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Summary. In this article, we define and develop differentiation of vector-
valued functions on n-dimensional real normed linear spaces (refer to [16] and
[17]).
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The papers [8], [14], [2], [3], [4], [5], [13], [18], [1], [12], [6], [10], [15], [11], [9],
[21], [19], [20], and [7] provide the terminology and notation for this paper.

1. The Basic Properties of Differentiation of Functions from Rm
to Rn

In this paper i, n, m are elements of N.
The following propositions are true:

(1) Let f be a set. Then f is a partial function from Rm to Rn if and only
if f is a partial function from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉.

(2) Let n, m be non empty elements of N, f be a partial function from Rm
to Rn, g be a partial function from 〈Em, ‖·‖〉 to 〈En, ‖·‖〉, x be an element
of Rm, and y be a point of 〈Em, ‖ · ‖〉. Suppose f = g and x = y. Then f

is differentiable in x if and only if g is differentiable in y.
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(3) Let n, m be non empty elements of N, f be a partial function from
Rm to Rn, g be a partial function from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, x be an
element of Rm, and y be a point of 〈Em, ‖ · ‖〉. If f = g and x = y and f

is differentiable in x, then f ′(x) = g′(y).

(4) Let f1, f2 be partial functions from Rm to Rn and g1, g2 be partial
functions from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉. If f1 = g1 and f2 = g2, then
f1 + f2 = g1 + g2.

(5) Let f1, f2 be partial functions from Rm to Rn and g1, g2 be partial
functions from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉. If f1 = g1 and f2 = g2, then
f1 − f2 = g1 − g2.

(6) Let f be a partial function from Rm to Rn, g be a partial function from
〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, and a be a real number. If f = g, then a f = a g.

(7) Let f1, f2 be functions from Rm into Rn and g1, g2 be points of the real
norm space of bounded linear operators from 〈Em, ‖ · ‖〉 into 〈En, ‖ · ‖〉. If
f1 = g1 and f2 = g2, then f1 + f2 = g1 + g2.

(8) Let f1, f2 be functions from Rm into Rn and g1, g2 be points of the real
norm space of bounded linear operators from 〈Em, ‖ · ‖〉 into 〈En, ‖ · ‖〉. If
f1 = g1 and f2 = g2, then f1 − f2 = g1 − g2.

(9) Let f be a function from Rm into Rn, g be a point of the real norm
space of bounded linear operators from 〈Em, ‖ · ‖〉 into 〈En, ‖ · ‖〉, and r be
a real number. If f = g, then r f = r · g.

(10) Let m, n be non empty elements of N, f be a partial function from Rm
to Rn, and x be an element of Rm. Suppose f is differentiable in x. Then
f ′(x) is a point of the real norm space of bounded linear operators from
〈Em, ‖ · ‖〉 into 〈En, ‖ · ‖〉.

Let n, m be natural numbers and let I1 be a function from Rm into Rn. We
say that I1 is additive if and only if:

(Def. 1) For all elements x, y of Rm holds I1(x+ y) = I1(x) + I1(y).

We say that I1 is homogeneous if and only if:

(Def. 2) For every element x of Rm and for every real number r holds I1(r · x) =
r · I1(x).

The following three propositions are true:

(11) For every function I1 from Rm into Rn such that I1 is additive holds
I1(〈0, . . . , 0︸ ︷︷ ︸

m

〉) = 〈0, . . . , 0︸ ︷︷ ︸
n

〉.

(12) Let f be a function from Rm into Rn and g be a function from 〈Em, ‖·‖〉
into 〈En, ‖ · ‖〉. If f = g, then f is additive iff g is additive.

(13) Let f be a function from Rm into Rn and g be a function from 〈Em, ‖·‖〉
into 〈En, ‖ · ‖〉. If f = g, then f is homogeneous iff g is homogeneous.



Differentiation of vector-valued functions . . . 209

Let n, m be natural numbers. One can verify that the function Rm 7−→
〈0, . . . , 0︸ ︷︷ ︸

n

〉 is additive and homogeneous.

Let n, m be natural numbers. Note that there exists a function from Rm
into Rn which is additive and homogeneous.

Let m, n be natural numbers. A linear operator from m into n is defined by
an additive homogeneous function from Rm into Rn.

We now state the proposition

(14) Let f be a set. Then f is a linear operator from m into n if and only if
f is a linear operator from 〈Em, ‖ · ‖〉 into 〈En, ‖ · ‖〉.

Let m, n be natural numbers, let I1 be a function from Rm into Rn, and let
x be an element of Rm. Then I1(x) is an element of Rn.

Let m, n be natural numbers and let I1 be a function from Rm into Rn. We
say that I1 is bounded if and only if:

(Def. 3) There exists a real number K such that 0 ≤ K and for every element x
of Rm holds |I1(x)| ≤ K · |x|.

Next we state three propositions:

(15) Let x1, y1 be finite sequences of elements of Rm. Suppose lenx1 =
len y1 + 1 and x1� len y1 = y1. Then there exists an element v of Rm
such that v = x1(lenx1) and

∑
x1 =

∑
y1 + v.

(16) Let f be a linear operator from m into n, x1 be a finite sequence of
elements of Rm, and y1 be a finite sequence of elements of Rn. Suppose
lenx1 = len y1 and for every element i of N such that i ∈ domx1 holds
y1(i) = f(x1(i)). Then

∑
y1 = f(

∑
x1).

(17) Let x1 be a finite sequence of elements of Rm and y1 be a finite sequence
of elements of R. Suppose lenx1 = len y1 and for every element i of N such
that i ∈ domx1 there exists an element v of Rm such that v = x1(i) and
y1(i) = |v|. Then |

∑
x1| ≤

∑
y1.

Let m, n be natural numbers. Note that every linear operator from m into
n is bounded.

Let us consider m, n. Observe that every linear operator from 〈Em, ‖·‖〉 into
〈En, ‖ · ‖〉 is bounded.

Next we state several propositions:

(18) Let m, n be non empty elements of N, f be a partial function from Rm
to Rn, and x be an element of Rm. Suppose f is differentiable in x. Then
f ′(x) is a linear operator from 〈Em, ‖ · ‖〉 into 〈En, ‖ · ‖〉.

(19) Let m, n be non empty elements of N, f be a partial function from Rm
to Rn, and x be an element of Rm. Suppose f is differentiable in x. Then
f ′(x) is a linear operator from m into n.

(20) Let n, m be non empty elements of N, g1, g2 be partial functions from
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Rm to Rn, and y0 be an element of Rm. Suppose g1 is differentiable in
y0 and g2 is differentiable in y0. Then g1 + g2 is differentiable in y0 and
(g1 + g2)′(y0) = g1

′(y0) + g2
′(y0).

(21) Let n, m be non empty elements of N, g1, g2 be partial functions from
Rm to Rn, and y0 be an element of Rm. Suppose g1 is differentiable in
y0 and g2 is differentiable in y0. Then g1 − g2 is differentiable in y0 and
(g1 − g2)′(y0) = g1

′(y0)− g2′(y0).
(22) Let n, m be non empty elements of N, g be a partial function from
Rm to Rn, y0 be an element of Rm, and r be a real number. Suppose g is
differentiable in y0. Then r g is differentiable in y0 and (r g)′(y0) = r g′(y0).

(23) Let x0 be an element of Rm, y0 be a point of 〈Em, ‖ · ‖〉, and r be a real
number. Suppose x0 = y0. Then {y ∈ Rm: |y − x0| < r} = {z; z ranges
over points of 〈Em, ‖ · ‖〉: ‖z − y0‖ < r}.

(24) Let m, n be non empty elements of N, f be a partial function from Rm
to Rn, x0 be an element of Rm, and L, R be functions from Rm into Rn.
Suppose that

(i) L is a linear operator from m into n, and
(ii) there exists a real number r0 such that 0 < r0 and {y ∈ Rm: |y−x0| <

r0} ⊆ dom f and for every real number r such that r > 0 there exists a
real number d such that d > 0 and for every element z of Rm and for
every element w of Rn such that z 6= 〈0, . . . , 0︸ ︷︷ ︸

m

〉 and |z| < d and w = R(z)

holds |z|−1 · |w| < r and for every element x of Rm such that |x−x0| < r0
holds f(x)− f(x0) = L(x− x0) +R(x− x0).
Then f is differentiable in x0 and f ′(x0) = L.

(25) Let m, n be non empty elements of N, f be a partial function from Rm
to Rn, and x0 be an element of Rm. Then f is differentiable in x0 if and
only if there exists a real number r0 such that 0 < r0 and {y ∈ Rm:
|y − x0| < r0} ⊆ dom f and there exist functions L, R from Rm into Rn
such that L is a linear operator from m into n and for every real number r
such that r > 0 there exists a real number d such that d > 0 and for every
element z of Rm and for every element w of Rn such that z 6= 〈0, . . . , 0︸ ︷︷ ︸

m

〉

and |z| < d and w = R(z) holds |z|−1 · |w| < r and for every element x of
Rm such that |x− x0| < r0 holds f(x)− f(x0) = L(x− x0) +R(x− x0).
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2. Differentiation of Functions from Normed Linear Spaces Rm to
Normed Linear Spaces Rn

One can prove the following propositions:

(26) For all points y2, y3 of 〈En, ‖ · ‖〉 holds (Proj(i, n))(y2 + y3) =
(Proj(i, n))(y2) + (Proj(i, n))(y3).

(27) For every point y2 of 〈En, ‖ · ‖〉 and for every real number r holds
(Proj(i, n))(r · y2) = r · (Proj(i, n))(y2).

(28) Let m, n be non empty elements of N, g be a partial function from
〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, x0 be a point of 〈Em, ‖ · ‖〉, and i be an element of
N. Suppose 1 ≤ i ≤ n and g is differentiable in x0. Then Proj(i, n) · g is
differentiable in x0 and Proj(i, n) · g′(x0) = (Proj(i, n) · g)′(x0).

(29) Let m, n be non empty elements of N, g be a partial function from 〈Em,
‖ · ‖〉 to 〈En, ‖ · ‖〉, and x0 be a point of 〈Em, ‖ · ‖〉. Then g is differentiable
in x0 if and only if for every element i of N such that 1 ≤ i ≤ n holds
Proj(i, n) · g is differentiable in x0.

Let X be a set, let n, m be non empty elements of N, and let f be a partial
function from Rm to Rn. We say that f is differentiable on X if and only if:

(Def. 4) X ⊆ dom f and for every element x of Rm such that x ∈ X holds f�X
is differentiable in x.

The following four propositions are true:

(30) Let X be a set, m, n be non empty elements of N, f be a partial function
from Rm to Rn, and g be a partial function from 〈Em, ‖ · ‖〉 to 〈En,
‖ · ‖〉. Suppose f = g. Then f is differentiable on X if and only if g is
differentiable on X.

(31) Let X be a set, m, n be non empty elements of N, and f be a partial
function from Rm to Rn. If f is differentiable on X, then X is a subset
of Rm.

(32) Let m, n be non empty elements of N, f be a partial function from Rm
to Rn, and Z be a subset of Rm. Given a subset Z0 of 〈Em, ‖ ·‖〉 such that
Z = Z0 and Z0 is open. Then f is differentiable on Z if and only if the
following conditions are satisfied:

(i) Z ⊆ dom f, and
(ii) for every element x of Rm such that x ∈ Z holds f is differentiable

in x.

(33) Let m, n be non empty elements of N, f be a partial function from Rm
to Rn, and Z be a subset of Rm. Suppose f is differentiable on Z. Then
there exists a subset Z0 of 〈Em, ‖ · ‖〉 such that Z = Z0 and Z0 is open.
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