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Summary. Second of a series of articles laying down the bases for classical
first order model theory. A language is defined basically as a tuple made of an
integer-valued function (adicity), a symbol of equality and a symbol for the NOR
logical connective. The only requests for this tuple to be a language is that the
value of the adicity in = is -2 and that its preimage (i.e. the variables set) in 0
is infinite. Existential quantification will be rendered (see [11]) by mere prefixing
a formula with a letter. Then the hierarchy among symbols according to their
adicity is introduced, taking advantage of attributes and clusters.

The strings of symbols of a language are depth-recursively classified as terms
using the standard approach (see for example [16], definition 1.1.2); technically,
this is done here by deploying the ‘-multiCat’ functor and the ‘unambiguous’ at-
tribute previously introduced in [10], and the set of atomic formulas is introduced.
The set of all terms is shown to be unambiguous with respect to concatenation;
we say that it is a prefix set. This fact is exploited to uniquely define the subterms
both of a term and of an atomic formula without resorting to a parse tree.

MML identifier: FOMODEL1, version: 7.11.07 4.160.1126

The papers [1], [3], [18], [5], [6], [12], [10], [7], [8], [9], [19], [14], [13], [2], [17], [4],
[21], [22], [15], and [20] provide the terminology and notation for this paper.

We follow the rules: m, n are natural numbers, m1, n1 are elements of N,
and X, x, z are sets.

Let z be a zero integer number. One can check that |z| is zero.

1The author wrote this paper as part of his PhD thesis research.
2I would like to thank Marco Pedicini for his encouragement and support.
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Let us observe that there exists a real number which is negative and integer
and every integer number which is positive is also natural.

Let S be a non degenerated zero-one structure. Observe that (the carrier of
S) \ {the one of S} is non empty.

We introduce languages-like which are extensions of zero-one structure and
are systems
〈 a carrier, a zero, a one, an adicity 〉,

where the carrier is a set, the zero and the one are elements of the carrier, and
the adicity is a function from the carrier \{the one} into Z.

Let S be a language-like. The functor AllSymbolsOf S is defined by:

(Def. 1) AllSymbolsOf S = the carrier of S.

The functor LettersOf S is defined as follows:

(Def. 2) LettersOf S = (the adicity of S)−1({0}).
The functor OpSymbolsOf S is defined by:

(Def. 3) OpSymbolsOf S = (the adicity of S)−1(N \ {0}).
The functor RelSymbolsOf S is defined by:

(Def. 4) RelSymbolsOf S = (the adicity of S)−1(Z \ N).

The functor TermSymbolsOf S is defined as follows:

(Def. 5) TermSymbolsOf S = (the adicity of S)−1(N).

The functor LowerCompoundersOf S is defined as follows:

(Def. 6) LowerCompoundersOf S = (the adicity of S)−1(Z \ {0}).
The functor TheEqSymbOf S is defined as follows:

(Def. 7) TheEqSymbOf S = the zero of S.

The functor TheNorSymbOf S is defined as follows:

(Def. 8) TheNorSymbOf S = the one of S.

The functor OwnSymbolsOf S is defined by:

(Def. 9) OwnSymbolsOf S = (the carrier of S) \ {the zero of S, the one of S}.
Let S be a language-like. An element of S is an element of AllSymbolsOf S.

The functor AtomicFormulaSymbolsOf S is defined by:

(Def. 10) AtomicFormulaSymbolsOf S = AllSymbolsOf S \ {TheNorSymbOf S}.
The functor AtomicTermsOf S is defined by:

(Def. 11) AtomicTermsOf S = (LettersOf S)1.

We say that S is operational if and only if:

(Def. 12) OpSymbolsOf S is non empty.

We say that S is relational if and only if:

(Def. 13) RelSymbolsOf S \ {TheEqSymbOf S} is non empty.

Let S be a language-like and let s be an element of S. We say that s is literal
if and only if:
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(Def. 14) s ∈ LettersOf S.

We say that s is low-compounding if and only if:

(Def. 15) s ∈ LowerCompoundersOf S.

We say that s is operational if and only if:

(Def. 16) s ∈ OpSymbolsOf S.

We say that s is relational if and only if:

(Def. 17) s ∈ RelSymbolsOf S.

We say that s is termal if and only if:

(Def. 18) s ∈ TermSymbolsOf S.

We say that s is own if and only if:

(Def. 19) s ∈ OwnSymbolsOf S.

We say that s is of-atomic-formula if and only if:

(Def. 20) s ∈ AtomicFormulaSymbolsOf S.

Let S be a zero-one structure and let s be an element of (the carrier of
S) \ {the one of S}. The functor TrivialArity s yields an integer number and is
defined by:

(Def. 21) TrivialArity s =

{
−2, if s = the zero of S,
0, otherwise.

Let S be a zero-one structure and let s be an element of (the carrier of
S) \ {the one of S}. Then TrivialArity s is an element of Z.

Let S be a non degenerated zero-one structure. The functor S TrivialArity
yielding a function from (the carrier of S) \ {the one of S} into Z is defined by:

(Def. 22) For every element s of (the carrier of S) \ {the one of S} holds
(S TrivialArity)(s) = TrivialArity s.

Let us observe that there exists a non degenerated zero-one structure which
is infinite.

Let S be an infinite non degenerated zero-one structure.
Observe that (S TrivialArity)−1({0}) is infinite.
Let S be a language-like. We say that S is eligible if and only if:

(Def. 23) LettersOf S is infinite and (the adicity of S)(TheEqSymbOf S) = −2.

One can check that there exists a language-like which is non degenerated.
One can check that there exists a non degenerated language-like which is

eligible.
A language is an eligible non degenerated language-like.
We follow the rules: S, S1, S2 are languages and s, s1, s2 are elements of S.
Let S be a non empty language-like. Then AllSymbolsOf S is a non emp-

ty set.
Let S be an eligible language-like. Note that LettersOf S is infinite.
Let S be a language.
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Then LettersOf S is a non empty subset of AllSymbolsOf S. Note that
TheEqSymbOf S is relational.

Let S be a non degenerated language-like. Then AtomicFormulaSymbolsOf S
is a non empty subset of AllSymbolsOf S.

Let S be a non degenerated language-like. Then TheEqSymbOf S is an ele-
ment of AtomicFormulaSymbolsOf S.

We now state the proposition

(1) Let S be a language. Then LettersOf S ∩ OpSymbolsOf S = ∅
and TermSymbolsOf S ∩ LowerCompoundersOf S = OpSymbolsOf S
and RelSymbolsOf S \ OwnSymbolsOf S = {TheEqSymbOf S} and
OwnSymbolsOf S ⊆ AtomicFormulaSymbolsOf S and RelSymbolsOf S ⊆
LowerCompoundersOf S and OpSymbolsOf S ⊆ TermSymbolsOf S
and LettersOf S ⊆ TermSymbolsOf S ⊆ OwnSymbolsOf S and
OpSymbolsOf S ⊆ LowerCompoundersOf S ⊆ AtomicFormulaSymbolsOf S.

Let S be a language. One can verify the following observations:

∗ TermSymbolsOf S is non empty,

∗ every element of S which is own is also of-atomic-formula,

∗ every element of S which is relational is also low-compounding,

∗ every element of S which is operational is also termal,

∗ every element of S which is literal is also termal,

∗ every element of S which is termal is also own,

∗ every element of S which is operational is also low-compounding,

∗ every element of S which is low-compounding is also of-atomic-formula,

∗ every element of S which is termal is also non relational,

∗ every element of S which is literal is also non relational, and

∗ every element of S which is literal is also non operational.

Let S be a language. Note that there exists an element of S which is re-
lational and there exists an element of S which is literal. Observe that every
low-compounding element of S which is termal is also operational. One can
check that there exists an element of S which is of-atomic-formula.

Let s be an of-atomic-formula element of S. The functor ar s yielding an
element of Z is defined by:

(Def. 24) ar s = (the adicity of S)(s).

Let S be a language and let s be a literal element of S. Note that ar s is
zero. The functor S-cons yielding a binary operation on (AllSymbolsOf S)∗ is
defined as follows:

(Def. 25) S-cons = the concatenation of AllSymbolsOf S.

Let S be a language.
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The functor S-multiCat yields a function from ((AllSymbolsOf S)∗)∗ into
(AllSymbolsOf S)∗ and is defined by:

(Def. 26) S-multiCat = (AllSymbolsOf S)-multiCat .

Let S be a language. The functor S-firstChar yielding a function from
(AllSymbolsOf S)∗ \ {∅} into AllSymbolsOf S is defined as follows:

(Def. 27) S-firstChar = (AllSymbolsOf S)-firstChar .

Let S be a language and let X be a set. We say that X is S-prefix if and
only if:

(Def. 28) X is AllSymbolsOf S-prefix.

Let S be a language. Note that every set which is S-prefix is also
AllSymbolsOf S-prefix and every set which is AllSymbolsOf S-prefix is also

S-prefix. A string of S is an element of (AllSymbolsOf S)∗ \ {∅}.
Let us consider S. One can check that (AllSymbolsOf S)∗\{∅} is non empty.

Note that every string of S is non empty.
Let us note that every language is infinite. Observe that AllSymbolsOf S is

infinite.
Let s be an of-atomic-formula element of S, and let S3 be a set. The functor

Compound(s, S3) is defined by:

(Def. 29) Compound(s, S3) = {〈s〉 a S-multiCat(S4);S4 ranges over elements of
((AllSymbolsOf S)∗)∗: rngS4 ⊆ S3 ∧ S4 is |ar s|-element}.

Let S be a language, let s be an of-atomic-formula element of S, and let
S3 be a set. Then Compound(s, S3) is an element of 2(AllSymbolsOf S)∗\{∅}. The
functor S-termsOfMaxDepth yields a function and is defined by the conditions
(Def. 30).

(Def. 30)(i) dom(S-termsOfMaxDepth) = N,
(ii) S-termsOfMaxDepth(0) = AtomicTermsOf S, and
(iii) for every natural number n holds S-termsOfMaxDepth(n +

1) =
⋃
{Compound(s, S-termsOfMaxDepth(n)); s ranges over of-atomic-

formula elements of S: s is operational} ∪ S-termsOfMaxDepth(n).

Let us consider S. Then AtomicTermsOf S is a subset of (AllSymbolsOf S)∗.
Let S be a language. The functor AllTermsOf S is defined as follows:

(Def. 31) AllTermsOf S =
⋃

rng(S-termsOfMaxDepth).

One can prove the following proposition

(2) S-termsOfMaxDepth(m1) ⊆ AllTermsOf S.

Let S be a language and let w be a string of S. We say that w is termal if
and only if:

(Def. 32) w ∈ AllTermsOf S.

Let m be a natural number, let S be a language, and let w be a string of S.
We say that w is m-termal if and only if:
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(Def. 33) w ∈ S-termsOfMaxDepth(m).

Let m be a natural number and let S be a language. Note that every string
of S which is m-termal is also termal.

Let us consider S. Then S-termsOfMaxDepth is a function from
N into 2(AllSymbolsOf S)∗ . Then AllTermsOf S is a non empty subset of
(AllSymbolsOf S)∗. Note that AllTermsOf S is non empty.

Let us consider m. One can verify that S-termsOfMaxDepth(m) is non emp-
ty. Observe that every element of S-termsOfMaxDepth(m) is non empty. Obse-
rve that every element of AllTermsOf S is non empty.

Let m be a natural number and let S be a language. Note that there exists a
string of S which is m-termal. Observe that every string of S which is 0-termal
is also 1-element.

Let S be a language and let w be a 0-termal string of S. Observe that
S-firstChar(w) is literal.

Let us consider S and let w be a termal string of S. Note that S-firstChar(w)
is termal.

Let us consider S and let t be a termal string of S. The functor ar t yielding
an element of Z is defined as follows:

(Def. 34) ar t = arS-firstChar(t).

Next we state the proposition

(3) For every m1 + 1-termal string w of S there exists an element T of
S-termsOfMaxDepth(m1)∗ such that T is |arS-firstChar(w)|-element and
w = 〈S-firstChar(w)〉 a S-multiCat(T ).

Let us consider S, m. Note that S-termsOfMaxDepth(m) is S-prefix.
Let us consider S and let V be an element of (AllTermsOf S)∗. Observe that

S-multiCat(V ) is relation-like.
Let us consider S and let V be an element of (AllTermsOf S)∗. One can

verify that S-multiCat(V ) is function-like.
Let us consider S and let p1 be a string of S. We say that p1 is 0-w.f.f. if

and only if:

(Def. 35) There exists a relational element s of S and there exists an |ar s|-element
element V of (AllTermsOf S)∗ such that p1 = 〈s〉 a S-multiCat(V ).

Let us consider S. Note that there exists a string of S which is 0-w.f.f..
Let p1 be a 0-w.f.f. string of S. Observe that S-firstChar(p1) is relational.

The functor AtomicFormulasOf S is defined as follows:

(Def. 36) AtomicFormulasOf S = {p1; p1 ranges over strings of S: p1 is 0-w.f.f.}.
Let us consider S. Then AtomicFormulasOf S is a subset of (AllSymbolsOf S)∗\

{∅}. Note that AtomicFormulasOf S is non empty. Observe that every element
of AtomicFormulasOf S is 0-w.f.f.. Observe that AllTermsOf S is S-prefix.
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Let us consider S and let t be a termal string of S. The functor SubTerms t
yields an element of (AllTermsOf S)∗ and is defined by:

(Def. 37) SubTerms t is |arS-firstChar(t)|-element and t = 〈S-firstChar(t)〉 a
S-multiCat(SubTerms t).

Let us consider S and let t be a termal string of S. One can verify that
SubTerms t is |ar t|-element.

Let t0 be a 0-termal string of S. Note that SubTerms t0 is empty.
Let us consider m1, S and let t be an m1 + 1-termal string of S. One can

verify that SubTerms t is S-termsOfMaxDepth(m1)-valued.
Let us consider S and let p1 be a 0-w.f.f. string of S. The functor SubTerms p1

yields an |arS-firstChar(p1)|-element element of (AllTermsOf S)∗ and is defined
as follows:

(Def. 38) p1 = 〈S-firstChar(p1)〉 a S-multiCat(SubTerms p1).

Let us consider S and let p1 be a 0-w.f.f. string of S. Note that SubTerms p1

is |arS-firstChar(p1)|-element.
Then AllTermsOf S is an element of 2(AllSymbolsOf S)∗\{∅}. Note that every

element of AllTermsOf S is termal. The functor S-subTerms yielding a function
from AllTermsOf S into (AllTermsOf S)∗ is defined by:

(Def. 39) For every element t of AllTermsOf S holds S-subTerms(t) = SubTerms t.

We now state several propositions:

(4) S-termsOfMaxDepth(m) ⊆ S-termsOfMaxDepth(m+ n).

(5) If x ∈ AllTermsOf S, then there exists n1 such that x ∈
S-termsOfMaxDepth(n1).

(6) AllTermsOf S ⊆ (AllSymbolsOf S)∗ \ {∅}.
(7) AllTermsOf S is S-prefix.

(8) If x ∈ AllTermsOf S, then x is a string of S.

(9) AtomicFormulaSymbolsOf S \OwnSymbolsOf S = {TheEqSymbOf S}.
(10) TermSymbolsOf S \ LettersOf S = OpSymbolsOf S.

(11) AtomicFormulaSymbolsOf S \ RelSymbolsOf S = TermSymbolsOf S.

Let us consider S. Observe that every of-atomic-formula element of S which
is non relational is also termal.

Then OwnSymbolsOf S is a subset of AllSymbolsOf S. Observe that every
termal element of S which is non literal is also operational.

Next we state three propositions:

(12) x is a string of S iff x is a non empty element of (AllSymbolsOf S)∗.

(13) x is a string of S iff x is a non empty finite sequence of elements of
AllSymbolsOf S.

(14) S-termsOfMaxDepth is a function from N into 2(AllSymbolsOf S)∗ .
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Let us consider S. Note that every element of LettersOf S is literal. One can
check that TheNorSymbOf S is non low-compounding.

Observe that TheNorSymbOf S is non own.
Next we state the proposition

(15) If s 6= TheNorSymbOf S and s 6= TheEqSymbOf S, then s ∈
OwnSymbolsOf S.

For simplicity, we use the following convention: l, l1, l2 denote literal elements
of S, a denotes an of-atomic-formula element of S, r denotes a relational element
of S, w, w1 denote strings of S, and t2 denotes an element of AllTermsOf S.

Let us consider S, t. The functor Depth t yielding a natural number is defined
by:

(Def. 40) t is Depth t-termal and for every n such that t is n-termal holds Depth t ≤
n.

Let us consider S, let m0 be a zero number, and let t be an m0-termal string
of S. Note that Depth t is zero.

Let us consider S and let s be a low-compounding element of S. Note that
ar s is non zero.

Let us consider S and let s be a termal element of S. Observe that ar s is
non negative and extended real.

Let us consider S and let s be a relational element of S. Note that ar s is
negative and extended real.

Next we state the proposition

(16) If t is non 0-termal, then S-firstChar(t) is operational and SubTerms t 6=
∅.

Let us consider S. Observe that S-multiCat is finite sequence-yielding.
Let us consider S and let W be a non empty AllSymbolsOf S∗ \ {∅}-valued

finite sequence. One can verify that S-multiCat(W ) is non empty.
Let us consider S, l. Note that 〈l〉 is 0-termal.
Let us consider S, m, n. One can check that every string of S which is

m+ 0 · n-termal is also m+ n-termal.
Let us consider S. One can check that every own element of S which is non

low-compounding is also literal.
Let us consider S, t. One can check that SubTerms t is rng t∗-valued.
Let p0 be a 0-w.f.f. string of S. Observe that SubTerms p0 is rng p0

∗-valued.
Then S-termsOfMaxDepth is a function from N into 2(AllSymbolsOf S)∗\{∅}.

Let us consider S, m1. Observe that S-termsOfMaxDepth(m1) has non emp-
ty elements.

Let us consider S, m and let t be a termal string of S. One can veri-
fy that t nullm is Depth t + m-termal. One can check that every string of S
which is termal is also TermSymbolsOf S-valued. Observe that AllTermsOf S \
(TermSymbolsOf S)∗ is empty.



definition of first order language with . . . 177

Let p0 be a 0-w.f.f. string of S. Observe that SubTerms p0 is
TermSymbolsOf S∗-valued. One can verify that every string of S which is 0-
w.f.f. is also

AtomicFormulaSymbolsOf S-valued. One can check that OwnSymbolsOf S
is non empty.

In the sequel p0 is a 0-w.f.f. string of S.
The following proposition is true

(17) If S-firstChar(p0) 6= TheEqSymbOf S, then p0 is OwnSymbolsOf S-
valued.

Let us observe that there exists a language-like which is strict and non empty.
Let S1, S2 be languages-like. We say that S2 is S1-extending if and only if:

(Def. 41) The adicity of S1 ⊆ the adicity of S2 and TheEqSymbOf S1 =
TheEqSymbOf S2 and TheNorSymbOf S1 = TheNorSymbOf S2.

Let us consider S. One can verify that S null is S-extending. Observe that
there exists a language which is S-extending.

Let us consider S1 and let S2 be an S1-extending language. Observe that
OwnSymbolsOf S1 \OwnSymbolsOf S2 is empty.

Let f be a Z-valued function and let L be a non empty language-like. The
functor L extendWith f yields a strict non empty language-like and is defined
by the conditions (Def. 42).

(Def. 42)(i) The adicity of L extendWith f = f�(dom f \ {the one of L})+·the
adicity of L,

(ii) the zero of L extendWith f = the zero of L, and
(iii) the one of L extendWith f = the one of L.

Let S be a non empty language-like and let f be a Z-valued function. Note
that S extendWith f is S-extending.

Let S be a non degenerated language-like. Observe that every language-like
which is S-extending is also non degenerated.

Let S be an eligible language-like. One can check that every language-like
which is S-extending is also eligible.

Let E be an empty binary relation and let us consider X. Note that X�E is
empty.

Let us consider X and let m be an integer number. Note that X 7−→ m is
Z-valued.

Let us consider S and let X be a functional set.
The functor S addLettersNotInX yields an S-extending language and is de-

fined as follows:

(Def. 43) S addLettersNotInX =
S extendWith((AllSymbolsOf S ∪ SymbolsOf X)-freeCountableSet 7−→
0 qua Z-valued function).
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Let us consider S1 and let X be a functional set.
Note that LettersOf(S1 addLettersNotInX) \ SymbolsOf X is infinite.
Let us note that there exists a language which is countable.
Let S be a countable language. Observe that AllSymbolsOf S is countable.

One can verify that (AllSymbolsOf S)∗ \ {∅} is countable.
Let L be a non empty language-like and let f be a Z-valued function. Note

that AllSymbolsOf(L extendWith f)−. (dom f ∪AllSymbolsOf L) is empty.
Let S be a countable language and let X be a functional set. One can check

that S addLettersNotInX is countable.
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