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Summary. This article is about the Borel-Cantelli Lemma in probability
theory. Necessary definitions and theorems are given in [10] and [7].

MML identifier: BOR CANT, version: 7.11.07 4.160.1126

The notation and terminology used here have been introduced in the following
papers: [17], [3], [4], [8], [13], [1], [2], [5], [15], [14], [21], [9], [12], [11], [16], [6],
[20], [19], and [18].

For simplicity, we adopt the following rules: O1 is a non empty set, S1 is a
σ-field of subsets of O1, P1 is a probability on S1, A is a sequence of subsets of
S1, and n is an element of N.

Let D be a set, let x, y be extended real numbers, and let a, b be elements
of D. Then (x > y → a, b) is an element of D.

We now state two propositions:

(1) For every element k of N and for every element x of R such that k is odd
and x > 0 and x ≤ 1 holds (−xExpSeqR)(k+1)+(−xExpSeqR)(k+2) ≥ 0.

(2) For every element x of R holds 1 + x ≤ (the function exp)(x).

Let s be a sequence of real numbers. The functor ExpFuncWithElementOf s
yielding a sequence of real numbers is defined as follows:

(Def. 1) For every natural number d holds (ExpFuncWithElementOf s)(d) =∑
−s(d) ExpSeqR .

Next we state two propositions:

(3) (The partial product of ExpFuncWithElementOf(P1·A))(n) = (the func-
tion exp)(−(

∑κ
α=0(P1 ·A)(α))κ∈N(n)).

1The author wants to thank Prof. F. Merkl for his kind support during the course of this
work.
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(4) (The partial product of P1 · Ac)(n) ≤ (the partial product of
ExpFuncWithElementOf(P1 ·A))(n).

Let n1, n2 be elements of N. The functor SeqOfIFGT1(n1, n2) yielding a
sequence of N is defined by:

(Def. 2) For every element n of N holds (SeqOfIFGT1(n1, n2))(n) = (n > n1 →
n+ n2, n).

Let k be an element of N. The SeqOfIFGT2 k yields a sequence of N and is
defined by:

(Def. 3) For every element n of N holds (the SeqOfIFGT2 k)(n) = n+ k.

Let k be an element of N. The SeqOfIFGT3 k yields a sequence of N and is
defined as follows:

(Def. 4) For every element n of N holds (the SeqOfIFGT3 k)(n) = (n > k → 0, 1).

Let n1, n2 be elements of N. The functor SeqOfIFGT4(n1, n2) yielding a
sequence of N is defined as follows:

(Def. 5) For every element n of N holds (SeqOfIFGT4(n1, n2))(n) = (n > n1 +
1→ n+ n2, n).

Let n1, n2 be elements of N. One can verify that SeqOfIFGT1(n1, n2) is
one-to-one and SeqOfIFGT4(n1, n2) is one-to-one.

Let n be an element of N. Observe that the SeqOfIFGT2 n is one-to-one.
Let X be a set, let s be an element of N, and let A be a sequence of subsets

of X. The functor ShiftSeq(A, s) yielding a sequence of subsets of X is defined
by:

(Def. 6) ShiftSeq(A, s) = A ↑ s.
Let O1 be a non empty set, let S1 be a σ-field of subsets of O1, let s be an ele-

ment of N, and let A be a sequence of subsets of S1. The functor @ShiftSeq(A, s)
yields a sequence of subsets of S1 and is defined by:

(Def. 7) @ShiftSeq(A, s) = ShiftSeq(A, s).

Next we state the proposition

(5)(i) For all sequences A, B of subsets of S1 such that n > n1 and B =
A · SeqOfIFGT1(n1, n2) holds (the partial product of P1 · B)(n) = (the
partial product of P1 ·A)(n1)·(the partial product of P1 ·@ShiftSeq(A,n1+
n2 + 1))(n− n1 − 1), and

(ii) for all sequences A, B, C of subsets of S1 and for every sequence e of N
such that n > n1 and C = A·e and B = C ·SeqOfIFGT1(n1, n2) holds (the
partial Intersection of B)(n) = (the partial Intersection of C)(n1) ∩ (the
partial Intersection of @ShiftSeq(C, n1 + n2 + 1))(n− n1 − 1).

Let O1 be a non empty set, let S1 be a σ-field of subsets of O1, let P1 be a
probability on S1, and let A be a sequence of subsets of S1. We say that A is
all independent w.r.t. P1 if and only if the condition (Def. 8) is satisfied.



Borel-Cantelli lemma 229

(Def. 8) Let B be a sequence of subsets of S1. Given a sequence e of N such that
e is one-to-one and for every element n of N holds A(e(n)) = B(n). Let
n be an element of N. Then (the partial product of P1 · B)(n) = P1((the
partial Intersection of B)(n)).

The following propositions are true:

(6) Suppose n > n1 and A is all independent w.r.t. P1. Then P1((the partial
Intersection of Ac)(n1)∩(the partial Intersection of @ShiftSeq(A,n1+n2+
1))(n−n1−1)) = (the partial product of P1 ·Ac)(n1) ·(the partial product
of P1 ·@ShiftSeq(A,n1 + n2 + 1))(n− n1 − 1).

(7) (The partial Intersection of Ac)(n) = (the partial Union of A)(n)c.

(8) P1((the partial Intersection of Ac)(n)) = 1 − P1((the partial Union of
A)(n)).

Let X be a set and let A be a sequence of subsets of X. The UnionShiftSeq
A yielding a sequence of subsets of X is defined as follows:

(Def. 9) For every element n of N holds (the UnionShiftSeq A)(n) =⋃
ShiftSeq(A,n).

Let O1 be a non empty set, let S1 be a σ-field of subsets of O1, and let A be
a sequence of subsets of S1. The @UnionShiftSeq A yields a sequence of subsets
of S1 and is defined as follows:

(Def. 10) The @UnionShiftSeq A = the UnionShiftSeq A.

Let O1 be a non empty set, let S1 be a σ-field of subsets of O1, and let A be
a sequence of subsets of S1. The @lim sup A yielding an event of S1 is defined
as follows:

(Def. 11) The @lim sup A =
⋂

(the @UnionShiftSeq A).

Let X be a set and let A be a sequence of subsets of X. The IntersectShiftSeq
A yields a sequence of subsets of X and is defined as follows:

(Def. 12) For every element n of N holds (the IntersectShiftSeq A)(n) =
Intersection ShiftSeq(A,n).

Let O1 be a non empty set, let S1 be a σ-field of subsets of O1, and let A
be a sequence of subsets of S1. The @IntersectShiftSeq A yielding a sequence of
subsets of S1 is defined as follows:

(Def. 13) The @IntersectShiftSeq A = the IntersectShiftSeq A.

Let O1 be a non empty set, let S1 be a σ-field of subsets of O1, and let A be
a sequence of subsets of S1. The @lim inf A yielding an event of S1 is defined
by:

(Def. 14) The @lim inf A =
⋃

(the @IntersectShiftSeq A).

The following propositions are true:

(9) (The @IntersectShiftSeq Ac)(n) = (the @UnionShiftSeq A)(n)c.
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(10) Suppose A is all independent w.r.t. P1. Then P1((the partial Intersection
of Ac)(n)) = (the partial product of P1 ·Ac)(n).

(11) Let X be a set and A be a sequence of subsets of X. Then
(i) the superior setsequence A = the UnionShiftSeq A, and

(ii) the inferior setsequence A = the IntersectShiftSeq A.

(12)(i) The superior setsequence A = the @UnionShiftSeq A, and
(ii) the inferior setsequence A = the @IntersectShiftSeq A.

Let O1 be a non empty set, let S1 be a σ-field of subsets of O1, let P1 be
a probability on S1, and let A be a sequence of subsets of S1. The functor
SumShiftSeq(P1, A) yields a sequence of real numbers and is defined by:

(Def. 15) For every element n of N holds (SumShiftSeq(P1, A))(n) =
∑

(P1 ·
@ShiftSeq(A,n)).

We now state several propositions:

(13) If (
∑κ
α=0(P1 ·A)(α))κ∈N is convergent, then P1(the @lim sup A) = 0 and

lim SumShiftSeq(P1, A) = 0 and SumShiftSeq(P1, A) is convergent.

(14)(i) For every set X and for every sequence A of subsets of X and for
every element n of N and for every set x holds there exists an element k
of N such that x ∈ (ShiftSeq(A,n))(k) iff there exists an element k of N
such that k ≥ n and x ∈ A(k),

(ii) for every set X and for every sequence A of subsets of X and for every
set x holds x ∈ Intersection (the UnionShiftSeq A) iff for every element m
of N there exists an element n of N such that n ≥ m and x ∈ A(n),

(iii) for every sequence A of subsets of S1 and for every set x holds x ∈
⋂

(the
@UnionShiftSeq A) iff for every element m of N there exists an element n
of N such that n ≥ m and x ∈ A(n),

(iv) for every set X and for every sequence A of subsets of X and for every
set x holds x ∈

⋃
(the IntersectShiftSeq A) iff there exists an element n of

N such that for every element k of N such that k ≥ n holds x ∈ A(k),
(v) for every sequence A of subsets of S1 and for every set x holds x ∈

⋃
(the

@IntersectShiftSeq A) iff there exists an element n of N such that for every
element k of N such that k ≥ n holds x ∈ A(k), and

(vi) for every sequence A of subsets of S1 and for every element x of O1
holds x ∈

⋃
(the @IntersectShiftSeq Ac) iff there exists an element n of N

such that for every element k of N such that k ≥ n holds x /∈ A(k).

(15)(i) lim supA = the @lim sup A,
(ii) lim inf A = the @lim inf A,
(iii) the @lim inf Ac = (the @lim sup A)c,
(iv) P1(the @lim inf Ac) + P1(the @lim sup A) = 1, and
(v) P1(lim inf(Ac)) + P1(lim supA) = 1.
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(16)(i) If (
∑κ
α=0(P1 · A)(α))κ∈N is convergent, then P1(lim supA) = 0 and

P1(lim inf(Ac)) = 1, and
(ii) if A is all independent w.r.t. P1 and (

∑κ
α=0(P1 ·A)(α))κ∈N is divergent

to +∞, then P1(lim inf(Ac)) = 0 and P1(lim supA) = 1.

(17) If (
∑κ
α=0(P1 ·A)(α))κ∈N is not convergent and A is all independent w.r.t.

P1, then P1(lim inf(Ac)) = 0 and P1(lim supA) = 1.

(18) If A is all independent w.r.t. P1, then P1(lim inf(Ac)) = 0 or
P1(lim inf(Ac)) = 1 but P1(lim supA) = 0 or P1(lim supA) = 1.

(19) (
∑κ
α=0(P1·@ShiftSeq(A,n1+1))(α))κ∈N(n) ≤ (

∑κ
α=0(P1·A)(α))κ∈N(n1+

1 + n)− (
∑κ
α=0(P1 ·A)(α))κ∈N(n1).

(20) P1((the @IntersectShiftSeq Ac)(n)) = 1 − P1((the @UnionShiftSeq
A)(n)).

(21)(i) If Ac is all independent w.r.t. P1, then P1((the partial Intersection of
A)(n)) = (the partial product of P1 ·A)(n), and

(ii) if A is all independent w.r.t. P1, then 1 − P1((the partial Union of
A)(n)) = (the partial product of P1 ·Ac)(n).
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