Definition of First Order Language with Arbitrary Alphabet. Syntax of Terms, Atomic Formulas and their Subterms ${ }^{1}$

Marco B. Caminati ${ }^{2}$
Mathematics Department "G.Castelnuovo"
Sapienza University of Rome
Piazzale Aldo Moro 5, 00185 Roma, Italy

Abstract

Summary. Second of a series of articles laying down the bases for classical first order model theory. A language is defined basically as a tuple made of an integer-valued function (adicity), a symbol of equality and a symbol for the NOR logical connective. The only requests for this tuple to be a language is that the value of the adicity in $=$ is -2 and that its preimage (i.e. the variables set) in 0 is infinite. Existential quantification will be rendered (see [11]) by mere prefixing a formula with a letter. Then the hierarchy among symbols according to their adicity is introduced, taking advantage of attributes and clusters.

The strings of symbols of a language are depth-recursively classified as terms using the standard approach (see for example [16], definition 1.1.2); technically, this is done here by deploying the '-multiCat' functor and the 'unambiguous' attribute previously introduced in [10], and the set of atomic formulas is introduced. The set of all terms is shown to be unambiguous with respect to concatenation; we say that it is a prefix set. This fact is exploited to uniquely define the subterms both of a term and of an atomic formula without resorting to a parse tree.

MML identifier: FOMODEL1, version: $\underline{7.11 .074 .160 .1126}$

The papers [1], [3], [18], [5], [6], [12], [10], [7], [8], [9], [19], [14], [13], [2], [17], [4], [21], [22], [15], and [20] provide the terminology and notation for this paper.

We follow the rules: m, n are natural numbers, m_{1}, n_{1} are elements of \mathbb{N}, and X, x, z are sets.

Let z be a zero integer number. One can check that $|z|$ is zero.

[^0]Let us observe that there exists a real number which is negative and integer and every integer number which is positive is also natural.

Let S be a non degenerated zero-one structure. Observe that (the carrier of $S) \backslash\{$ the one of $S\}$ is non empty.

We introduce languages-like which are extensions of zero-one structure and are systems
\langle a carrier, a zero, a one, an adicity 〉,
where the carrier is a set, the zero and the one are elements of the carrier, and the adicity is a function from the carrier $\backslash\{$ the one $\}$ into \mathbb{Z}.

Let S be a language-like. The functor AllSymbolsOf S is defined by:
(Def. 1) AllSymbolsOf $S=$ the carrier of S.
The functor LettersOf S is defined as follows:
(Def. 2) LettersOf $S=(\text { the adicity of } S)^{-1}(\{0\})$.
The functor OpSymbolsOf S is defined by:
(Def. 3) OpSymbolsOf $S=(\text { the adicity of } S)^{-1}(\mathbb{N} \backslash\{0\})$.
The functor RelSymbolsOf S is defined by:
(Def. 4) RelSymbolsOf $S=(\text { the adicity of } S)^{-1}(\mathbb{Z} \backslash \mathbb{N})$.
The functor TermSymbolsOf S is defined as follows:
(Def. 5) TermSymbolsOf $S=(\text { the adicity of } S)^{-1}(\mathbb{N})$.
The functor LowerCompoundersOf S is defined as follows:
(Def. 6) LowerCompoundersOf $S=(\text { the adicity of } S)^{-1}(\mathbb{Z} \backslash\{0\})$.
The functor TheEqSymbOf S is defined as follows:
(Def. 7) TheEqSymbOf $S=$ the zero of S.
The functor TheNorSymbOf S is defined as follows:
(Def. 8) TheNorSymbOf $S=$ the one of S.
The functor OwnSymbolsOf S is defined by:
(Def. 9) OwnSymbolsOf $S=($ the carrier of $S) \backslash\{$ the zero of S, the one of $S\}$.
Let S be a language-like. An element of S is an element of AllSymbolsOf S.
The functor AtomicFormulaSymbolsOf S is defined by:
(Def. 10) AtomicFormulaSymbolsOf $S=$ AllSymbolsOf $S \backslash\{$ TheNorSymbOf $S\}$.
The functor AtomicTermsOf S is defined by:
(Def. 11) AtomicTermsOf $S=(\text { LettersOf } S)^{1}$.
We say that S is operational if and only if:
(Def. 12) OpSymbolsOf S is non empty.
We say that S is relational if and only if:
(Def. 13) RelSymbolsOf $S \backslash\{$ TheEqSymbOf $S\}$ is non empty.
Let S be a language-like and let s be an element of S. We say that s is literal if and only if:
(Def. 14) $s \in$ LettersOf S.
We say that s is low-compounding if and only if:
(Def. 15) $s \in$ LowerCompoundersOf S.
We say that s is operational if and only if:
(Def. 16) $s \in$ OpSymbolsOf S.
We say that s is relational if and only if:
(Def. 17) $s \in$ RelSymbolsOf S.
We say that s is termal if and only if:
(Def. 18) $s \in$ TermSymbolsOf S.
We say that s is own if and only if:
(Def. 19) $s \in$ OwnSymbolsOf S.
We say that s is of-atomic-formula if and only if:
(Def. 20) $s \in$ AtomicFormulaSymbolsOf S.
Let S be a zero-one structure and let s be an element of (the carrier of $S) \backslash\{$ the one of $S\}$. The functor TrivialArity s yields an integer number and is defined by:
(Def. 21) TrivialArity $s=\left\{\begin{array}{l}-2, \text { if } s=\text { the zero of } S, \\ 0, \text { otherwise. }\end{array}\right.$
Let S be a zero-one structure and let s be an element of (the carrier of $S) \backslash\{$ the one of $S\}$. Then TrivialArity s is an element of \mathbb{Z}.

Let S be a non degenerated zero-one structure. The functor S TrivialArity yielding a function from (the carrier of S) $\backslash\{$ the one of $S\}$ into \mathbb{Z} is defined by:
(Def. 22) For every element s of (the carrier of S) $\backslash\{$ the one of $S\}$ holds $(S$ TrivialArity $)(s)=$ TrivialArity s.
Let us observe that there exists a non degenerated zero-one structure which is infinite.

Let S be an infinite non degenerated zero-one structure.
Observe that $(S \text { TrivialArity })^{-1}(\{0\})$ is infinite.
Let S be a language-like. We say that S is eligible if and only if:
(Def. 23) LettersOf S is infinite and (the adicity of S (TheEqSymbOf S) $=-2$.
One can check that there exists a language-like which is non degenerated.
One can check that there exists a non degenerated language-like which is eligible.

A language is an eligible non degenerated language-like.
We follow the rules: S, S_{1}, S_{2} are languages and s, s_{1}, s_{2} are elements of S.
Let S be a non empty language-like. Then AllSymbolsOf S is a non empty set.

Let S be an eligible language-like. Note that LettersOf S is infinite.
Let S be a language.

Then LettersOf S is a non empty subset of AllSymbolsOf S. Note that TheEqSymbof S is relational.

Let S be a non degenerated language-like. Then AtomicFormulaSymbolsOf S is a non empty subset of AllSymbolsOf S.

Let S be a non degenerated language-like. Then TheEqSymbOf S is an element of AtomicFormulaSymbolsOf S.

We now state the proposition
(1) Let S be a language. Then LettersOf $S \cap$ OpSymbolsOf $S=\emptyset$ and TermSymbolsOf $S \cap$ LowerCompoundersOf $S=$ OpSymbolsOf S and RelSymbolsOf $S \backslash$ OwnSymbolsOf $S=$ \{TheEqSymbOf $S\}$ and OwnSymbolsOf $S \subseteq$ AtomicFormulaSymbolsOf S and RelSymbolsOf $S \subseteq$ LowerCompoundersOf S and OpSymbolsOf $S \subseteq$ TermSymbolsOf S and LettersOf $S \subseteq$ TermSymbolsOf $S \subseteq$ OwnSymbolsOf S and OpSymbolsOf $S \subseteq$ LowerCompoundersOf $S \subseteq$ AtomicFormulaSymbolsOf S.
Let S be a language. One can verify the following observations:

* TermSymbolsOf S is non empty,
* every element of S which is own is also of-atomic-formula,
* every element of S which is relational is also low-compounding,
* every element of S which is operational is also termal,
* every element of S which is literal is also termal,
* every element of S which is termal is also own,
* every element of S which is operational is also low-compounding,
* every element of S which is low-compounding is also of-atomic-formula,
* every element of S which is termal is also non relational,
* every element of S which is literal is also non relational, and
* every element of S which is literal is also non operational.

Let S be a language. Note that there exists an element of S which is relational and there exists an element of S which is literal. Observe that every low-compounding element of S which is termal is also operational. One can check that there exists an element of S which is of-atomic-formula.

Let s be an of-atomic-formula element of S. The functor ar s yielding an element of \mathbb{Z} is defined by:
$($ Def. 24) \quad ar $s=($ the adicity of $S)(s)$.
Let S be a language and let s be a literal element of S. Note that ar s is zero. The functor S-cons yielding a binary operation on (AllSymbolsOf S) ${ }^{*}$ is defined as follows:
(Def. 25) $\quad S$-cons $=$ the concatenation of AllSymbolsOf S.
Let S be a language.

The functor S-multiCat yields a function from ((AllSymbolsOf $\left.S)^{*}\right)^{*}$ into (AllSymbolsOf $S)^{*}$ and is defined by:
(Def. 26) $\quad S$-multiCat $=($ AllSymbolsOf $S)$-multiCat.
Let S be a language. The functor S-firstChar yielding a function from (AllSymbolsOf $S)^{*} \backslash\{\emptyset\}$ into AllSymbolsOf S is defined as follows:
(Def. 27) S-firstChar $=($ AllSymbolsOf $S)$-firstChar .
Let S be a language and let X be a set. We say that X is S-prefix if and only if:
(Def. 28) $\quad X$ is AllSymbolsOf S-prefix.
Let S be a language. Note that every set which is S-prefix is also
AllSymbolsOf S-prefix and every set which is AllSymbolsOf S-prefix is also S-prefix. A string of S is an element of (AllSymbolsOf $S)^{*} \backslash\{\emptyset\}$.

Let us consider S. One can check that (AllSymbolsOf S) ${ }^{*} \backslash\{\emptyset\}$ is non empty. Note that every string of S is non empty.

Let us note that every language is infinite. Observe that AllSymbolsOf S is infinite.

Let s be an of-atomic-formula element of S, and let S_{3} be a set. The functor Compound $\left(s, S_{3}\right)$ is defined by:
(Def. 29) Compound $\left(s, S_{3}\right)=\left\{\langle s\rangle \wedge S\right.$-multiCat $\left(S_{4}\right) ; S_{4}$ ranges over elements of $\left((\text { AllSymbolsOf } S)^{*}\right)^{*}: \operatorname{rng} S_{4} \subseteq S_{3} \wedge S_{4}$ is |ar $s \mid$-element $\}$.
Let S be a language, let s be an of-atomic-formula element of S, and let S_{3} be a set. Then Compound $\left(s, S_{3}\right)$ is an element of $2^{\text {(AllSymbolsOf } S)^{*} \backslash\{\theta\}}$. The functor S-termsOfMaxDepth yields a function and is defined by the conditions (Def. 30).
(Def. 30)(i) $\quad \operatorname{dom}(S$-termsOfMaxDepth $)=\mathbb{N}$,
(ii) S-termsOfMaxDepth $(0)=$ AtomicTermsOf S, and
(iii) for every natural number n holds S-termsOfMaxDepth $(n+$ 1) $=\bigcup\{\operatorname{Compound}(s, S$-termsOfMaxDepth $(n)) ; s$ ranges over of-atomicformula elements of $S: s$ is operational $\} \cup S$-termsOfMaxDepth (n).
Let us consider S. Then AtomicTermsOf S is a subset of (AllSymbolsOf $S)^{*}$. Let S be a language. The functor AllTermsOf S is defined as follows:
(Def. 31) AllTermsOf $S=\bigcup \operatorname{rng}(S$-termsOfMaxDepth).
One can prove the following proposition
(2) S-termsOfMaxDepth $\left(m_{1}\right) \subseteq$ AllTermsOf S.

Let S be a language and let w be a string of S. We say that w is termal if and only if:
(Def. 32) $w \in$ AllTermsOf S.
Let m be a natural number, let S be a language, and let w be a string of S. We say that w is m-termal if and only if:
(Def. 33) $w \in S$-termsOfMaxDepth (m).
Let m be a natural number and let S be a language. Note that every string of S which is m-termal is also termal.

Let us consider S. Then S-termsOfMaxDepth is a function from \mathbb{N} into $2^{\text {(AllSymbolsOf } S)^{*}}$. Then AllTermsOf S is a non empty subset of (AllSymbolsOf $S)^{*}$. Note that AllTermsOf S is non empty.

Let us consider m. One can verify that S-termsOfMaxDepth (m) is non empty. Observe that every element of S-termsOfMaxDepth (m) is non empty. Observe that every element of AllTermsOf S is non empty.

Let m be a natural number and let S be a language. Note that there exists a string of S which is m-termal. Observe that every string of S which is 0 -termal is also 1-element.

Let S be a language and let w be a 0 -termal string of S. Observe that S-firstChar (w) is literal.

Let us consider S and let w be a termal string of S. Note that S-firstChar (w) is termal.

Let us consider S and let t be a termal string of S. The functor ar t yielding an element of \mathbb{Z} is defined as follows:
(Def. 34) $\quad \operatorname{ar} t=\operatorname{ar} S$-firstChar (t).
Next we state the proposition
(3) For every $m_{1}+1$-termal string w of S there exists an element T of S-termsOfMaxDepth $\left(m_{1}\right)^{*}$ such that T is $\mid \operatorname{ar} S$-firstChar $(w) \mid$-element and $w=\langle S$-firstChar $(w)\rangle{ }^{\wedge} S$-multiCat (T).

Let us consider S, m. Note that S-termsOfMaxDepth (m) is S-prefix.
Let us consider S and let V be an element of (AllTermsOf $S)^{*}$. Observe that S-multiCat (V) is relation-like.

Let us consider S and let V be an element of (AllTermsOf $S)^{*}$. One can verify that S-multiCat (V) is function-like.

Let us consider S and let p_{1} be a string of S. We say that p_{1} is 0 -w.f.f. if and only if:
(Def. 35) There exists a relational element s of S and there exists an \mid ar $s \mid$-element element V of $(\text { AllTermsOf } S)^{*}$ such that $p_{1}=\langle s\rangle \cap S$-multiCat (V).
Let us consider S. Note that there exists a string of S which is 0-w.f.f..
Let p_{1} be a 0 -w.f.f. string of S. Observe that S-firstChar $\left(p_{1}\right)$ is relational. The functor AtomicFormulasOf S is defined as follows:
(Def. 36) AtomicFormulasOf $S=\left\{p_{1} ; p_{1}\right.$ ranges over strings of $S: p_{1}$ is 0 -w.f.f. $\}$.
Let us consider S. Then AtomicFormulasOf S is a subset of (AllSymbolsOf S) ${ }^{*} \backslash$ $\{\emptyset\}$. Note that AtomicFormulasOf S is non empty. Observe that every element of AtomicFormulasOf S is 0-w.f.f.. Observe that AllTermsOf S is S-prefix.

Let us consider S and let t be a termal string of S. The functor SubTerms t yields an element of (AllTermsOf $S)^{*}$ and is defined by:
(Def. 37) SubTermst is |ar S-firstChar $(t) \mid$-element and $t=\langle S \text {-firstChar }(t)\rangle^{\wedge}$ S-multiCat(SubTermst).
Let us consider S and let t be a termal string of S. One can verify that SubTerms t is $|\operatorname{ar} t|$-element.

Let t_{0} be a 0 -termal string of S. Note that SubTerms t_{0} is empty.
Let us consider m_{1}, S and let t be an $m_{1}+1$-termal string of S. One can verify that $\operatorname{SubTerms} t$ is S-termsOfMaxDepth $\left(m_{1}\right)$-valued.

Let us consider S and let p_{1} be a 0 -w.f.f. string of S. The functor SubTerms p_{1} yields an $\mid \operatorname{ar} S$-firstChar $\left(p_{1}\right) \mid$-element element of (AllTermsOf $\left.S\right)^{*}$ and is defined as follows:
(Def. 38) $\quad p_{1}=\left\langle S\right.$-firstChar $\left.\left(p_{1}\right)\right\rangle \frown S$-multiCat $\left(\operatorname{SubTerms} p_{1}\right)$.
Let us consider S and let p_{1} be a 0 -w.f.f. string of S. Note that SubTerms p_{1} is $\mid \operatorname{ar} S$-firstChar $\left(p_{1}\right) \mid$-element.

Then AllTermsOf S is an element of $2^{(\text {AllSymbolsOf } S)^{*} \backslash\{\emptyset\}}$. Note that every element of AllTermsOf S is termal. The functor S-subTerms yielding a function from AllTermsOf S into (AllTermsOf $S)^{*}$ is defined by:
(Def. 39) For every element t of AllTermsOf S holds S-subTerms $(t)=$ SubTerms t.
We now state several propositions:
(4) S-termsOfMaxDepth $(m) \subseteq S$-termsOfMaxDepth $(m+n)$.
(5) If $x \in$ AllTermsOf S, then there exists n_{1} such that $x \in$ S-termsOfMaxDepth $\left(n_{1}\right)$.
(6) AllTermsOf $S \subseteq(\text { AllSymbolsOf } S)^{*} \backslash\{\emptyset\}$.
(7) AllTermsOf S is S-prefix.
(8) If $x \in$ AllTermsOf S, then x is a string of S.
(9) AtomicFormulaSymbolsOf $S \backslash$ OwnSymbolsOf $S=\{$ TheEqSymbOf $S\}$.
(10) TermSymbolsOf $S \backslash$ LettersOf $S=$ OpSymbolsOf S.
(11) AtomicFormulaSymbolsOf $S \backslash$ RelSymbolsOf $S=$ TermSymbolsOf S.

Let us consider S. Observe that every of-atomic-formula element of S which is non relational is also termal.

Then OwnSymbolsOf S is a subset of AllSymbolsOf S. Observe that every termal element of S which is non literal is also operational.

Next we state three propositions:
(12) $\quad x$ is a string of S iff x is a non empty element of (AllSymbolsOf S).
(13) x is a string of S iff x is a non empty finite sequence of elements of AllSymbolsOf S.
(14) S-termsOfMaxDepth is a function from \mathbb{N} into $2^{\text {(AllSymbolsOf } S)^{*}}$.

Let us consider S. Note that every element of LettersOf S is literal. One can check that TheNorSymbOf S is non low-compounding.

Observe that TheNorSymbOf S is non own.
Next we state the proposition
(15) If $s \neq$ TheNorSymbOf S and $s \neq$ TheEqSymbOf S, then $s \in$ OwnSymbolsOf S.
For simplicity, we use the following convention: l, l_{1}, l_{2} denote literal elements of S, a denotes an of-atomic-formula element of S, r denotes a relational element of S, w, w_{1} denote strings of S, and t_{2} denotes an element of AllTermsOf S.

Let us consider S, t. The functor Depth t yielding a natural number is defined by:
(Def. 40) t is Depth t-termal and for every n such that t is n-termal holds Depth $t \leq$ n.
Let us consider S, let m_{0} be a zero number, and let t be an m_{0}-termal string of S. Note that Depth t is zero.

Let us consider S and let s be a low-compounding element of S. Note that ar s is non zero.

Let us consider S and let s be a termal element of S. Observe that ar s is non negative and extended real.

Let us consider S and let s be a relational element of S. Note that ar s is negative and extended real.

Next we state the proposition
(16) If t is non 0 -termal, then S-first $\operatorname{Char}(t)$ is operational and SubTerms $t \neq$ \emptyset.
Let us consider S. Observe that S-multiCat is finite sequence-yielding.
Let us consider S and let W be a non empty AllSymbolsOf $S^{*} \backslash\{\emptyset\}$-valued finite sequence. One can verify that S-multiCat (W) is non empty.

Let us consider S, l. Note that $\langle l\rangle$ is 0 -termal.
Let us consider S, m, n. One can check that every string of S which is $m+0 \cdot n$-termal is also $m+n$-termal.

Let us consider S. One can check that every own element of S which is non low-compounding is also literal.

Let us consider S, t. One can check that SubTerms t is rng t^{*}-valued.
Let p_{0} be a 0 -w.f.f. string of S. Observe that SubTerms p_{0} is rng $p_{0}{ }^{*}$-valued. Then S-termsOfMaxDepth is a function from \mathbb{N} into $2^{(\text {AllSymbolsOf } S)^{*} \backslash\{\varnothing\}}$.

Let us consider S, m_{1}. Observe that S-termsOfMaxDepth $\left(m_{1}\right)$ has non empty elements.

Let us consider S, m and let t be a termal string of S. One can verify that t null m is Depth $t+m$-termal. One can check that every string of S which is termal is also TermSymbolsOf S-valued. Observe that AllTermsOf $S \backslash$ (TermSymbolsOf S)* is empty.

Let p_{0} be a 0-w.f.f. string of S. Observe that SubTerms p_{0} is TermSymbolsOf S^{*}-valued. One can verify that every string of S which is 0 w.f.f. is also

AtomicFormulaSymbolsOf S-valued. One can check that OwnSymbolsOf S is non empty.

In the sequel p_{0} is a 0 -w.f.f. string of S.
The following proposition is true
(17) If S-firstChar $\left(p_{0}\right) \neq$ TheEqSymbOf S, then p_{0} is OwnSymbolsOf S valued.
Let us observe that there exists a language-like which is strict and non empty.
Let S_{1}, S_{2} be languages-like. We say that S_{2} is S_{1}-extending if and only if:
(Def. 41) The adicity of $S_{1} \subseteq$ the adicity of S_{2} and TheEqSymbOf $S_{1}=$ TheEqSymbOf S_{2} and TheNorSymbOf $S_{1}=$ TheNorSymbOf S_{2}.
Let us consider S. One can verify that S null is S-extending. Observe that there exists a language which is S-extending.

Let us consider S_{1} and let S_{2} be an S_{1}-extending language. Observe that OwnSymbolsOf $S_{1} \backslash$ OwnSymbolsOf S_{2} is empty.

Let f be a \mathbb{Z}-valued function and let L be a non empty language-like. The functor L extendWith f yields a strict non empty language-like and is defined by the conditions (Def. 42).
(Def. 42)(i) The adicity of L extendWith $f=f \upharpoonright(\operatorname{dom} f \backslash\{$ the one of $L\})+$ the adicity of L,
(ii) the zero of L extendWith $f=$ the zero of L, and
(iii) the one of L extendWith $f=$ the one of L.

Let S be a non empty language-like and let f be a \mathbb{Z}-valued function. Note that S extendWith f is S-extending.

Let S be a non degenerated language-like. Observe that every language-like which is S-extending is also non degenerated.

Let S be an eligible language-like. One can check that every language-like which is S-extending is also eligible.

Let E be an empty binary relation and let us consider X. Note that $X \upharpoonright E$ is empty.

Let us consider X and let m be an integer number. Note that $X \longmapsto m$ is \mathbb{Z}-valued.

Let us consider S and let X be a functional set.
The functor S addLettersNotIn X yields an S-extending language and is defined as follows:
(Def. 43) S addLettersNotIn $X=$
S extendWith((AllSymbolsOf $S \cup$ SymbolsOf $X)$-freeCountableSet \longmapsto 0 qua \mathbb{Z}-valued function).

Let us consider S_{1} and let X be a functional set.
Note that LettersOf (S_{1} addLettersNotIn X) \backslash SymbolsOf X is infinite.
Let us note that there exists a language which is countable.
Let S be a countable language. Observe that AllSymbolsOf S is countable. One can verify that (AllSymbolsOf $S)^{*} \backslash\{\emptyset\}$ is countable.

Let L be a non empty language-like and let f be a \mathbb{Z}-valued function. Note that AllSymbolsOf $(L$ extendWith $f) \dot{ }(\operatorname{dom} f \cup$ AllSymbolsOf $L)$ is empty.

Let S be a countable language and let X be a functional set. One can check that S addLettersNotIn X is countable.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[8] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[10] Marco B. Caminati. Preliminaries to classical first order model theory. Formalized Mathematics, 19(3):155-167, 2011, doi: 10.2478/v10037-011-0025-2.
[11] Marco B. Caminati. First order languages: Further syntax and semantics. Formalized Mathematics, 19(3):179-192, 2011, doi: 10.2478/v10037-011-0027-0.
[12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[13] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
[14] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
[15] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[16] W. Pohlers and T. Glaß. An introduction to mathematical logic. Vorlesungsskriptum, WS, 93, 1992.
[17] Marta Pruszyńska and Marek Dudzicz. On the isomorphism between finite chains. Formalized Mathematics, 9(2):429-430, 2001.
[18] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, $1(\mathbf{1}): 115-122,1990$.
[19] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

[^0]: ${ }^{1}$ The author wrote this paper as part of his PhD thesis research.
 ${ }^{2}$ I would like to thank Marco Pedicini for his encouragement and support.

