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Summary. This article is about the Borel-Cantelli Lemma in probability
theory. Necessary definitions and theorems are given in [10] and [7].

MML identifier: BOR_CANT, version: 7.11.07 4.160.1126

The notation and terminology used here have been introduced in the following
papers: [17], 3], [4], [8], [13], [1], [2], [5], [15], [14], [21], [9], [12], [11], [16], [6],
[20], [19], and [18].

For simplicity, we adopt the following rules: O is a non empty set, Si is a
o-field of subsets of O1, P; is a probability on Sy, A is a sequence of subsets of
S1, and n is an element of N.

Let D be a set, let x, y be extended real numbers, and let a, b be elements
of D. Then (z > y — a,b) is an element of D.

We now state two propositions:

(1) For every element k of N and for every element x of R such that k is odd
and x > 0 and 2 < 1 holds (—z ExpSeqg)(k+1)+(—z ExpSeqr) (k+2) > 0.
(2) For every element x of R holds 1+ = < (the function exp)(x).

Let s be a sequence of real numbers. The functor ExpFuncWithElementOf s

yielding a sequence of real numbers is defined as follows:

(Def. 1) For every natural number d holds (ExpFuncWithElementOf s)(d) =
> —s(d) ExpSeqg .
Next we state two propositions:
(3) (The partial product of ExpFuncWithElementOf(P;-A))(n) = (the func-
tion exp)(—(Xa=o(F1 - A)(a))ren(n)).
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(4) (The partial product of P, - A®)(n) < (the partial product of
ExpFuncWithElementOf(P; - A))(n).

Let ni, ng be elements of N. The functor SeqOfI[FGT1(n1,n2) yielding a
sequence of N is defined by:

(Def. 2) For every element n of N holds (SeqOfIFGT1(n,n2))(n) = (n > ny —
n+ng,n).
Let k be an element of N. The SeqOfIFGT2 k yields a sequence of N and is
defined by:

(Def. 3) For every element n of N holds (the SeqOfIFGT2 k)(n) = n + k.

Let k be an element of N. The SeqOfIFGT3 k£ yields a sequence of N and is
defined as follows:

(Def. 4) For every element n of N holds (the SeqOfIFGT3 k)(n) = (n > k — 0,1).
Let ni, ny be elements of N. The functor SeqOfIFGT4(ny,n2) yielding a
sequence of N is defined as follows:
(Def. 5)  For every element n of N holds (SeqOfIFGT4(n1,n2))(n) = (n > n +
1 — n+ng,n).
Let n1, ny be elements of N. One can verify that SeqOfIFGT1(ny,ng) is
one-to-one and SeqOfIFGT4(n1,ng) is one-to-one.
Let n be an element of N. Observe that the SeqOfIFGT2 n is one-to-one.
Let X be a set, let s be an element of N, and let A be a sequence of subsets
of X. The functor ShiftSeq(A, s) yielding a sequence of subsets of X is defined
by:
(Def. 6) ShiftSeq(A,s) = AT s.
Let O1 be a non empty set, let S1 be a o-field of subsets of Oy, let s be an ele-

ment of N, and let A be a sequence of subsets of S;. The functor @ShiftSeq(A, s)
yields a sequence of subsets of 57 and is defined by:
(Def. 7) @ShiftSeq(A, s) = ShiftSeq(A4, s).
Next we state the proposition
(5)(i)  For all sequences A, B of subsets of S; such that n > n; and B =
A - SeqOfIFGT1(n1,n2) holds (the partial product of P; - B)(n) = (the
partial product of P;-A)(n1)-(the partial product of P;-@ShiftSeq(A, ni+
ng +1))(n —ny — 1), and
(ii)  for all sequences A, B, C' of subsets of S; and for every sequence e of N
such that n > n; and C' = A-e and B = C-SeqOfIFGT1(n1,n2) holds (the
partial Intersection of B)(n) = (the partial Intersection of C')(n1) N (the
partial Intersection of @ShiftSeq(C,ny +n2 +1))(n —ng — 1).
Let Oq be a non empty set, let S1 be a o-field of subsets of Oy, let P; be a
probability on Sp, and let A be a sequence of subsets of S7;. We say that A is
all independent w.r.t. P; if and only if the condition (Def. 8) is satisfied.
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(Def. 8) Let B be a sequence of subsets of S1. Given a sequence e of N such that
e is one-to-one and for every element n of N holds A(e(n)) = B(n). Let
n be an element of N. Then (the partial product of P; - B)(n) = P;((the
partial Intersection of B)(n)).

The following propositions are true:

(6) Suppose n > ny and A is all independent w.r.t. P;. Then P ((the partial
Intersection of A€)(n1)N(the partial Intersection of @ShiftSeq(A, ni+na+
1))(n—ny —1)) = (the partial product of P;-A€)(ny)-(the partial product
of P - @ShiftSeq(A,n1 +ng + 1))(n —ng — 1).

(7) (The partial Intersection of A®)(n) = (the partial Union of A)(n)°.

(8) Pi((the partial Intersection of A¢)(n)) = 1 — Py((the partial Union of
A)(n)).

Let X be a set and let A be a sequence of subsets of X. The UnionShiftSeq
A yielding a sequence of subsets of X is defined as follows:
(Def. 9) For every element n of N holds (the UnionShiftSeq A)(n) =
(U ShiftSeq(A, n).
Let O1 be a non empty set, let S be a o-field of subsets of Oy, and let A be
a sequence of subsets of S7. The @UnionShiftSeq A yields a sequence of subsets
of S; and is defined as follows:
(Def. 10) The @UnionShiftSeq A = the UnionShiftSeq A.

Let O1 be a non empty set, let S1 be a o-field of subsets of O7, and let A be
a sequence of subsets of S1. The @Qlim sup A yielding an event of S is defined
as follows:

(Def. 11) The @Qlim sup A = () (the @QUnionShiftSeq A).

Let X be a set and let A be a sequence of subsets of X. The IntersectShiftSeq
A yields a sequence of subsets of X and is defined as follows:

(Def. 12) For every element n of N holds (the IntersectShiftSeq A)(n) =
Intersection ShiftSeq(A4, n).

Let O; be a non empty set, let S; be a o-field of subsets of Oy, and let A
be a sequence of subsets of S7. The @QIntersectShiftSeq A yielding a sequence of
subsets of S; is defined as follows:

(Def. 13) The @IntersectShiftSeq A = the IntersectShiftSeq A.

Let O be a non empty set, let S be a o-field of subsets of Oy, and let A be
a sequence of subsets of S7. The @Qlim inf A yielding an event of S; is defined
by:
(Def. 14) The @Qlim inf A = |J (the @IntersectShiftSeq A).
The following propositions are true:
(9) (The QIntersectShiftSeq A°)(n) = (the @UnionShiftSeq A)(n)°.
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(10) Suppose A is all independent w.r.t. P;. Then P;((the partial Intersection
of A°)(n)) = (the partial product of P; - A®)(n).
(11) Let X be a set and A be a sequence of subsets of X. Then
(i)
(ii)
(12)(i)  The superior setsequence A = the @UnionShiftSeq A, and
(ii)  the inferior setsequence A = the @IntersectShiftSeq A.

the superior setsequence A = the UnionShiftSeq A, and
the inferior setsequence A = the IntersectShiftSeq A.

Let O1 be a non empty set, let S; be a o-field of subsets of O1, let P; be
a probability on Si, and let A be a sequence of subsets of S;. The functor
SumShiftSeq(P;, A) yields a sequence of real numbers and is defined by:

(Def. 15) For every element n of N holds (SumShiftSeq(Pr,A))(n) = > (P -
@ShiftSeq(A,n)).

We now state several propositions:

(13) If O°5_o(P1-A)())ken is convergent, then Pj(the @lim sup A) = 0 and
lim SumShiftSeq(P;, A) = 0 and SumShiftSeq(P;, A) is convergent.

(14)(i)  For every set X and for every sequence A of subsets of X and for
every element n of N and for every set x holds there exists an element k
of N such that = € (ShiftSeq(A4,n))(k) iff there exists an element k of N
such that k& > n and = € A(k),

(ii)  for every set X and for every sequence A of subsets of X and for every
set x holds = € Intersection (the UnionShiftSeq A) iff for every element m
of N there exists an element n of N such that n > m and x € A(n),

(iii)  for every sequence A of subsets of S and for every set x holds x € [ (the
@UnionShiftSeq A) iff for every element m of N there exists an element n
of N such that n > m and =z € A(n),

(iv) for every set X and for every sequence A of subsets of X and for every
set x holds = € |J (the IntersectShiftSeq A) iff there exists an element n of
N such that for every element k of N such that k > n holds =z € A(k),

(v) for every sequence A of subsets of S; and for every set x holds « € J (the
@IntersectShiftSeq A) iff there exists an element n of N such that for every
element k of N such that & > n holds =z € A(k), and

(vi)  for every sequence A of subsets of S; and for every element x of O
holds z € | (the @IntersectShiftSeq A°) iff there exists an element n of N
such that for every element k& of N such that k£ > n holds = ¢ A(k).

(15)(1) limsup A = the @lim sup A,
(i) liminf A = the @lim inf A,
(iii)  the @lim inf A® = (the @lim sup A)¢,
iv)  Pji(the @lim inf A°) + P;(the @Qlim sup A) = 1, and
)

(iv
(v) P (liminf(A€)) + P;(limsup A) = 1.
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(16)(1) If (3f_o(Pr - A)(a))ken is convergent, then Pj(limsup A) = 0 and
P (liminf(A°)) =1, and
(ii) if A is all independent w.r.t. Py and (3>_5_o(P1-A)(@))ken is divergent
to 400, then Pj(liminf(A€)) =0 and P;(limsup A) = 1.
(17) If (325 _o(P1-A)(a))ken is not convergent and A is all independent w.r.t.
Py, then P;(liminf(A€)) =0 and P;(limsup 4) = 1.
(18) If A is all independent w.r.t. Pp, then P;(liminf(A€))
Py (liminf(A°)) =1 but P;(limsup A) =0 or P;(limsup A) = 1.
(19) (=0 (P1-@ShiftSeq(A, n1+1))(@))wen(n) < (Zazo(Pr-A)(@))wen(ni+
L+ n) = (Za=o(P1 - A)(@))ren(n1).
(20) Pi((the @IntersectShiftSeq A°)(n)) = 1 — Pi((the @UnionShiftSeq
A)(n)).
(21)(1) If A€ is all independent w.r.t. Pj, then P;((the partial Intersection of
A)(n)) = (the partial product of P; - A)(n), and
(ii) if A is all independent w.r.t. P, then 1 — P;((the partial Union of
A)(n)) = (the partial product of P; - A®)(n).

= 0 or
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