f_{2} is continuous in $\left(f_{1}\right)_{x_{0}}$. Then $f_{2} \cdot f_{1}$ is continuous in x_{0}.
Let us consider n, f. We say that f is continuous if and only if:
(Def. 5) For every x_{0} such that $x_{0} \in \operatorname{dom} f$ holds f is continuous in x_{0}.
One can prove the following propositions:
(23) Let g be a partial function from \mathbb{R} to the carrier of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ and f be a partial function from \mathbb{R} to \mathcal{R}^{n}. If $g=f$, then g is continuous iff f is continuous.
(24) Suppose $X \subseteq \operatorname{dom} f$. Then $f \upharpoonright X$ is continuous if and only if for all x_{0}, r such that $x_{0} \in X$ and $0<r$ there exists s such that $0<s$ and for every x_{1} such that $x_{1} \in X$ and $\left|x_{1}-x_{0}\right|<s$ holds $\left|f_{x_{1}}-f_{x_{0}}\right|<r$.

Let us consider n. Observe that every partial function from \mathbb{R} to \mathcal{R}^{n} which is constant is also continuous.

Let us consider n. Observe that there exists a partial function from \mathbb{R} to \mathcal{R}^{n} which is continuous.

Let us consider n, let f be a continuous partial function from \mathbb{R} to \mathcal{R}^{n}, and let X be a set. One can verify that $f \upharpoonright X$ is continuous.

One can prove the following proposition
(25) If $f \upharpoonright X$ is continuous and $X_{1} \subseteq X$, then $f \upharpoonright X_{1}$ is continuous.

Let us consider n. Note that every partial function from \mathbb{R} to \mathcal{R}^{n} which is empty is also continuous.

Let us consider n, f and let X be a trivial set. One can verify that $f \upharpoonright X$ is continuous.

Let us consider n and let f_{1}, f_{2} be continuous partial functions from \mathbb{R} to \mathcal{R}^{n}. One can check that $f_{1}+f_{2}$ is continuous.

The following propositions are true:
(26) If $X \subseteq \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and $f_{1} \upharpoonright X$ is continuous and $f_{2} \mid X$ is continuous, then $\left(f_{1}+f_{2}\right) \upharpoonright X$ is continuous and $\left(f_{1}-f_{2}\right) \upharpoonright X$ is continuous.
(27) If $X \subseteq \operatorname{dom} f_{1}$ and $X_{1} \subseteq \operatorname{dom} f_{2}$ and $f_{1} \upharpoonright X$ is continuous and $f_{2} \upharpoonright X_{1}$ is continuous, then $\left(f_{1}+f_{2}\right) \upharpoonright\left(X \cap X_{1}\right)$ is continuous and $\left(f_{1}-f_{2}\right) \upharpoonright\left(X \cap X_{1}\right)$ is continuous.
Let us consider n, let f be a continuous partial function from \mathbb{R} to \mathcal{R}^{n}, and let us consider r. Observe that $r \cdot f$ is continuous.

The following propositions are true:
(28) If $X \subseteq \operatorname{dom} f$ and $f \upharpoonright X$ is continuous, then $(r \cdot f) \upharpoonright X$ is continuous.
(29) If $X \subseteq \operatorname{dom} f$ and $f \upharpoonright X$ is continuous, then $|f| \upharpoonright X$ is continuous and $(-f) \mid X$ is continuous.
(30) If f is total and for all x_{1}, x_{2} holds $f_{x_{1}+x_{2}}=f_{x_{1}}+f_{x_{2}}$ and there exists x_{0} such that f is continuous in x_{0}, then $f \upharpoonright \mathbb{R}$ is continuous.
(31) For every subset Y of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ such that $\operatorname{dom} f$ is compact and $f \upharpoonright \operatorname{dom} f$ is continuous and $Y=\operatorname{rng} f$ holds Y is compact.
(32) Let Y be a subset of \mathbb{R} and Z be a subset of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $Y \subseteq \operatorname{dom} f$ and $Z=f^{\circ} Y$ and Y is compact and $f \upharpoonright Y$ is continuous. Then Z is compact.
Let us consider n, f. We say that f is Lipschitzian if and only if:
(Def. 6) There exists a partial function g from \mathbb{R} to the carrier of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ such that $g=f$ and g is Lipschitzian.
The following propositions are true:
(33) f is Lipschitzian if and only if there exists a real number r such that $0<r$ and for all x_{1}, x_{2} such that $x_{1}, x_{2} \in \operatorname{dom} f$ holds $\left|f_{x_{1}}-f_{x_{2}}\right| \leq r \cdot\left|x_{1}-x_{2}\right|$.
(34) If $f=h$, then f is Lipschitzian iff h is Lipschitzian.
(35) $\quad f \upharpoonright X$ is Lipschitzian if and only if there exists a real number r such that $0<r$ and for all x_{1}, x_{2} such that $x_{1}, x_{2} \in \operatorname{dom}(f \upharpoonright X)$ holds $\left|f_{x_{1}}-f_{x_{2}}\right| \leq$ $r \cdot\left|x_{1}-x_{2}\right|$.
Let us consider n. Note that every partial function from \mathbb{R} to \mathcal{R}^{n} which is empty is also Lipschitzian.

Let us consider n. Note that there exists a partial function from \mathbb{R} to \mathcal{R}^{n} which is empty.

Let us consider n, let f be a Lipschitzian partial function from \mathbb{R} to \mathcal{R}^{n}, and let X be a set. Note that $f \upharpoonright X$ is Lipschitzian.

We now state the proposition
(36) If $f \upharpoonright X$ is Lipschitzian and $X_{1} \subseteq X$, then $f \upharpoonright X_{1}$ is Lipschitzian.

Let us consider n and let f_{1}, f_{2} be Lipschitzian partial functions from \mathbb{R} to \mathcal{R}^{n}. Observe that $f_{1}+f_{2}$ is Lipschitzian and $f_{1}-f_{2}$ is Lipschitzian.

We now state two propositions:
(37) If $f_{1} \upharpoonright X$ is Lipschitzian and $f_{2} \upharpoonright X_{1}$ is Lipschitzian, then $\left(f_{1}+f_{2}\right) \upharpoonright\left(X \cap X_{1}\right)$ is Lipschitzian.
(38) If $f_{1} \upharpoonright X$ is Lipschitzian and $f_{2} \upharpoonright X_{1}$ is Lipschitzian, then $\left(f_{1}-f_{2}\right) \upharpoonright\left(X \cap X_{1}\right)$ is Lipschitzian.
Let us consider n, let f be a Lipschitzian partial function from \mathbb{R} to \mathcal{R}^{n}, and let us consider p. Observe that $p \cdot f$ is Lipschitzian.

Next we state the proposition
(39) If $f \upharpoonright X$ is Lipschitzian and $X \subseteq \operatorname{dom} f$, then $(p \cdot f) \upharpoonright X$ is Lipschitzian.

Let us consider n and let f be a Lipschitzian partial function from \mathbb{R} to \mathcal{R}^{n}. Observe that $|f|$ is Lipschitzian.

Next we state the proposition
(40) If $f \upharpoonright X$ is Lipschitzian, then $-f \upharpoonright X$ is Lipschitzian and $|f| \upharpoonright X$ is Lipschitzian and $(-f) \upharpoonright X$ is Lipschitzian.
Let us consider n. One can check that every partial function from \mathbb{R} to \mathcal{R}^{n} which is constant is also Lipschitzian.

Let us consider n. One can verify that every partial function from \mathbb{R} to \mathcal{R}^{n} which is Lipschitzian is also continuous.

The following propositions are true:
(41) For all elements r, p of \mathcal{R}^{n} such that for every x_{0} such that $x_{0} \in X$ holds $f_{x_{0}}=x_{0} \cdot r+p$ holds $f \upharpoonright X$ is continuous.
(42) For every element x_{0} of \mathcal{R}^{n} such that $1 \leq i \leq n \operatorname{holds} \operatorname{proj}(i, n)$ is continuous in x_{0}.
(43) Let n be a non empty element of \mathbb{N} and h be a partial function from \mathbb{R} to \mathcal{R}^{n}. Then h is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} h$, and
(ii) for every element i of \mathbb{N} such that $i \in \operatorname{Seg} n \operatorname{holds} \operatorname{proj}(i, n) \cdot h$ is continuous in x_{0}.
(44) Let n be a non empty element of \mathbb{N} and h be a partial function from \mathbb{R} to \mathcal{R}^{n}. Then h is continuous if and only if for every element i of \mathbb{N} such that $i \in \operatorname{Seg} n$ holds $\operatorname{proj}(i, n) \cdot h$ is continuous.
(45) For every point x_{0} of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ such that $1 \leq i \leq n \operatorname{holds} \operatorname{Proj}(i, n)$ is continuous in x_{0}.
(46) Let n be a non empty element of \mathbb{N} and h be a partial function from \mathbb{R} to the carrier of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Then h is continuous in x_{0} if and only if for every element i of \mathbb{N} such that $i \in \operatorname{Seg} n \operatorname{holds} \operatorname{Proj}(i, n) \cdot h$ is continuous in x_{0}.
(47) Let n be a non empty element of \mathbb{N} and h be a partial function from \mathbb{R} to the carrier of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Then h is continuous if and only if for every element i of \mathbb{N} such that $i \in \operatorname{Seg} n \operatorname{holds} \operatorname{Proj}(i, n) \cdot h$ is continuous.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[8] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577-580, 2005.
[9] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces \mathcal{R}^{n}. Formalized Mathematics, 15(2):65-72, 2007, doi:10.2478/v10037-007-0008-5.
[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[11] Artur Korniłowicz. Arithmetic operations on functions from sets into functional sets. Formalized Mathematics, 17(1):43-60, 2009, doi:10.2478/v10037-009-0005-y.
[12] Keiichi Miyajima and Yasunari Shidama. Riemann integral of functions from \mathbb{R} into \mathcal{R}^{n}. Formalized Mathematics, 17(2):179-185, 2009, doi: 10.2478/v10037-009-0021-y.
[13] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004.
[14] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. More on continuous functions on normed linear spaces. Formalized Mathematics, 19(1):45-49, 2011, doi: 10.2478/v10037-011-0008-3.
[15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[16] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[17] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[18] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[22] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.

[^0]: ${ }^{1}$ This work was supported by JSPS KAKENHI 22300285.

