More on Continuous Functions on Normed Linear Spaces

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Noboru Endou
Nagano National College of Technology
Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article we formalize the definition and some facts about continuous functions from \(\mathbb{R} \) into normed linear spaces [14].

MML identifier: \texttt{NFCONT.3}, version: 7.11.07-4.156.1112

The terminology and notation used in this paper have been introduced in the following papers: [2], [12], [3], [4], [10], [11], [1], [5], [13], [7], [17], [18], [15], [9], [8], [16], [19], and [6].

1. Preliminaries

For simplicity, we adopt the following rules: \(n \) denotes an element of \(\mathbb{N} \), \(X \), \(X_1 \) denote sets, \(r, p \) denote real numbers, \(s, x_0, x_1, x_2 \) denote real numbers, \(S, T \) denote real normed spaces, \(f, f_1, f_2 \) denote partial functions from \(\mathbb{R} \) to the carrier of \(S \), \(s_1 \) denotes a sequence of real numbers, and \(Y \) denotes a subset of \(\mathbb{R} \).

The following propositions are true:

1. Let \(s_2 \) be a sequence of real numbers and \(h \) be a partial function from \(\mathbb{R} \) to the carrier of \(S \). If \(\text{rng} \ s_2 \subseteq \text{dom} \ h \), then \(s_2(n) \in \text{dom} \ h \).
2. Let \(h_1, h_2 \) be partial functions from \(\mathbb{R} \) to the carrier of \(S \) and \(s_2 \) be a sequence of real numbers. If \(\text{rng} \ s_2 \subseteq \text{dom} \ h_1 \cap \text{dom} \ h_2 \), then \((h_1 + h_2) \ast s_2 = (h_1 \ast s_2) + (h_2 \ast s_2) \) and \((h_1 - h_2) \ast s_2 = (h_1 \ast s_2) - (h_2 \ast s_2) \).
(3) For every sequence h of S and for every real number r holds $r \cdot h = r \cdot h$.
(4) Let h be a partial function from \mathbb{R} to the carrier of S, s_2 be a sequence of real numbers, and r be a real number. If $\operatorname{rng} s_2 \subseteq \operatorname{dom} h$, then $r \cdot (h \cdot s_2) = r \cdot (h \cdot s_2)$.
(5) Let h be a partial function from \mathbb{R} to the carrier of S and s_2 be a sequence of real numbers. If $\operatorname{rng} s_2 \subseteq \operatorname{dom} h$, then $\|h \cdot s_2\| = \|h \cdot s_2\|$ and $-(h \cdot s_2) = -h \cdot s_2$.

2. Continuous Real Functions into Normed Linear Spaces

Let us consider S, f, x_0. We say that f is continuous in x_0 if and only if:

(Def. 1) $x_0 \in \operatorname{dom} f$ and for every s_1 such that $\operatorname{rng} s_1 \subseteq \operatorname{dom} f$ and s_1 is convergent and $\lim s_1 = x_0$ holds $f \cdot s_1$ is convergent and $f_{x_0} = \lim(f \cdot s_1)$.

Next we state a number of propositions:

(6) If $x_0 \in X$ and f is continuous in x_0, then $f|X$ is continuous in x_0.
(7) f is continuous in x_0 if and only if the following conditions are satisfied:
 (i) $x_0 \in \operatorname{dom} f$, and
 (ii) for every s_1 such that $\operatorname{rng} s_1 \subseteq \operatorname{dom} f$ and s_1 is convergent and $\lim s_1 = x_0$ and for every n holds $s_1(n) \neq x_0$ holds $f \cdot s_1$ is convergent and $f_{x_0} = \lim(f \cdot s_1)$.
(8) f is continuous in x_0 if and only if the following conditions are satisfied:
 (i) $x_0 \in \operatorname{dom} f$, and
 (ii) for every r such that $0 < r$ there exists s such that $0 < s$ and for every x_1 such that $x_1 \in \operatorname{dom} f$ and $|x_1 - x_0| < s$ holds $\|f_{x_1} - f_{x_0}\| < r$.
(9) Let given S, f, x_0. Then f is continuous in x_0 if and only if the following conditions are satisfied:
 (i) $x_0 \in \operatorname{dom} f$, and
 (ii) for every neighbourhood N_1 of f_{x_0} there exists a neighbourhood N of x_0 such that for every x_1 such that $x_1 \in \operatorname{dom} f$ and $x_1 \in N$ holds $f_{x_1} \in N_1$.
(10) Let given S, f, x_0. Then f is continuous in x_0 if and only if the following conditions are satisfied:
 (i) $x_0 \in \operatorname{dom} f$, and
 (ii) for every neighbourhood N_1 of f_{x_0} there exists a neighbourhood N of x_0 such that $f^0 N \subseteq N_1$.
(11) If there exists a neighbourhood N of x_0 such that $\operatorname{dom} f \cap N = \{x_0\}$, then f is continuous in x_0.
(12) If $x_0 \in \operatorname{dom} f_1 \cap \operatorname{dom} f_2$ and f_1 is continuous in x_0 and f_2 is continuous in x_0, then $f_1 + f_2$ is continuous in x_0 and $f_1 - f_2$ is continuous in x_0.
(13) If f is continuous in x_0, then $r \cdot f$ is continuous in x_0.
(14) If \(x_0 \in \text{dom} \ f \) and \(f \) is continuous in \(x_0 \), then \(||f|| \) is continuous in \(x_0 \) and \(-f\) is continuous in \(x_0 \).

(15) Let \(f_1 \) be a partial function from \(\mathbb{R} \) to the carrier of \(S \) and \(f_2 \) be a partial function from the carrier of \(S \) to the carrier of \(T \). Suppose \(x_0 \in \text{dom}(f_2 \cdot f_1) \) and \(f_1 \) is continuous in \(x_0 \) and \(f_2 \) is continuous in \((f_1)_{x_0}\). Then \(f_2 \cdot f_1 \) is continuous in \(x_0 \).

Let us consider \(S, f \). We say that \(f \) is continuous if and only if:

(Def. 2) For every \(x_0 \) such that \(x_0 \in \text{dom} \ f \) holds \(f \) is continuous in \(x_0 \).

Next we state two propositions:

(16) Let given \(X, f \). Suppose \(X \subseteq \text{dom} \ f \). Then \(f \mid X \) is continuous if and only if for every \(s_1 \) such that \(\text{rng} \ s_1 \subseteq X \) and \(s_1 \) is convergent and \(\lim s_1 \in X \) holds \(f \cdot s_1 \) is convergent and \(\lim(f \cdot s_1) = \lim(f \cdot s_1) \).

(17) Suppose \(X \subseteq \text{dom} \ f \). Then \(f \mid X \) is continuous if and only if for all \(x_0, r \) such that \(x_0 \in X \) and \(0 < r \) there exists \(s \) such that \(0 < s \) and for every \(x_1 \) such that \(x_1 \in X \) and \(|x_1 - x_0| < s \) holds \(||f_{x_1} - f_{x_0}|| < r \).

Let us consider \(S \). One can check that every partial function from \(\mathbb{R} \) to the carrier of \(S \) which is constant is also continuous.

Let us consider \(S \). Note that there exists a partial function from \(\mathbb{R} \) to the carrier of \(S \) which is continuous.

Let us consider \(S \), let \(f \) be a continuous partial function from \(\mathbb{R} \) to the carrier of \(S \), and let \(X \) be a set. Observe that \(f \mid X \) is continuous.

Next we state the proposition

(18) If \(f \mid X \) is continuous and \(X_1 \subseteq X \), then \(f \mid X_1 \) is continuous.

Let us consider \(S \). Observe that every partial function from \(\mathbb{R} \) to the carrier of \(S \) which is empty is also continuous.

Let us consider \(S, f \) and let \(X \) be a trivial set. Observe that \(f \mid X \) is continuous.

Let us consider \(S \) and let \(f_1, f_2 \) be continuous partial functions from \(\mathbb{R} \) to the carrier of \(S \). Observe that \(f_1 + f_2 \) is continuous and \(f_1 - f_2 \) is continuous.

The following two propositions are true:

(19) Let given \(X, f_1, f_2 \). Suppose \(X \subseteq \text{dom} f_1 \cap \text{dom} f_2 \) and \(f_1 \mid X \) is continuous and \(f_2 \mid X \) is continuous. Then \((f_1 + f_2)\mid X \) is continuous and \((f_1 - f_2)\mid X \) is continuous.

(20) Let given \(X, X_1, f_1, f_2 \). Suppose \(X \subseteq \text{dom} f_1 \) and \(X_1 \subseteq \text{dom} f_2 \) and \(f_1 \mid X \) is continuous and \(f_2 \mid X_1 \) is continuous. Then \((f_1 + f_2)\mid (X \cap X_1) \) is continuous and \((f_1 - f_2)\mid (X \cap X_1) \) is continuous.

Let us consider \(S \), let \(f \) be a continuous partial function from \(\mathbb{R} \) to the carrier of \(S \), and let us consider \(r \). One can check that \(r \ f \) is continuous.

We now state several propositions:

(21) If \(X \subseteq \text{dom} \ f \) and \(f \mid X \) is continuous, then \((r f)\mid X \) is continuous.
(22) If $X \subseteq \text{dom } f$ and $f|X$ is continuous, then $\|f\||X$ is continuous and $(-f)|X$ is continuous.

(23) If f is total and for all x_1, x_2 holds $f_{x_1+x_2} = f_{x_1} + f_{x_2}$ and there exists x_0 such that f is continuous in x_0, then $f|\mathbb{R}$ is continuous.

(24) If $\text{dom } f$ is compact and $f|\text{dom } f$ is continuous, then $\text{rng } f$ is compact.

(25) If $Y \subseteq \text{dom } f$ and Y is compact and $f|Y$ is continuous, then $f \circ Y$ is compact.

3. Lipschitz Continuity

Let us consider S, f. We say that f is Lipschitzian if and only if:

(Def. 3) There exists a real number r such that $0 < r$ and for all x_1, x_2 such that $x_1, x_2 \in \text{dom } f$ holds $\|f_{x_1} - f_{x_2}\| \leq r \cdot |x_1 - x_2|$.

The following proposition is true

(26) $f|X$ is Lipschitzian if and only if there exists a real number r such that $0 < r$ and for all x_1, x_2 such that $x_1, x_2 \in \text{dom } (f|X)$ holds $\|f_{x_1} - f_{x_2}\| \leq r \cdot |x_1 - x_2|$.

Let us consider S. Observe that every partial function from \mathbb{R} to the carrier of S which is empty is also Lipschitzian.

Let us consider S, f. One can verify that there exists a partial function from \mathbb{R} to the carrier of S which is empty.

Let us consider S, f. One can check that $f|X$ is Lipschitzian.

The following proposition is true

(27) If $f|X$ is Lipschitzian and $X_1 \subseteq X$, then $f|X_1$ is Lipschitzian.

Let us consider S and let f_1, f_2 be Lipschitzian partial functions from \mathbb{R} to the carrier of S. One can check that $f_1 + f_2$ is Lipschitzian and $f_1 - f_2$ is Lipschitzian.

One can prove the following propositions:

(28) If $f_1|X$ is Lipschitzian and $f_2|X_1$ is Lipschitzian, then $(f_1 + f_2)|(X \cap X_1)$ is Lipschitzian.

(29) If $f_1|X$ is Lipschitzian and $f_2|X_1$ is Lipschitzian, then $(f_1 - f_2)|(X \cap X_1)$ is Lipschitzian.

Let us consider S, let f be a Lipschitzian partial function from \mathbb{R} to the carrier of S, and let us consider p. Note that $p f$ is Lipschitzian.

Next we state the proposition

(30) If $f|X$ is Lipschitzian and $X \subseteq \text{dom } f$, then $(p f)|X$ is Lipschitzian.

Let us consider S, let f be a Lipschitzian partial function from \mathbb{R} to the carrier of S. Note that $\|f\|$ is Lipschitzian.
One can prove the following proposition

(31) If $f|X$ is Lipschitzian, then $-f|X$ is Lipschitzian and $(-f)|X$ is Lipschitzian and $\|f||X$ is Lipschitzian.

Let us consider S. One can verify that every partial function from \mathbb{R} to the carrier of S which is constant is also Lipschitzian.

Let us consider S. Observe that every partial function from \mathbb{R} to the carrier of S which is Lipschitzian is also continuous.

Next we state two propositions:

(32) If there exists a point r of S such that rng $f = \{r\}$, then f is continuous.

(33) For all points r, p of S such that for every x_0 such that $x_0 \in X$ holds $f_{x_0} = x_0 \cdot r + p$ holds $f|X$ is continuous.

References

Received August 17, 2010